Exercise sheet 1.
Data structures SoSe 2020

Laszl6 Kozma, Katharina Klost

Due 12:00, May 1st, 2020

Exercise 1 Stacks and variants 3 x 4 Points

Recall the array-based stack implementation from the lecture, with operations
make_stack, push, pop, supported in constant amortized time.

(a)

A double-ended queue (“deque”) is a more powerful data structure that al-
lows adding and removing elements at both ends of a list, i.e. it supports the
operations make_deque, push-right, push-left, pop-right, pop-left.

Design a deque that uses memory efficiently and in which all operations take
constant amortized time. Analyze the data structure rigorously with any
method you prefer. You may re-use the stack construction from the lecture as
a black box, or you may use arrays.

Suppose you wanted a stack where all operations take actual constant time
(as opposed to amortized). Describe how to modify the array-based design to
achieve this. (A linked list would also work, but we insist on using arrays.)
Hint: The only “bad case” was when the array had to be doubled and elements
had to be copied. Can you “spread” this work across multiple operations?

The waste of a data structure is the difference between the number of memory
cells in use and the number n of items stored in the data structure. The stack
implementation discussed in the lecture has a waste of O(n). Improve the
design to reduce the waste to O(y/n) at all times. (Make sure you account for
all the extra pointers and other bookkeeping you may need in the design.)

Exercise 2 Lower bounds 2 x 4 Points

(a)

(b)

Recall that if a heap supports one of the operations insert and extract-min in
time o(logn), the other type of operation must take time Q(logn).

Similarly argue that if meld takes time O(n'~¢) for arbitrary constant ¢ > 0,
then extract-min must take time (logn).

Recall that we showed how to do median filtering on a sequence of length n
with window size k in time O(nlog k). Argue that this running time is optimal
in both n and k. (Hint: sorting.)

Total: 20 points. Have fun with the solutions!



