
Self-Management of Systems through AutomatiRestartKatinka WolterHumboldt-Universit�at zu BerlinInstitut f�ur InformatikUnter den Linden 6, 10099 Berlin, Germanywolter�informatik.hu-berlin.deAbstrat. Modern omplex information systems require managementmehanisms that operate to a large extent independently and au-tonomously. One suh mehanism is the restart of omponents or trans-ations in ase a failure in the system ours. In this paper we introdue apragmati algorithm to determine lose to optimal restart times on-line.We present a method for hoosing best restart times based on empirialdata, if no theoretial distribution is known. The best restart time isdetermined based on the empirial hazard rate. We study the sample sizerequired to ome to a reasonably good estimate, the e�et of the failureprobability of a job and issues of parameter seletion for the hazard rateestimation. The appliation onsidered in this paper is the onnetionsetup time in HTTP GET neessary for the download of web pages.1 IntrodutionIn various situations in omputer systems a restart of system omponents, a re-issuing of a request, or a re-establishment of a network onnetion improves theperformane or availability of the omponent under onsideration signi�antly.Not always is it known why preisely restart of a proess or job beomes nees-sary or bene�ial. Most Internet users, however, are familiar with the fat thatliking the reload button often helps in speeding up the download of a page,although we understand only to a limited extent what is happening exatly inthe Internet. Another example is software `aging', for whih rejuvenation - therestart of the software environment - helps in preventing appliation failureshene also improves the ompletion time. But little understanding exists aboutthe auses of aging and we are not usually able to identify the soure of theproblem and remove it. In pratial situations, therefore, we will not be able toome to the required understanding to remove the problems, instead we want tooptimise the deployment of 'blak-box' restart to improve system availability orperformane.The use of restart has �rst been proposed for optimising Internet agent ativitiesin [2℄, and further experiments have been arried out in [6℄. [3℄ presents mathe-matis to optimise the expeted download time, and based on this, [5℄ introdues



a proxy server based arhiteture for restart inluding a software module for theomputation of the optimal timeout value. Our objetive is to automate restart,building on the above work. We deide on-line whether restart will be bene�-ial and when to do it. In this paper we simulate an on-line proedure by usinginreasingly more data from measurements taken earlier [5℄, but the appliedmethods an easily be inluded in a software module like the proxy server in [5℄to be exeuted in real-time.The shape of the hazard rate of a probability distribution indiates whetherrestart is bene�ial. For empirial data the orret theoretial distribution isunknown and the hazard rate therefore needs to be estimated based on obser-vations. Estimating the hazard rate is not a straightforward task, sine it needsnumerial omputation of the derivative of the umulative hazard rate. In thispaper we derive and implement a new and simple rule based on the hazard ratethat allows us to �nd the optimal restart time to maximise the probability ofmaking a deadline. This rule approximates the optimal restart time indepen-dent of the exat value of the deadline, and is asymptotially exat (when thedeadline inreases). Moreover, the rule is very simple, making it a likely an-didate for run-time deployment. Not in all ases doe the optimal restart timeexists. Restart is appliable to a system if (and only if) the rule �nds an optimalrestart time. So, our simple rule atually serves a two-fold purpose: it enablesus to deide whether restart will be bene�ial in the given situation, and if so,it provides us with the optimal restart time.We apply the rule to data sets we olleted for HTTP, thus mimiking the on-line exeution of the algorithm. We explore how muh data is required to arriveat reasonable estimates of the optimal restart time. We also study the e�etof failed HTTP requests by arti�ially introduing failures in the data sets.Based on these explorations we provide engineering insights useful for run-timedeployment of our algorithm.Finally, an important tehnial detail when using the hazard rate is the valueof the bandwidth in the required smoothing algorithm. Based on many experi-ments, we obtain a reasonably robust rule for setting the bandwidth based on thevariane of observations. This greatly speeds up the exeution of the algorithm,thus improving its on-line performane.2 The restart modelTo automate restart, we need to deide the metri of interest, and postulate amathematial model. In our earlier work, we use restart to minimise the expeteddownload time of a web page in an algorithm that does not make use of the haz-ard rate [5℄. But restart an also be used to inrease the probability of makinga deadline and for a �nite deadline and a �nite number of restarts algorithmsbased on the theoretial distribution and lognormally distributed ompletion



times have been presented in [4℄. In our experiments we measured di�erent vari-ables involved in the download of a web page. In this paper we only use theonnetion setup time from data sets already studied in [5℄. We again study theprobability of making a deadline, but unlike the formulation in [4℄ here we usean approximation to estimate the optimal restart time. Using the approximationwe an formulate a very simple rule based on the hazard rate, whih in fat isindependent of the deadline to be met.Our mathematial model assumes statistial independene of onseutive pre-emptive tries. We found this very often to be a realisti assumption in HTTPdownloads from one URL [5℄. Let the random variable T denote the omple-tion time of a job, with probability distribution F (t); t 2 [0;1). Assume � isa restart time, and introdue the random variable T� to denote the ompletiontime when an unbounded number of retries is allowed. That is, a retry takesplae periodially, every � time units, until ompletion of the job or until thedeadline has passed, whih ever omes �rst. We write f� (t) and F� (t) for thedensity and distribution of T� . A distribution an equally well be desribed bythe hazard rate h(t) = f(t)1� F (t)and the umulative hazard H(t) = Z ts=0 h(s)dswhih both are very important throughout our analysis. One useful relationbetween the umulative hazard rate and a distribution funtion is given byH(t) = � log(1� F (t)):Restart at time � is bene�ial only if the probability F� (t) of making the deadlinet under restart is greater than the probability of making the deadline withoutrestart, i.e. F� (t) > F (t): (1)As we have shown in [4℄, one an intuitively reason about the ompletion timedistribution with restarts as Bernoulli trials. At eah interval between restartsthere is a probability F (�) the ompletion `sueeds.' Hene, if the time t isa multiple of the restart time �; we an relate the probability of missing thedeadline without and with restart through:1� F� (t) = (1� F (�)) t� : (2)Eqn. (2) is orret only for values of t and � suh that t is an integer multipleof � . But if we ignore this fat, or simply aept (2) as an approximation, wean �nd the optimal restart time in a straightforward way. Surprisingly, it turns



out that the approximation gives us a restart time independent of the deadlinet, whih is optimal in the limit t ! 1. That is, it optimises the tail of theompletion time distribution under restarts, and is therefore bene�ial for manyother metris as well, suh as higher moments of the ompletion time.Theorem 1. If the restart time �� is an extreme (in �) of (1�F (�)) t� for anydeadline t then �� is a point where ��:h(��) = � log (1� F (��));Proof. We use thatddx (g(x))x = (g(x))x x ddxg(x)g(x) + log(g(x))! : (3)�� is an extreme when the derivative of (1� F (�)) t� equates to 0:dd� (1� F (�)) t� = (1� F (�)) t� � f(�)�1� F (�) + log(1� F (�))� = 0: (4)Irrespetive of the value of t it immediately follows thatf(�)1� F (�) = � log(1� F (�))� ; (5)and thus the onlusion holds if and only if the premiss holds. �Eqn. (5) an be rewritten as � � h(�) = H(�) (6)where H(�) an be interpreted as the surfae under the hazard rate urve upto point � . We an therefore reason that (5) expresses the fat that if (1) holdsthere exists a point on the hazard rate urve suh that the retangle de�nedby x- and y-value of this point equals the integral under the hazard rate urveup to this point. We will refer to 6 as the retangle equals surfae rule. Thisvery appealing and simple rule is used in this paper for an empirial hazardrate to �nd an empirial optimal restart time that maximises the probability ofompletion, that is the probability of making an in�nite deadline.It should be noted that if the hazard rate is monotonously inreasing, no valueof � exists, suh that (6) holds. In that ase restart will not help inreasing theprobability of ompletion. Only if the hazard rate dereases after some point avalue of � exists, suh that (6) holds. Only then restart an be applied suess-fully.



3 Estimating the hazard rateIt follows from (6) that an estimate ĥ(t) of the hazard rate urve is needed todetermine the optimal restart time following the retangle equals surfae rule.We will in this setion provide the main steps of how to estimate the hazardrate and implement the rule (6) in an algorithm. Some details are shifted to theappendix. We use the theory on survival analysis in [1℄.The hazard rate h(t) an not be estimated diretly from a given data set. Instead,�rst the umulative hazard rate H(t) is estimated and then the hazard rate itselfis omputed as a numerial derivative.Let us onsider a sample of n individuals, that is n ompletions in our study.We sample the ompletion times and if we order them, we obtain a data set ofD distint times t1 � t2 � : : : � tD where at time ti there are di events, that isdi ompletions take time ti. The random variable Yi ounts the number of jobsthat need more or equal to ti time units to omplete. We an write Yi asYi = n� i�1Xj=1 djAll observations that have not omplete at the end of the regarded time period,usually time tD ; are alled right ensored. There are Yn � dn right ensoredobservations. The experimental data we use falls in that ategory, sine Internettransations ommonly use TCP, whih aborts (ensors) transations if they donot sueed within a given time.The hazard rate estimator ĥ(t) is the derivative of the umulative hazard rateestimator Ĥ(t); whih is de�ned in Appendix A. It is estimated as the slope ofthe umulative hazard rate. Better estimates are obtained when using a kernelfuntion to smooth the numerial derivative of the umulative hazard rate. Thesmoothing is done over a window of size 2b. A bad estimate of the hazard ratewill yield a bad estimate of the optimal restart time and the optimised metri isvery sensitive to whether the restart time is hosen too short. Therefore a goodestimate of the hazard rate is needed.Let the magnitude of the jumps in Ĥ(t) and in the estimator of its varianeV̂ [Ĥ(t)℄ at the jump instants ti be �Ĥ(ti) = Ĥ(ti)� Ĥ(ti�1) and �V̂ [Ĥ(ti)℄ =V̂ [Ĥ(ti)℄� V̂ [Ĥ(ti�1)℄: Note that �Ĥ(ti) is a rude estimator for ĥ(ti):The kernel-smoothed hazard rate estimator is de�ned separately for the �rst andlast points, for whih t�b < 0 or t+b > tD: For inner points with b � t � tD�bthe kernel-smoothed estimator of h(t) is given byĥ(t) = b�1 DXi=1K � t� tib ��Ĥ(ti): (7)



The variane of ĥ(t) is needed for the on�dene interval and is estimated by�2[ĥ(t)℄ = b�2 DXi=1K � t� tib �2�V̂ [Ĥ(ti)℄: (8)The funtion K(:) is the Epanehnikov kernel de�ned in Appendix B.A (1� �) � 100% point wise on�dene interval around ĥ(t) is onstruted as"ĥ(t) exp"�z1��=2�(ĥ(t))ĥ(t) # ; ĥ(t) exp"z1��=2�(ĥ(t))ĥ(t) ## : (9)where z1��=2 is the (1� �=2) quantile of the standard normal distribution.The hoie of the right bandwidth b is a deliate matter, but is important sinethe shape of the hazard rate urve greatly depends on the hosen bandwidth(see �gure 2) and hene a badly hosen bandwidth will have a serious e�eton the optimal restart time. One way to pik a good bandwidth is to use aross-validation tehnique of determining the bandwidth that minimises somemeasure of how well the estimator performs. One suh measure is the meanintegrated squared error (MISE) of ĥ over the range �min to �max: The meanintegrated squared error an be found in Appendix C. To �nd the value of bwhih minimises the MISE we �nd b whih minimises the funtiong(b) = M�1Xi=1 � ti+1 � ti2 � (ĥ2(ti) + ĥ2(ti+1))�2b�1Xi6=j K � ti � tjb ��Ĥ(ti)�Ĥ(tj): (10)Then g(b) is evaluated for di�erent values of b. Eah evaluation of g(b) requiresthe omputation of the estimator of the hazard rate. The optimal bandwidth anbe determined only in a trial-and-error proedure. We found in our experimentsthat the optimal bandwidth is related with the size of the data set and thevariane of the data. We use the standard deviation to determine a starting valueand then do a simple step-wise inrease of the bandwidth until g(b) takes on itsminimal value. In ase the hazard rate is inreasing in the �rst steps, we dereaseb and start again, sine then we are obviously beyond the minimum already. Inour experiments and in the literature we always found a global minimum, neverany loal minima. Advaned hill-limbing algorithms an be applied to �nd theminimum more quikly and more aurately than we do here.One the best estimate of the hazard rate is found we need to determine thepoint i� that satis�es the retangle equals surfae rule (6).The following simple algorithm determines the optimal restart time �� by testingall observed points ti; i = 1; : : : ; n as potential andidates.



Algorithm 1 (Optimal restart time)Input ĥ; Ĥ and t;i = 1; #(t = t1; : : : ; tn)While((i < n) and (ti � ĥ(ti) > Ĥ(ti)) ) fi++;greturn ti;This algorithm returns in the positive ase the smallest observed value that isgreater than the estimated optimal restart time ��:In many ases, however, the studied data set does not ontain observations largeenough to be equal or greater than the optimal restart time. Then we extrapolatethe estimated hazard rate to �nd the point where the retangle equals the surfaeunder the urve. Assuming we have a data set of n observations ti; i = 1; : : : ; n, at�rst the slope of the estimated hazard rate at the end of the urve is determinedas the di�erene quotient slope = ĥ(tn)� ĥ(tn�1)tn � tn�1 : (11)Then t� = tn +�t is determined suh that for t� eqn. (5) holds.(tn +�t) � (ĥ(tn) + slope ��t) = Ĥ(tn) � slope ��t � tn() �t = Ĥ(tn)� t � ĥ(tn)ĥ(tn)� 2 slope tn � Ĥ(tn)� slope : (12)3.1 ComplexityThe omputational omplexity depends in �rst plae on the number of iterationsneeded to �nd the optimal bandwidth for the hazard rate estimator. In ourexperiments we used a heuristi based on the standard deviation of the data setthat gave us the optimal bandwidth often in less than 5 iterations, but sometimestook up to 20 iterations.The seond important parameter is the number of observations onsidered. Eahiteration on the bandwidth requires the omputation of the estimated hazardrate, whih in turn needs traversing all observations and uses for eah point awindow of size 2b. Complexity of the hazard rate estimator is therefore at mostO(n2). Improving on the heuristi for the bandwidth, so that in all ases onlyfew iterations are needed is ertainly worth while.



4 ExperimentsWe have implemented the algorithm to estimate the hazard rate and determinethe optimal restart time as de�ned in theorem 1. The implementation is donein Mathematia and has been applied to the HTTP onnetion setup data stud-ied in [5℄. This data in fat onsists of the time needed for TCP's three-wayhandshake to set up a onnetion between two hosts.In our experiments we investigate various issues. One is the unertainty intro-dued by small sample sizes. The available data sets onsist of approximately onethousand observations for eah URL, that is thousand onnetion setup times tothe same Internet address. We use these data sets and take subsets of �rst onehundred then two hundred observations et. as indiated in the aption of the�gure and in the table. We do not use data of di�erent URLs in one experimentsine we found that very often di�erent URLs have di�erent distributions or atleast distribution parameters. Furthermore, the appliation we have in mind isweb transations between two hosts.The data we study is data set `28' onsisting of the onnetion setup times tohttp://nuevamayoria.om, measured in seonds. This data set shows harater-istis suh as a lower bound on all observation and a pattern of variation whihwe found in many other data sets as well, even though usually not with the sameparameters. The hosen data set is therefore to be seen as one typial representa-tive of a large number of potential andidates. The onsidered onnetion setuptimes are shown in �gure 1. The largest observation in this data set is 0:399678seonds.
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For eah of the mentioned subsamples the optimal smoothing fator, or band-width, is omputed by evaluating (10) several times, �nding the minimum in asimple searh. Figure 2 shows estimates of the hazard rate for di�erent valuesof the bandwidth. Parameter b1 is too large, whereas b2 is too small, b3 is theone that minimises the error and is therefore the optimal bandwidth. One ansee that too large a bandwidth leads to an extremely smooth urve, whereastoo small a bandwidth produes over-emphasised peaks. From the �gure onemight onlude that rather too large a bandwidth should be hosen than onethat is too small, but more experiments are needed for a statement of this kind.Using the optimal bandwidth, the hazard rate and its 95% on�dene interval
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Fig. 2. Hazard rate for data set No. 28 and di�erent values of the bandwidth b.are estimated aording to (7) and (9). Finally, for eah estimated hazard ratethe optimal restart time �� is omputed using algorithm 1. In some ases, thealgorithm �nds the optimal restart time, sine the data set inludes still anobservation greater than the optimal restart time. If the data set has no obser-vation large enough to be greater than the optimal restart time, we extrapolateaording to (12). The optimal restart times are drawn as vertial bars in theplots in �gures 3 and 4. Note that in �gure 3 although it looks like all optimalrestart times are extrapolated in fat none of them is. The extrapolated optimalrestart times are indiated by an asterisk in table 1.The hazard rate urve has no value at the point of the largest observation, sinefor the numerial derivation always two data points are needed. Furthermore,beause of the limited amount of data in the tail, it is not surprising that theon�dene interval at the last observations grows rapidly.
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eFig. 3. Estimated hazard rates and on�dene intervals for the estimates for inreasingsample size (top row n = 100 and n = 200, middle row n = 400 and n = 600, bottomrow n = 800) and failure probability 0.0

Table 1 shows some harateristis obtained in the program runs for data set28. Eah blok of the table belongs to a subset of size n with orrespondingstandard deviation. The standard deviation hanges as more observations omeinto onsideration. For eah subsample three di�erent ases are studied. In the�rst one only the n observations are used and the failure probability equalseither zero, or the relative fration of observations that are greater than 3:0.This threshold is the �rst retransmission timeout of TCP and hene observationsgreater 3:0 are (somewhat arbitrarily) ensored and retried. We treat them asensored observations and all ensored observations ontribute to the failureprobability. Data set `28' does not have any suh ensored observations, but



n = 100, StdDev = 0:0121551 n = 200, StdDev = 0:0117341failure prob. bw �� failure prob. bw ��0.0 0.006758 0.389027 0.0 0.011557 0.3890270.666667 0.001779 0.597251� 0.666667 0.001398 0.674306�0.8 0.001779 0.554513� 0.8 0.001271 0.638993�n = 300, StdDev = 0:0106746 n = 400, StdDev = 0:010383failure prob. bw �� failure prob. bw ��0.0 0.011742 0.389027 0.0 0.010226 0.3996780.666667 0.001272 0.333271 0.666667 0.001124 0.3332710.8 0.001156 0.333271 0.8 0.001124 0.333271n = 500, StdDev = 0:00997916 n = 600, StdDev = 0:00941125failure prob. bw �� failure prob. bw ��0.0 0.010977 0.399678 0.0 0.010352 0.3996780.666667 0.001081 0.333271 0.666667 0.001138 0.3332710.8 0.001081 0.333271 0.8 0.001019 0.333271n = 700, StdDev = 0:00895504 n = 800, StdDev = 0:00851243failure prob. bw �� failure prob. bw ��0.0 0.009850 0.309209 0.0 0.0103 0.3996780.66667 0.000970 0.333271 0.66667 0.000922 0.3320140.8 0.000970 0.333271 0.8 0.000922 0.332014n = 900, StdDev = 0:00816283 n = 1000, StdDev = 0:00784583failure prob. bw �� failure prob. bw ��0.0 0.009877 0.308456 0.0 0.009493 0.3084560.6667 0.000884 0.332014 0.6667 0.000949 0.3332710.8 0.000884 0.332014 0.8 0.000850 0.332014Table 1. Optimal restart time (��) and optimal bandwidth (bw) for di�erent subsam-ple sizes of data set 28 and di�erent failure probabilitiesmany other data sets do. The seond group onsists of the n observations plus2n ensored ones and has therefore failure probability 2=3, or a little higher ifthere are additional ensored observations present in the data set. Analogously,the third group has n+ 4n observations and a failure probability of n=5n = 0:8(or more if there are ensored observations in the data set).If we look at the results for failure probability zero, also plotted in �gure 3 for n =100; 200; 400; 600; 800 we see that the small data sets lead to an overestimatedoptimal restart time (if we assume that the full 1000 observations give us aorret estimate), but the `orret' value is overestimated by less than 5%.We used suh high, and perhaps unrealisti, failure probabilities in our studysine a failure probability of e.g. 0:1 does not show in the results at all. Lookingat the results for the di�erent sample sizes in the group with high failure prob-ability, we also �nd that with the small samples the optimal restart time getsoverestimated.



We also investigate the impat of the failure probability within a group of �xedsample size. The failure probability is inreased by subsequently adding morefailed (and hene ensored) observations and then estimates for the hazard rateand optimal restart time are omputed. The failed attempts of ourse inreasethe sample size. We notie (as an be seen in table 1) that the bandwidth usedfor estimating the hazard rate dereases for inreasing failure rate, while thesample standard deviation is omputed only from non-failed observations andhene does not hange with hanging failure probability. We found in [4℄ thatfor theoretial distributions the optimal restart time dereases with inreasingfailure probability. Typially our experiments agree with this property, whih,however, is not true for some subsets of data set `28'.An additional purpose of the experiments was to �nd out whether we an relatethe optimal bandwidth to any harateristi of the data set. In the literatureno strategy is pointed out that helps in �nding the optimal bandwidth quikly.In our implementation we set the standard deviation as a starting value for thesearh. If we have no ensored observations (failure probability zero) we always�nd the optimal bandwidth within less than �ve iterations. If the data set hasmany ensored observations the optimal bandwidth roughly by fator 5 and weneed more iterations to �nd that value, sine our heuristi has a starting valuefar too large in that ase.Figure 4 ompares two hazard rates using another data set for data with identialsample size, the �rst has zero failure rate and the seond has failure rate 0.8.It an be seen that the high number of added ensored observations leads to amuh more narrow hazard rate, with lower optimal restart time. Note that this�gure is based on a di�erent data set than the ones above.
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eFig. 4. Estimated hazard rates and on�dene intervals for sample size n = 1000;failure probability 0:0 (left) and 0:8 (right)In summary, we have provided an algorithm that gives us an optimal restart timeto maximise the probability of meeting a deadline only if restart will indeedhelp maximising that metri. So if the algorithm returns an optimal restart



time we an be sure that restart will help. We found a heuristi based on thevariane of the data that helps in �nding quikly the bandwidth parameterneeded for the hazard rate estimator. We found that small data sets usually leadto an overestimated optimal restart time. But we saw earlier (in [4℄) that anoverestimated restart time does muh less harm to the metri of interest thanan underestimated one and we therefore willingly aept overestimates.5 Disussion and ConlusionsSelf-management of modern, omplex systems an inlude among others theautomati restart of jobs, or transations if they are performing badly. As theonsidered metri we hose in this paper the probability of ompletion beforean arbitrary deadline under unlimited number of allowed restarts. We deriveda surfae equals retangle rule for the optimal restart time that is based on thehazard rate. We implemented an algorithm to estimate the hazard rate from agiven data set and to determine the optimal restart time. The surfae equalsretangle rule provides an answer to the question of whether restart makes sensein a given senario. If an optimal restart time is found at all we an be sure thatthe shape of the hazard rate is suh that restart makes sense and (1) holds. Avery simple heuristi was used to quikly �nd the best bandwidth for the hazardrate estimation. The bene�t of our algorithm is that it gives reasonably goodestimates on small data sets and an hene be used for fast estimates in on-lineautomati restart.The run-time of the algorithm depends on the onsidered number of observationsand on the number of iterations needed to �nd a good bandwidth for the hazardrate estimation. We found that for our smaller data sets with up to 400 obser-vations less than 5 iterations are needed and the algorithm is very fast. We didnot evaluate CPU time and the Mathematia implementation is not run-timeoptimised, but a suggestion for an optimal restart time in the above setting anbe provided within a few seonds. If, however, the data set grows large, has e.g.more than 800 observations, eah iteration on the bandwidth takes in the orderof some one or two minutes. The polynomial omplexity beomes relevant andthe method is no longer appliable in an on-line algorithm.A good heuristi for hoosing the optimal bandwidth is a key part in the wholeproess. The better the �rst guess, the less iterations are needed and the fasterwe obtain the optimal restart time. We annot ompare our heuristi to otherssine in the literature nothing but pure `trial and error' is proposed. But wean say, that for small data sets and failure probability zero the optimal restarttime is obtained very fast sine the heuristi provides a good �rst estimate ofthe bandwidth.In our experiene the smallest data sets were usually suÆient for a reasonablygood estimate of the optimal restart time. The optimal restart time will always



be plaed at the end of the bulk of the observations and some few hundred obser-vations are enough to get a notion of `bulk' and `end of the bulk'. If we onsiderthat some web pages onsist of up to 200 objets a data set of 100 samples isnot hard to obtain or unrealisti. In Internet transations some hundred samplesare very quikly aumulated. Furthermore, small samples seem to overestimatethe optimal restart time, whih does the maximised metri muh less harm thanunderestimation.In pratial appliations the required number of observations is no limitation tothe appliability of our method and having not too muh data has a positivee�et on the run-time while it does not deteriorate the obtained result. Theproposed method is well-suited as an on-line restart module.One may argue that if everybody applies restart networks beome more on-gested and response times will drop further. And in fat restart hanges theTCP timeout - for seleted appliations. In our measurements we found thatless than 0:5% of all onnetion setup attempts fail. Our method tries to detetfailures faster than the TCP timeout and to restart failed attempts, sine for slowonnetions restart typially does not lead to improved response time, whereasfor failed onnetions in many ases it does. Failed attempts, however, are sorare that restarting those does not impose signi�ant extra load on a network,while potentially speeding those up enormously.Referenes1. J. P. Klein and M. L. Moeshberger. Survival Analysis, Tehniques for Censoredand Trunated Data. Springer, 1997.2. S. M. Maurer and B. A. Huberman, \Restart strategies and Internet ongestion,"in Journal of Eonomi Dynamis and Control, vol. 25, pp. 641{654, 2001.3. A. van Moorsel and K. Wolter, \Analysis and Algorithms for Restart," in Pro.1st International Conferene on the Quantitative Evaluation of Systems (QEST),pp. 195-204, Twente, Netherlands, Sept. 2004.4. A. van Moorsel and K. Wolter, \Making Deadlines through Restart," in Pro. 12thGI/ITG Conferene on Measuring, Modelling and Evaluation of Computer andCommuniation Systems (MMB 04), pp. 155{160, Dresden, Germany, Sept. 2004.5. P. Reineke, A. van Moorsel and K. Wolter, \A Measurement Study of the Interplaybetween Appliation Level Restart and Transport Protool," in Pro. InternationalServie Availability Symposium, Munih, Germany, May 2004.6. M. Shroeder and L. Buro, \Does the Restart Method Work? Preliminary Resultson EÆieny Improvements for Interations of Web-Agents," in T. Wagner andO. Rana, editors, Proeedings of the Workshop on Infrastruture for Agents, MAS,and Salable MAS at the Conferene Autonomous Agents 2001, Springer Verlag,Montreal, Canada, 2001.



AppendixA Cumulative hazard rateThe umulative hazard rate is estimated using the Nelson-Aalen estimator, whih hasespeially good small sample performane. The Nelson-Aalen estimator isĤ(t) = (0 if t � t1Pti�t diYi if t1 � t: (13)The estimated variane of the Nelson-Aalen estimator is�2H(t) =Xti�t diY 2i : (14)B Epanehnikov kernelFor the kernel K(:) the Epanehnikov kernel is usedK(x) = 0:75(1 � x2) for � 1 � x � 1 (15)as it is shown in [1℄ to be often more aurate than other kernel funtions. Whent� b < 0 or t+ b > tD the symmetri kernel must be transformed into an asymmetrione, whih is at the lower bound with q = t=bKq(x) = K(x)(�+ �x); for � 1 � x � q; (16)where � = 64(2� 4q + 6q2 � 3q3)(1 + q)4(19� 18q + 3q2) (17)� = 240(1 � q)2(1 + q)4(19� 18q + 3q2) (18)For time-points in the right-hand tail q = (tD � 1)=b the kernel funtion is Kq(�x).C Bandwidth estimationThe mean integrated squared error (MISE) of the estimated hazard rate ĥ over therange �min to �max is de�ned byMISE(b) = E�Z �max�min [ĥ(u)� h(u)℄2 du�= E�Z �max�min ĥ2(u) du�� 2E�Z �max�min ĥ(u)h(u) du�+E�Z �max�min h2(u) du� : (19)



This funtion depends on the bandwidth b used in the Epanehnikov kernel. The lastterm does not ontain b and an be ignored when �nding the best value of b. The�rst term is estimated by R �max�min ĥ2(u) du. We evaluate ĥ(u) at a not neessarily equi-distant grid of points �min = u1 < u2 < : : : < uM = �max and apply the trapezoidrule. The seond term we approximate by a ross-validation estimate suggested byRamlau-Hansen where we sum over the event times between �min and �max.


