Identifying and sorting Jordan sequences

Example:

2, 5, 8, 7, 6, 9, 4, 3, 10, 1, 11, 12

Jordan seq: result of this process:

Problem: Given sequence, verify if Jordan-seq, and sort.

Want to do it in \(O(n)\) time.

Claim: \# permutations of size \(m\) that are Jordan-seq, \(m \leq 5^n\).

(No inclusion lower bound does not apply, same argument would yield at best \(\Omega(n)\).

Proof of Claim:

Applications

Find intersections between polygon and line

(fast, use in order along polygon)

Want to report along line.

\(\Rightarrow\) Jordan sorting
Application (Computer Graphics)
- Find visible part of polygon inside window
- Find intersections along polygon
- Cut them along window
 \(\rightarrow \) Forda sorting

Algorithm

\[x_0, x_1, \ldots \]

\[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 \]

Idea: Represent Forda sq. with two trees, one above one below

Obv. pair \(\{ x_{2i-1}, x_{2i} \} \) is a 'bump'

Obv. bumps cannot intersect

2 valid cases:
- OK.
- NO.

Upper tree
- Build tree with nodes \(\{ x_{2i-1}, x_{2i} \} \)
 for \(i = 1, 2, \ldots \)

 - Parent of \(\{ x_{2i-1}, x_{2i} \} \) is closest pair that contains \(x_0 \)
 (or \(\{ -\infty, \infty \} \))

Lower tree
- Nodes \(\{ x_{2i}, x_{2i+1} \} \)
 for \(i = 1, 2, \ldots \)
Algorithm

Input: Sequence X_1, \ldots, X_n (list of intersections along curve)

Process X_1, \ldots, X_n

Build:
- upper tree
- lower tree
- sequence sorted along line

if get stuck, report
 "NOT Jordan-seq."

initialize:
- make X_1 root of both trees
- sorted list $(-\infty, X_1, +\infty)$
- for $i=2, \ldots, n$ process X_i

if i even, then add $\{X_{i-1}, X_i\}$ to upper tree
(if i odd, then add $\{X_{i-1}, X_i\}$ to lower tree) — symmetric, details skipped
(assume $X_{i-1} < X_i$, otherwise symmetric)

0() {
 \[\begin{align*}
 &\text{(1) find } X \text{ in sorted list that is right neighbor of } X_{i-1} \\
 &\text{(2) find pair in upper tree containing } X, \quad X \in \{L, R\}
 \end{align*} \]
}

5 cases

A

\[\begin{align*}
 &L < X_{i-1} < R < X_i \\
 &\text{Not A Jordan-seq. STOP}
 \end{align*} \]

B

\[\begin{align*}
 &L < X_{i-1} < X_i < R \\
 &\text{make } \{X_{i-1}, X_i\} \text{ rightmost child of } \{L, R\} \\
 &\text{insert } X_i \text{ after } X_{i-1} \text{ a sorted list}
 \end{align*} \]
Data Structure

- Sorted list as doubly linked list (must allow query element in O(1) time)
- Lists of siblings (in upper and lower trees) as finger search trees

\[x_{i-1} < x_i < L < R \]
- Make \(\{x_{i-1}, x_i\} \) new left sibling of \(\{L, R\} \)
- Insert \(x_i \) after \(x_{i-1} \) in sorted list

\[x_{i-1} < L < x_i < R \]
- Not a Jordan seq. Stop

\[x_{i-1} < L < R < x_i \]
- Find rightmost sibling of \(\{L, R\} \)
- i.e. \(L < x_i \)
 (If \(R > x_i \) then NOT Jordan seq. Stop)
- Find parent of \(\{L, R\} \), call it \(\{L', R'\} \)
 (If \(R' < x_i \) then NOT Jordan seq. Stop)
- Remove subtree of children \(\{L, R\}, \ldots, \{L', R'\} \) of \(\{L, R\} \)
 replace by new node \(\{x_{i-1}, x_i\} \)
 make removed subtree child of \(\{x_{i-1}, x_i\} \)
- Insert \(x_i \) after \(R' \) in sorted list
Running time

- last rightmost child $O(n)$
- last left neighbor $O(n)$

- 2-pivot split, remove sublist of length d from a list of length t
 (after searching for endpoint)
 $O(lg \ min \{d, t-d\})$

 (recall line split of F_{st})

Overall running time

Total cost of splitgings (renew analysis of Application-2 splittable lists)

- split (ij) cost $lg \ min \{d, t-d\}$
- insert cost $O(1)$

Define potential $t - lg_{2}t$ for list of length t

Total potential $\phi = \sum_{w \in W} \phi(w)$

Amortized cost of split $O(1)$

Amortized cost of insert $O(1) + \Delta \phi = O(1)$

Proceed X_i amortized $O(1)$

Total time for finder-sort $O(n)$.