Building Cartesian trees in linear time

Given an array $A = (A_0, ..., A_{N-1})$

Cartesian tree of A

1. binary tree with nodes $(i, A[i])$
2. search tree according to i
3. min-heap according to $A[i]$

Algorithm

1. Add dummy null to the left, to the right of the array

2. Turn array into a linked list

3. As long as there is a local maximum x in list,
 \[\text{link}(x) \]

\[\cdots \rightarrow A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots \]
\[x \quad \text{is local max}. \quad x > M \quad x > 2 \]

\[\text{link}(x): \text{make } x \text{ child of } \max(M, 2) \]
\[\text{if } y > 2, \text{ make } x \text{ right child of } y \]
\[\cdots \rightarrow A_0 \rightarrow x \rightarrow \cdots \]
\[\text{if } z > y, \text{ make } x \text{ left child of } z \]
\[\cdots \rightarrow m \rightarrow z \rightarrow \cdots \]
\[x \text{ dropped out of list} \]

Operation takes $O(1)$ time

- after $N-1$ link operations
After min link operations:

- Min heap:
 - $\infty \rightarrow 3 \rightarrow 8 \rightarrow 5 \rightarrow \ldots \rightarrow 4 \rightarrow \infty$

- Start at leftmost item i.
- While i not at the end:
 - If local min at i, then link (i).
 - Else, $i \leftarrow i.next$.
- Left if i no local min.
- Every iteration makes progress:
 - Either cut out one node (reduces list size by 1).
 - Or move i to the right.

Example:

```
5 1 3 7 4
```

- Local min at 1:

```
\infty \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow \infty
```

Result:

```
\infty \rightarrow 2 \rightarrow 3 \rightarrow 5 6
```

Running time $O(n)$:
- $\text{link}(x) \rightarrow O(1)$ time.
- How to find local min?
Correctness

1. binary tree \(\xrightarrow{?} \) criteria tree
2. search tree
3. min-heap

(3) link always makes a local max the child of its neighbor

1. \(\text{local max} \rightarrow 2 \rightarrow x \rightarrow y \rightarrow y_? \)

\(x \) becomes left child of \(y \)

\(\rightarrow 2 \rightarrow y \rightarrow \ldots \)

need to show: \(y \) will not get another left child.
This is true, because \(z < y \), so \(z \) can never be a local max (as long as \(y \) is there), so it will not be linked to \(y \). When \(y \) is gone, then it cannot get left children anyway.

So a node can only get one left child. By symmetric argument, only one right child.

2. Maintain invariant: if \(x \) is left of \(y \) in the list, then all nodes in subtree(\(x \)) have smaller indices than all nodes in subtree(\(y \)).
 This is true initially.
 A single link preserves this, so always true.
 From this property it follows that the trees created by link have search tree property.