Simplified [Kleene '52, Zuckerman]

\[
\begin{align*}
\text{push-heap} & \quad O(1) \\
\text{insert} & \quad O(1) \\
\text{extract-min} & \quad \begin{cases} O(1) & \text{randomized} \\ O(\log n) & \text{deterministic} \end{cases}
\end{align*}
\]

"error parameter" $\varepsilon \leq 1$

\begin{itemize}
\item meld
\item delete
\end{itemize}

$\varepsilon > 0$ arbitrary constant parameter

Comparison model (keys only accessed via comparisons)

- e.g. $\varepsilon = 0.1 = \Rightarrow \text{extract-min} = O(1)$
- The one of min/extract-min must have cost $\geq \Omega(n)$

Why is this not a contradiction?

Answer:

Soft heap "corrupts" an ε-fraction of the keys.

We have no control over the corruption.

If $\varepsilon < \frac{1}{m}$, cost of operations $O(\log m)$.
If $\varepsilon = 1$, not covered in this class.

Q: What is soft-heap good for?

1. How to implement it?
 - a) [Kleene] Deterministic MST $O(m \alpha(m))$
 - b) Known deterministic MST algorithm
 - c) Randomized $O(m) \alpha(m)$ expected time

\begin{itemize}
\item $\alpha(n)$ extremely slowly growing: almost optimal
\item $\alpha(5) = 1$
\item $\alpha(10) = 2$
\item $\alpha(1000) = 3$
\item $\alpha(10^{1000}) = 3$
\end{itemize}

inverse Ackermann funct.
b) Deterministic selection (median, etc.) \Rightarrow we'll talk about those applications

- Soft-heap interface

- **Invariant:**
 - After any insertion into Soft-heap, there will be $\leq 3 \cdot m$
 - Corrupted elements in the Soft-heap.

- **Corrupted = Key Increased**

- The number of elements currently in Soft-heap may be much smaller than m.

- It may even be possible that all elements in Soft-heap are corrupted.
 - [Actually will not happen]

- It may be the case that all extracted elements are corrupted
Deterministic Selection

Let \(X = \{x_1, \ldots, x_n\} \subseteq U \) be an ordered set.

rank \((x) = \left| \left\{ y \in X \mid y \leq x \right\} \right| \)

- e.g. \(\text{min} \) has rad 1
- \(\text{max} \) has rad \(n \)
- median has rad \(\frac{n}{2} \) (\(n \) odd)

Select \((X, k) \)

return element of \(X \) of rad \(k \).

A good splitter \(y \in X \) is an element of

\[
\frac{n}{3} \leq \text{rad}(y) \leq \frac{2n}{3}
\]

more generally: \(\alpha \)-splitter:

\[
\alpha n \leq \text{rad}(y) \leq (1-\alpha)n
\]

for some fixed \(\alpha \in (0, 1) \)

Suppose we can find a good splitter of \(X \) in time \(c \cdot n \)

\[
\begin{align*}
\text{Select} & (X, k) \\
\text{if } k = 1, & \text{return } \text{min} (X) \\
\text{else } & \text{find good splitter } y \\
\text{partition } & \ X \ \text{into } X \leq y \ \cup \ X > y \\
\text{if } k \leq t & \ 	ext{return } \text{Select} \ (X \leq y, k) \\
\text{else } & \text{return } \text{Select} \ (X > y, k-t)
\end{align*}
\]

\[
T(n) \leq c \cdot n + T \left(\frac{2}{3} n \right) \\
\leq c \cdot n \left(1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \ldots \right) \\
\leq 3 \cdot c \cdot n \leq O(n^3)
\]

Conclusion: Find good splitter in \(O(n) \) time \(\Rightarrow \) solve \ Select \ in \(O(n) \) time

(or any \(\alpha \)-splitter)
How to find a good splitter?
- Randomized → Quickselect
- Deterministically:
 median of median algorithm

Find median of medians
(recursive call to our select)

\(n/5 \) groups of 5

Observe: median of medians is an \(\chi \)-splitter!
\[
\frac{m}{10} + \frac{m}{5^2} \leq \text{smaller}
\]
\[
\leq \frac{3m}{10} \leq \text{smaller}
\]

\(\geq \frac{3m}{10} \text{ larger} \)

\(\Rightarrow \) median of medians is \(\frac{3}{10} \)-splitter

Solution using Soft-heap

\text{Insert} / \text{extract-min}
\leq 3 \cdot m \text{ items are corrupted}
\ # universe

\begin{align*}
X: \text{key} & \quad \text{"true key"} \\
X: \text{current-key} & \geq X: \text{key} \\
X: \text{current-key} & > X: \text{key} \quad \text{if } X \text{ is "corrupted"} \\
X: \text{current-key} & = X: \text{key} \quad \text{if } X \text{ is "not corrupted"} \\
\text{extract-min} & \rightarrow \text{return item with smallest current-key.}
\end{align*}

Soft heap works like a normal min-heap w.r. to current keys.
Find a good splitter of $X = \{x_1, \ldots, x_n\}$

0. Create a Soft-Heap H with $\varepsilon = 1/3$
1. Insert x_1, \ldots, x_n into H
2. Extract-min $\frac{n}{3}$ times (call set A)
3. Return max key item in A (call it x)

Claim: x is a good splitter of X

$\# \text{corrupted items} \leq \varepsilon \cdot n = \frac{n}{3} \Rightarrow |B| \geq \frac{n}{3}$

Proof:
- x is max in A
- x smaller than all in B' (still in H and not corrupt)

\[
\text{true key of those in } A \leq \text{current key of those in } A \leq \text{current key of those in } B' = \text{true key of those in } B'
\]

Find max of A (acc. to true key)

$\frac{n}{3} \leq \text{rank}(x) \leq 2\frac{n}{3} \quad \Rightarrow x \in A$ is a good splitter

Total cost is $O(n)$

Running time:

0. $O(1)$

1. $O(n)$ (insert)

2. $O(n)$ (extract-min)

2. $O(n)$ (find max)

Total: $O(n)$
Soft heap recap

- `x.key`
- `x.current.key`

- `key`
- `current.key`

- `x.current.key > x.key`

- "x corrupted" \iff \(x.current.key > x.key \)

Parameter \(\varepsilon \): only a \(\varepsilon \)-fraction of insertions may be corrupted.

Soft heap behaves like a normal min-heap according to current key.

Selection recap

\[\begin{align*}
|A| &= 2n/3 \\
|B| &= n/3 \\
\text{not corrupted} \iff \varepsilon = 1/3 \Rightarrow 3 \leq n/3 \\
\end{align*} \]

- \(x \in A \)
- \(y \in B \)
- \(x.key \leq x.current \leq y.current = y.key \)

Pick \(x \in A \) with max key.
Soft heap implementation

- binary heap

\[\text{input} \quad O(1) \quad \text{amortized} \quad \text{extract-min} \quad O(1) \]

- each node has an annotated list
 - node key is the max of keys in list
 - node keys satisfy heap order

node is a "representative" for entire list
items in list have current key set to node key

\[\text{rank of a node } x = \text{distance of } x \text{ from a leaf} \]

\[\text{rank of leaf is } 0 \]

list sizes grow more slowly

\[\Gamma = \log \frac{1}{\varepsilon} + C \]

- at rank \(k \), the list size is
 \[S_k = 1.5 \cdot k - r \]

- at rank \(k \leq r \), the list size is
 \[S_k = 1 \]
- Extract-min

- Pop an arbitrary element from list of root

- If list size $\geq \frac{S_k}{2}$, nothing else to do

- If list size $\leq \frac{S_k}{2}$, sift-up in the tree, until list size $> S_k$

 Sift-up: move up list of child with smaller key and concatenate with root list. (representative will change)

 Recursively sift-up to fix child node

 If root list still not large enough, sift-up second time

- Insert

 Min pointer

 - Soft-keep

 - List of trees, s.t.

 - Root rails are all distinct

 - Maintain pointers to root with smallest current-key

 Insert

 - Create new tree, singleton root

 - Merge trees until all root rails are unique distinct

 Fix list sizes by doing sift-up

 Update min-pointer
Analysis

Claim: \(\# \text{corrupted items} \leq 3 \cdot m \)

Proof:

\(S_k \)

5 items corrupted

5 \(k \)-1 items corrupted

Obs.: \#nodes of rank \(k \) is at most \(\frac{m}{2^k} \)

Proof. Induction \(k = 0 \):

\(\# \text{nodes of rank } 0 \leq m \)

\(\# \text{nodes of rank } 1 \leq \frac{m}{2} \)

\(\# \text{nodes of rank } r \leq \frac{m}{2^k} \)

\(\# \text{corrupted items} \)

\[\leq \sum_{r \geq 1} \left(\frac{3}{4} \right)^k \cdot \frac{1}{2^k \cdot 2^r} \]

\[\leq m \cdot \sum_{k \geq 1} \left(\frac{3}{4} \right)^k \cdot \frac{1}{2^k} \]

\[\leq m \cdot \sum_{k \geq 1} \left(\frac{3}{4} \right)^k \cdot \frac{1}{2^k} \]

\[\leq m \cdot \left(\frac{3}{4} \right)^2 \cdot \frac{1}{2} \]

\[\leq \frac{3m}{4} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i \]

\[\leq 3 \cdot m \]
Aborted cost of extrac-tion is \(O(\log \frac{1}{\varepsilon}) \)

- Wrong one list up and concatenate
- Worst cost is \(1 \)
- Cost = \(r \)
- Cost of extra:
 - from \(\varepsilon \) to \(\varepsilon + 1 \)
 - Shred away \(3k \) items

Cost of a single element moving from \(\varepsilon \) to \(\varepsilon + 1 \):
- First \(r \) steps \(\Rightarrow \) cost \(\frac{1}{\varepsilon} \)
- For steps \(r \rightarrow k \) \(\Rightarrow \) cost \(\sum_{k=r}^{\infty} \frac{1}{5k} \)

Total cost = \(\sum_{k=r}^{\infty} \frac{1}{5k} \leq \log \frac{1}{\varepsilon} + \sum_{k=r}^{\infty} \frac{2}{5k} \leq \frac{2}{5r} \leq \frac{2}{5} \)

\(\leq \log \frac{1}{\varepsilon} + c \)

\(\leq O(\log \frac{1}{\varepsilon}) \)

Some notes (see [Kaplan-Zwick] for details):
- \(3k \) is the size of the list
- only fix when \(n \leq \frac{3k}{2} \)
- true size of a list \(k \geq \frac{3k}{2} \)
- other questions?
- where is win?
- cost of updating win-points?
- analysis of most cost
Soft heap analysis recap

- Insert: $O(k \log 1/k)$
- Extract-min: $O(1)$

Amortized:

- ε-error parameter
- Node key: the key of list node keys are in heap order

$k > \varepsilon$

$$S_k = 1.5 \cdot k - r$$

$$r = \log 1/k + 2$$

- Each root node is unique

Overall min

- Insert: x
 - Create a new tree with single root root of rank 0
 - Merge equal rank roots into new tree
 - Sift up where necessary
 - Update max
 - Merge up to rad k -> update k min

-k + k ->

- k + k ->
Insert costs:

- $\psi \cdot 2^h$ to the element in list
 (will pay for all sift-ups to
 the future)

- $1 \in$ a tree node
 (will pay for all tree mergers)

- 2ψ on tree node
 (will pay for update min)

Cost:

\[
\psi \cdot 3 = O(\log \frac{1}{3})
\]

\[
\frac{1}{\log 4} = \frac{1}{\log 16} = \frac{1}{\log 128}
\]

Invariant: each tree root has $1 \in$

each tree root of red k

has $k + 2 \psi$

1. ψ paid for merge
2. ψ put back to restore invariant

Same analysis as for binary counter

1. Available to pay for update min
2. Pays for update min k to minimum
inequality true when \(k \geq 3r \). To handle the case of \(k < 3r \) we can pay another \(3r \) \(¥ \) at the time of insert, and store it with the list element.

\[24\sqrt{k(2r)^4} \]

if root node-key changes
need to update within

\[O(\sqrt{k}) \]

\[O(1) \]

Claim: \($ \) pay for all sift-up

actual cost of binary list-up is \(\frac{1}{5k} \)

charge each element \(\frac{1}{5k} \)
$\sum_{i=0}^{\infty} \left(\frac{2}{3} \right)^i = 3$

\[
\frac{1}{S_k} = \left(\frac{2}{3} \right)^{k-r}
\]

Application of Soft-heaps