
Optimal Restart Times for Moments of Completion Time

Aad P. A. van Moorsel

aadvanmoorsel.com

Goßlerstraße 11, 12161 Berlin,

Germany

conferences@aadvanmoorsel.com

and Katinka Wolter

Humboldt-Universität Berlin

Institut für Informatik

Unter den Linden 6, 10099 Berlin,

Germany

wolter@informatik.hu-berlin.de

Abstract

Restart is an application-level technique that speeds up completion for jobs with highly

variable completion times. In this paper, we present an efficient iterative algorithm to

determine the optimal restart strategy if there are a finite number of restarts, and if one

is interested in minimising higher moments of the completion time. We demonstrate its

computational efficiency in comparison with alternative algorithms. We also discuss fast

approximations to determine close to optimal restart times for limiting cases.

1 Introduction

The work in this paper applies to various forms of ‘restart,’ which simply implies that a task

is retried after some time threshold has passed. Restart finds its application in areas ranging

from randomised algorithms [2] to distributed data base queries [6], Internet agents [3] and

software rejuvenation [1]. Probably the most commonly experienced restart mechanism is

clicking the reload button of the web browser when a download takes too long.

The basic form of restart can be conveniently modelled assuming that (1) successive downloads

are statistically independent and identically distributed, and (2) new tries abort previous tries.

Such model assumptions have been found realistic for Internet applications [3, 5]. Under

these assumptions, we provide in this paper an efficient algorithm to determine the optimal

time instances at which to initiate restarts, so that higher moments of completion time are

minimised.

As we showed in [4], the optimal restart strategy for unbounded number of restarts can be

determined in straightforward manner, as can that for a finite number of restarts and the

first moment. However, the combination of higher moments and finite number of restarts is

considerably more challenging, and requires an iterative approach to deal with the multiple

dimensions of the optimisation problem. Our proposed algorithm leverages various expres-

sions for the moments of completion time to simplify the minimisation problem. Because of

1

s

}}}

ττ

}

s

cτ1

1 2

c

sK−1

K−1c K c

sK K+1
times

Figure 1: Labelling restarts, total of K restarts.

these simplifications, the algorithm outperforms more naive approaches by up to an order of

magnitude, as we will show.

The paper also provides insights into the characteristics of the optimal restart strategy through

approximations under limiting conditions. These approximations enable quick estimates for

optimal restart times, and also show that, contrary to the situation for the first moment, it is

typically not optimal to apply restarts at constant intervals when minimising higher moments.

2 Model

Let the random variable T represent the completion time of a job without restarts, f(t) its

probability density function, and F (t) its distribution. The total number of restarts is K,

and the overhead associated with restarting is c time units for each restart. The random

variable TK represents the completion time with K restarts, and the restart intervals have

length τ1, . . . , τK , as shown in Figure 1. We also use τk|K (instead of τk) to denote the k-th

restart time out of a total of K restarts. The k-th interval starts at time sk. So, we get s1 = 0,

s2 = τ1 + c, s3 = τ1 + c + τ2 + c, etc., until sK+1 =
∑

K

k=1
τk + Kc.

Setting τK+1 = ∞ for notational purposes, we obtain density function fK and survival func-

tion F̄K = 1 − FK piece-wise for each restart interval [4]:

F̄K(t) =

{

∏

k−1

i=1
F̄ (τi)F̄ (t − sk) if sk ≤ t < sk + τk, k = 1, . . . ,K + 1

∏

k−1

i=1
F̄ (τi) if sk + τk ≤ t < sk+1, k = 1, . . . ,K

fK(t) =

{

∏

k−1

i=1
F̄ (τi)f(t − sk) if sk ≤ t < sk + τk, k = 1, . . . ,K + 1

0 if sk + τk ≤ t < sk+1, k = 1, . . . ,K
(1)

It is worth visualising the density of TK , see Figure 2 for a lognormal distributed T , with

K = 3 restarts, restart intervals {τ1, τ2, τ3} = {0.25, 0.2, 0.15}, and c = 0.02.

The N -th moment E[T N

K
], our metric of interest, is by definition:

E[T N

K] =

∫ ∞

0

tNfK(t)dt =

K+1
∑

k=1

∫

sk+τk|K

sk

tNfK(t)dt. (2)

2

0.2 0.4 0.6 0.8 1
t

1

2

3

4

5

6

7
f3HtL

Figure 2: The probability density f3 of completion time T3 with restarts

{τ1, τ2, τ3} = {0.25, 0.2, 0.15}, and c = 0.02 (based on lognormal dis-

tributed completion time T).

3 Optimisation

To find the restart times τ1|K , . . . , τK|K that minimise E[T N

K
], one could minimise (2) directly.

It results in a K-dimensional minimisation problem that can be solved with off-the-shelf

optimisation software. However, it is computationally expensive, since every new ‘guess’ for

τk|K implies recomputing the integral term in (2) for all intervals [sl, sl + τl|K) with l ≥ k, to

determine if the guess improves E[T N

K
].

As an alternative, we can exploit an expression for E[T N

K
] we derived in [4]. It recursively

relates moments for K restarts with that for K − 1 restarts by adding one restart before the

existing K − 1:

E[T N

K] = MK [T N] + F̄ (τ1|K)

N
∑

n=0

(

N

n

)

(τ1|K + c)N−nE[T n

K−1], (3)

where MK [T N] denotes the ‘partial moment,’ defined for k = 1, . . . ,K, as:

Mk[T
N] =

∫

τ1|k

0

tNf(t)dt.

Hence, instead of minimising (2) one can minimise (3). In this case, however, every new ‘guess’

for τk implies computing E[T N

K
] ‘all the way,’ recursively computing E[T N

l
] for all values l ≥ k,

to determine if the guess improves E[T N

K
]. This also introduces much computational overhead.

(In Figure 5 we will see that minimising (3) is in fact slightly less expensive than minimising

(2), at least for the discussed example.)

Instead of the direct minimisation of (2) or (3), we would like to extend to higher moments

an idea that worked very well in [4] for the first moment. Utilising the recursion in (3), we

derived an algorithm in [4] that sequentially determines the restart time τ1|k that minimises

E[Tk] = Mk[T] + F̄ (τ1|k)(τ1|k + c + E[Tk−1]), for k = 1 until K. Its correctness relies on the

3

fact that the optimal restart time τK−k+1|K equals τ1|k, because the first moment is insensitive

to shifts [4]. We named this algorithm the backward algorithm, since it traverses backward

in time. A single pass of K optimisations is guaranteed to provide the optimal restart times.

The backward algorithm is thus much more efficient than minimising (2) or (3). (Figure 5

shows an improvement of about a factor 20.)

The problem in applying this idea to higher moments is that the restart time τ1|k that min-

imises E[T N

k
] in general is not equal to its counterpart τK−k+1|K that minimises E[T N

K
].

Higher moments are not insensitive to shifts. To resolve this issue, we need the following

theorem.

Theorem 1. For any k, k = 1, . . . ,K, the ‘last’ k restart times τK−k+i|K, i = 1, . . . , k,

minimise E[T N

K
] (given other restart times τl|K, l = 1, . . . ,K − k) if and only if τi|k =

τK−k+i|K, where τi|k minimises E[(Tk + sK−k+1)
N].

Proof. First, by definition:

E[T N

K] =

∫

sK−k+1

0

tNfK(t)dt +

∫ ∞

sK−k+1

tNfK(t)dt.

Since the left most integral term does not depend on τK−k+i|K, i = 1, . . . , k, the last k optimal

restart times minimise E[T N

K
] if and only if they minimise

∫ ∞
sK−k+1

tNfK(t)dt. Then, it follows

from (1) that for every set τK−k+i|K, i = 1, . . . , k, there exists a corresponding set τi|k, with

τi|k = τK−k+i|K, i = 1, . . . , k, and such that for any t ≥ 0:

fK(t + sK−k+1) =

K−k
∏

l=1

F̄ (τl|K)fk(t).

This implies that:

∫ ∞

sK−k+1

tNfK(t)dt =

∫ ∞

0

(t + sK−k+1)
NfK(t + sK−k+1)dt

=

K−k
∏

l=1

F̄ (τl|K)

∫ ∞

0

(t + sK−k+1)
Nfk(t)dt =

K−k
∏

l=1

F̄ (τl|K)E[(Tk + sK−k+1)
N].

The product in this expression is independent of τK−k+i|K, i = 1, . . . , k, and thus minimis-

ing
∫ ∞
sK−k+1

tNfK(t)dt corresponds to minimising E[(Tk + sK−k+1)
N]. Combining the above

arguments, we see that if τK−k+i|K, i = 1, . . . , k, minimises E[T N

K
], then the corresponding

restart times τi|k, i = 1, . . . , k, minimise E[(Tk + sK−k+1)
N].

Theorem 1 implies that for any k, k = 1, . . . ,K, determining the optimal restart time

τK−k+1|K is equivalent to finding the restart time τ1|k that minimises:

E[(Tk + sK−k+1)
N] =

N
∑

n=0

(

N

n

)

sN−n

K−k+1
E[T n

k], (4)

4

where E[T n

k
] obeys (3): E[T n

k
] = Mk[T

n] + F̄ (τ1|k)
∑

n

m=0

(

n

m

)

(τ1|k + c)n−mE[T m

k−1
]. Figure 5

in Section 6 shows that for our example it saves about 70 percent computer time to optimise

the restart times in this way. The benefit of using (4) is that with every ‘guess’ in the

optimisation algorithm it neither requires to recompute integral terms for all values l ≥ k (as

in (2)), nor terms E[T N

l
] for all values l ≥ k (as in (3)). One can say that we have isolated

the optimisation of the k-th restart time from its interference with the other restart intervals.

4 Algorithm

The resulting optimisation algorithm is given as Algorithm 1. Contrary to the backward

algorithm for the first moment [4] it does not terminate in K steps, but instead requires to

iterate until either E[T N

K
] or the restart times converge. One can apply generic approaches

to decide which restart time τk to optimise at each iteration (such as the method of steepest

descent). However, we propose three particular ways, which try to leverage the structure of

the problem to minimise computation: backward, forward and alternating.

Algorithm 1 (Backward, Forward and Alternating Optimisation).

Choose constants N and K;

For n = 1 to N

Compute E[T n
0];

Determine τ∞ that minimises E[T∞];

For k = 1 to K

Initialise τk = τ∞;

While(not converged) Do {

For k = K to 1 {

If (backward || alternating) then

Set τk so that it minimises τ1|k in (4), using (3) for E[T n

k
];

For n = 1 to N

Compute E[T n

k
] using (3);

}

If(forward || alternating) then {

For k = 1 to K

Set τk so that it minimises τ1|k in (4), using (3) for E[T n

k
];

}

}

Return τ1, . . . , τK;

Note that every minimisation step can be carried out with a general-purpose optimisation

algorithm. Also, note that E[T∞] can be minimised using the expression E[T∞] = (M∞[T] +

F̄ (τ∞)(τ∞ + c))/F (τ∞) derived in [4]. The reason to initialise the algorithm with τ∞ will

become apparent when discussing the bulk approximation in the next section.

5

1 5 10 K=15

restart
index k

0.18

0.2

0.22

0.24

0.26

restart
time

1st moment
2nd moment
3rd moment
Τ¥

Figure 3: Optimal restart times, with respect to the moments E[T15],

E[T 2
15] and E[T 3

15], respectively.

5 Characteristics of Optimal Restart Times

We applied our algorithm to a lognormal distribution, with parameters µ = −2.31 and σ =

0.97.1 We determine K = 15 restart times that minimise the first, second and third moment

of the completion time. These restart times (with an interpolating curve) are shown in Figure

3. The figure also shows τ∞, which is the starting solution set at the initialisation step in

Algorithm 1.

Figure 3 indicates that when minimising the first moment, the optimal restart time τk|K

monotonically converges when k gets smaller, to a single optimum τ∞, as long as K is large

enough. For higher moments, things are not as straightforward, as also witnessed by Figure 3.

Nevertheless, convergence does get established, albeit with more intricate patterns than for

the first moment. To show this, we study three limiting cases, namely at the right boundary

(τk|K for k → K, and K → ∞), middle or ‘bulk’ (τk|K for k → ∞ and K − k → ∞), and

left boundary (τk|K for k ↓ 1 and K → ∞). Figure 4 illustrates the main results. Space

limitations do not allow us to go into all detail, but we introduce all three limiting cases

briefly.

Right boundary approximation. For K → ∞ (and non-diminishing optimal restart

times) it follows that sK → ∞. As a consequence, optimisation of τK using (4) is dominated

by the term sN−1

K
E[T1]. Hence, for any moment N , the best restart time at the right boundary

when K → ∞ tends to the optimal restart time for the first moment E[T1]. This optimum can

be determined by finding the restart time τ1|1 that minimises E[T1] = M1[T] + F̄ (τ1|1)(τ1|1 +

1For the current paper, there is no particular significance to the chosen parameter values. They happen to

be the parameters of a lognormal fit for experimental data of HTTP GET completion times [5].

6

1 5 10 15 20 25 K=30

restart
index k

0.18

0.19

0.2

0.21

0.22

0.23

0.24

restart
time

right approximation

bulk approximation Τ¥

left approximation

Figure 4: The dots give restart times that minimise the second moment

E[T 2
30], the dashed lines are the approximations, as labelled.

c + E[T]) [4]. Figure 4 shows the right approximation and it turns out that for K = 30 it is

reasonable but not exceptionally close to the actual optimal restart (given by the dot).

Bulk approximation τ∞. At the ‘bulk,’ or the middle of the pack, we get a limiting result

if k is both far away from 1 and from K. We write this as k → ∞, and K − k → ∞. In that

case, it follows in the same way as for the right boundary that the minimum is dominated

by the first moment, which converges to τ∞ (as discussed above, and shown in Figure 3).

For higher moments, restart times thus tend to τ∞ at the bulk. This also explains why we

chose τ∞ as initial solution in Algorithm 1: it is close to optimal for the bulk of restarts. In

Figure 4, τ∞ is indeed close to the optimal restart times, although not as close as the following

approximation at the left boundary.

Left boundary approximation. At the left boundary, we can get a limiting result for

restart intervals close to time 0. That is, we get an approximation for τk|K with k ↓ 1 and

K → ∞. It is obtained by applying Algorithm 1 to the distribution of the completion time

with restarts every τ∞ time units, building forth on the limiting result at the bulk, and using

expressions derived in [4]. Here the approximation is remarkably close, as seen from Figure

4. In fact, other experiments indicate that the left boundary approximation is very close

irrespective of the value of K. Perhaps one would have expected the optimal restart times to

turn quicker towards τ∞ as k increases, but they do not move away from the left boundary

approximation until a few restarts from the end (about k = K − 4).

As a conclusion, we see from the approximations that τ∞ is a pretty good restart time, in-

dependent of the moment one is interested in. We have also seen that for the first moment,

if an unbounded number of restarts takes place, a restart strategy with a single restart time

τ∞ is optimal (the precise conditions under which this is true need to be investigated). The

7

2 4 6 8 10
restarts

100

200

300

400

500

600

CPU time

backward algorithm

using eq. H2L
using eq. H3L

1st

2nd

1st

2nd

1st

2nd

Figure 5: CPU time used for different algorithms, applied to minimise

first as well as second moment.

convergence behaviour for the higher moments, however, indicates that if we allow an un-

bounded number of restarts, a restart strategy with a single value for all restart times is not

optimal. The left boundary behaviour disrupts this.

6 Computational Effort

In Figure 5 we plot the time used for three different methods: Algorithm 1 (backward),

minimising expression (2), and minimising expression (3). In all cases we applied default

minimisation algorithms in Mathematica to carry out the optimisation steps. Algorithm

1 outperforms the other approaches. For the first moment, the speed up is an order of

magnitude, which finds its explanation in assured convergence in K steps of the backward

algorithm. For the higher moments, the speed up is about a factor 3 or 4. Apparently, the

arguments put forward in Section 3 hold correct. We note that we tuned our Mathematica

program to the best of our abilities, memorising in-between results so that the recursion in

(3) and repetitive computation in (2) do not become bottlenecks. We also set the convergence

criteria similarly, being determined by convergence of E[T N

K
]. Hence, although we do not have

access to the ‘internals’ of Mathematica’s optimisation algorithm, we are reasonably confident

that the comparison of the three approaches is fair.

Figure 6 compares the three versions of Algorithm 1: backward, forward and alternating.

These three exhibit similar performance. For our example, the forward algorithm turns out to

require one pass less through all restart times than the other two algorithms, and hence it takes

less CPU time.2 Typically, we require not more than 5 passes through the K restart times,

2Note that because of the workings of the Mathematica optimisation algorithm, the comparison in Figure

8

5 10 15 20
restarts

100

200

300

400

500

CPU time

backward algorithm
alternating algorithm
forward algorithm

Figure 6: CPU time used by three versions of algorithm.

irrespective of the value of K. Studying the complexity of our Mathematica implementation,

it turns out that running the optimisation routine is the computationally most expensive part:

at step k, optimisation of τk takes an order of magnitude more time than the computation

that updates E[T N

k
]. Algorithm 1 uses backward and/or forward traversal through the K

restart times for reasons of computational efficiency. The algorithm may therefore be further

improved by choosing the order in which to optimise restart times based on criteria such as

steepest descent, which may decrease the amount of calls to the optimisation routine. This

requires more experimentation.

References

[1] A. Bobbio, S. Garg, M. Gribaudo, A. Horvath, M. Sereno and M. Telek, “Modeling Software

Systems with Rejuvenation, Restoration and Checkpointing through Fluid Stochastic Petri Nets,”

in Proceedings of PNPM ’99, Zaragoza, Spain, pp. 82-91, IEEE CS Press, Sept 1999.

[2] M. Luby, A. Sinclair and D. Zuckerman, “Optimal Speedup of Las Vegas Algorithms,” Israel

Symposium on Theory of Computing Systems, pp. 128–133, 1993.

[3] S. M. Maurer and B. A. Huberman, “Restart strategies and Internet congestion,” in Journal of

Economic Dynamics and Control, vol. 25, pp. 641–654, 2001.

[4] A. van Moorsel and K. Wolter, “Analysis and Algorithms for Restart,” submitted for publication,

Apr. 2004.

5 is based on convergence of E[T N

K] as stopping criterion, while that in Figure 6 is based on convergence of

restart times, a stricter criterion. This explains the higher CPU usage for the backward algorithm in Figure 6

compared to Figure 5.

9

[5] P. Reinecke, A. van Moorsel and K. Wolter, “A Measurement Study of the Interplay between

Application Level Restart and Transport Protocol,” Service Availability Forum, Munich, May

2004.

[6] Y. Ruan, E. Horvitz and H. Kautz, “Restart Policies with Dependence among Runs: A Dynamic

Programming Approach,” in Proceedings of the Eighth International Conference on Principles

and Practice of Constraint Programming, Ithaca, NY, Sept. 2002.

10

