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t. Modern 
omplex information systems require managementme
hanisms that operate to a large extent independently and au-tonomously. One su
h me
hanism is the restart of 
omponents or trans-a
tions in 
ase a failure in the system o

urs. In this paper we introdu
e apragmati
 algorithm to determine 
lose to optimal restart times on-line.We present a method for 
hoosing best restart times based on empiri
aldata, if no theoreti
al distribution is known. The best restart time isdetermined based on the empiri
al hazard rate. We study the sample sizerequired to 
ome to a reasonably good estimate, the e�e
t of the failureprobability of a job and issues of parameter sele
tion for the hazard rateestimation. The appli
ation 
onsidered in this paper is the 
onne
tionsetup time in HTTP GET ne
essary for the download of web pages.1 Introdu
tionIn various situations in 
omputer systems a restart of system 
omponents, a re-issuing of a request, or a re-establishment of a network 
onne
tion improves theperforman
e or availability of the 
omponent under 
onsideration signi�
antly.Not always is it known why pre
isely restart of a pro
ess or job be
omes ne
es-sary or bene�
ial. Most Internet users, however, are familiar with the fa
t that
li
king the reload button often helps in speeding up the download of a page,although we understand only to a limited extent what is happening exa
tly inthe Internet. Another example is software `aging', for whi
h rejuvenation - therestart of the software environment - helps in preventing appli
ation failureshen
e also improves the 
ompletion time. But little understanding exists aboutthe 
auses of aging and we are not usually able to identify the sour
e of theproblem and remove it. In pra
ti
al situations, therefore, we will not be able to
ome to the required understanding to remove the problems, instead we want tooptimise the deployment of 'bla
k-box' restart to improve system availability orperforman
e.The use of restart has �rst been proposed for optimising Internet agent a
tivitiesin [2℄, and further experiments have been 
arried out in [6℄. [3℄ presents mathe-mati
s to optimise the expe
ted download time, and based on this, [5℄ introdu
es



a proxy server based ar
hite
ture for restart in
luding a software module for the
omputation of the optimal timeout value. Our obje
tive is to automate restart,building on the above work. We de
ide on-line whether restart will be bene�-
ial and when to do it. In this paper we simulate an on-line pro
edure by usingin
reasingly more data from measurements taken earlier [5℄, but the appliedmethods 
an easily be in
luded in a software module like the proxy server in [5℄to be exe
uted in real-time.The shape of the hazard rate of a probability distribution indi
ates whetherrestart is bene�
ial. For empiri
al data the 
orre
t theoreti
al distribution isunknown and the hazard rate therefore needs to be estimated based on obser-vations. Estimating the hazard rate is not a straightforward task, sin
e it needsnumeri
al 
omputation of the derivative of the 
umulative hazard rate. In thispaper we derive and implement a new and simple rule based on the hazard ratethat allows us to �nd the optimal restart time to maximise the probability ofmaking a deadline. This rule approximates the optimal restart time indepen-dent of the exa
t value of the deadline, and is asymptoti
ally exa
t (when thedeadline in
reases). Moreover, the rule is very simple, making it a likely 
an-didate for run-time deployment. Not in all 
ases doe the optimal restart timeexists. Restart is appli
able to a system if (and only if) the rule �nds an optimalrestart time. So, our simple rule a
tually serves a two-fold purpose: it enablesus to de
ide whether restart will be bene�
ial in the given situation, and if so,it provides us with the optimal restart time.We apply the rule to data sets we 
olle
ted for HTTP, thus mimi
king the on-line exe
ution of the algorithm. We explore how mu
h data is required to arriveat reasonable estimates of the optimal restart time. We also study the e�e
tof failed HTTP requests by arti�
ially introdu
ing failures in the data sets.Based on these explorations we provide engineering insights useful for run-timedeployment of our algorithm.Finally, an important te
hni
al detail when using the hazard rate is the valueof the bandwidth in the required smoothing algorithm. Based on many experi-ments, we obtain a reasonably robust rule for setting the bandwidth based on thevarian
e of observations. This greatly speeds up the exe
ution of the algorithm,thus improving its on-line performan
e.2 The restart modelTo automate restart, we need to de
ide the metri
 of interest, and postulate amathemati
al model. In our earlier work, we use restart to minimise the expe
teddownload time of a web page in an algorithm that does not make use of the haz-ard rate [5℄. But restart 
an also be used to in
rease the probability of makinga deadline and for a �nite deadline and a �nite number of restarts algorithmsbased on the theoreti
al distribution and lognormally distributed 
ompletion



times have been presented in [4℄. In our experiments we measured di�erent vari-ables involved in the download of a web page. In this paper we only use the
onne
tion setup time from data sets already studied in [5℄. We again study theprobability of making a deadline, but unlike the formulation in [4℄ here we usean approximation to estimate the optimal restart time. Using the approximationwe 
an formulate a very simple rule based on the hazard rate, whi
h in fa
t isindependent of the deadline to be met.Our mathemati
al model assumes statisti
al independen
e of 
onse
utive pre-emptive tries. We found this very often to be a realisti
 assumption in HTTPdownloads from one URL [5℄. Let the random variable T denote the 
omple-tion time of a job, with probability distribution F (t); t 2 [0;1). Assume � isa restart time, and introdu
e the random variable T� to denote the 
ompletiontime when an unbounded number of retries is allowed. That is, a retry takespla
e periodi
ally, every � time units, until 
ompletion of the job or until thedeadline has passed, whi
h ever 
omes �rst. We write f� (t) and F� (t) for thedensity and distribution of T� . A distribution 
an equally well be des
ribed bythe hazard rate h(t) = f(t)1� F (t)and the 
umulative hazard H(t) = Z ts=0 h(s)dswhi
h both are very important throughout our analysis. One useful relationbetween the 
umulative hazard rate and a distribution fun
tion is given byH(t) = � log(1� F (t)):Restart at time � is bene�
ial only if the probability F� (t) of making the deadlinet under restart is greater than the probability of making the deadline withoutrestart, i.e. F� (t) > F (t): (1)As we have shown in [4℄, one 
an intuitively reason about the 
ompletion timedistribution with restarts as Bernoulli trials. At ea
h interval between restartsthere is a probability F (�) the 
ompletion `su

eeds.' Hen
e, if the time t isa multiple of the restart time �; we 
an relate the probability of missing thedeadline without and with restart through:1� F� (t) = (1� F (�)) t� : (2)Eqn. (2) is 
orre
t only for values of t and � su
h that t is an integer multipleof � . But if we ignore this fa
t, or simply a

ept (2) as an approximation, we
an �nd the optimal restart time in a straightforward way. Surprisingly, it turns



out that the approximation gives us a restart time independent of the deadlinet, whi
h is optimal in the limit t ! 1. That is, it optimises the tail of the
ompletion time distribution under restarts, and is therefore bene�
ial for manyother metri
s as well, su
h as higher moments of the 
ompletion time.Theorem 1. If the restart time �� is an extreme (in �) of (1�F (�)) t� for anydeadline t then �� is a point where ��:h(��) = � log (1� F (��));Proof. We use thatddx (g(x))x = (g(x))x x ddxg(x)g(x) + log(g(x))! : (3)�� is an extreme when the derivative of (1� F (�)) t� equates to 0:dd� (1� F (�)) t� = (1� F (�)) t� � f(�)�1� F (�) + log(1� F (�))� = 0: (4)Irrespe
tive of the value of t it immediately follows thatf(�)1� F (�) = � log(1� F (�))� ; (5)and thus the 
on
lusion holds if and only if the premiss holds. �Eqn. (5) 
an be rewritten as � � h(�) = H(�) (6)where H(�) 
an be interpreted as the surfa
e under the hazard rate 
urve upto point � . We 
an therefore reason that (5) expresses the fa
t that if (1) holdsthere exists a point on the hazard rate 
urve su
h that the re
tangle de�nedby x- and y-value of this point equals the integral under the hazard rate 
urveup to this point. We will refer to 6 as the re
tangle equals surfa
e rule. Thisvery appealing and simple rule is used in this paper for an empiri
al hazardrate to �nd an empiri
al optimal restart time that maximises the probability of
ompletion, that is the probability of making an in�nite deadline.It should be noted that if the hazard rate is monotonously in
reasing, no valueof � exists, su
h that (6) holds. In that 
ase restart will not help in
reasing theprobability of 
ompletion. Only if the hazard rate de
reases after some point avalue of � exists, su
h that (6) holds. Only then restart 
an be applied su

ess-fully.



3 Estimating the hazard rateIt follows from (6) that an estimate ĥ(t) of the hazard rate 
urve is needed todetermine the optimal restart time following the re
tangle equals surfa
e rule.We will in this se
tion provide the main steps of how to estimate the hazardrate and implement the rule (6) in an algorithm. Some details are shifted to theappendix. We use the theory on survival analysis in [1℄.The hazard rate h(t) 
an not be estimated dire
tly from a given data set. Instead,�rst the 
umulative hazard rate H(t) is estimated and then the hazard rate itselfis 
omputed as a numeri
al derivative.Let us 
onsider a sample of n individuals, that is n 
ompletions in our study.We sample the 
ompletion times and if we order them, we obtain a data set ofD distin
t times t1 � t2 � : : : � tD where at time ti there are di events, that isdi 
ompletions take time ti. The random variable Yi 
ounts the number of jobsthat need more or equal to ti time units to 
omplete. We 
an write Yi asYi = n� i�1Xj=1 djAll observations that have not 
omplete at the end of the regarded time period,usually time tD ; are 
alled right 
ensored. There are Yn � dn right 
ensoredobservations. The experimental data we use falls in that 
ategory, sin
e Internettransa
tions 
ommonly use TCP, whi
h aborts (
ensors) transa
tions if they donot su

eed within a given time.The hazard rate estimator ĥ(t) is the derivative of the 
umulative hazard rateestimator Ĥ(t); whi
h is de�ned in Appendix A. It is estimated as the slope ofthe 
umulative hazard rate. Better estimates are obtained when using a kernelfun
tion to smooth the numeri
al derivative of the 
umulative hazard rate. Thesmoothing is done over a window of size 2b. A bad estimate of the hazard ratewill yield a bad estimate of the optimal restart time and the optimised metri
 isvery sensitive to whether the restart time is 
hosen too short. Therefore a goodestimate of the hazard rate is needed.Let the magnitude of the jumps in Ĥ(t) and in the estimator of its varian
eV̂ [Ĥ(t)℄ at the jump instants ti be �Ĥ(ti) = Ĥ(ti)� Ĥ(ti�1) and �V̂ [Ĥ(ti)℄ =V̂ [Ĥ(ti)℄� V̂ [Ĥ(ti�1)℄: Note that �Ĥ(ti) is a 
rude estimator for ĥ(ti):The kernel-smoothed hazard rate estimator is de�ned separately for the �rst andlast points, for whi
h t�b < 0 or t+b > tD: For inner points with b � t � tD�bthe kernel-smoothed estimator of h(t) is given byĥ(t) = b�1 DXi=1K � t� tib ��Ĥ(ti): (7)



The varian
e of ĥ(t) is needed for the 
on�den
e interval and is estimated by�2[ĥ(t)℄ = b�2 DXi=1K � t� tib �2�V̂ [Ĥ(ti)℄: (8)The fun
tion K(:) is the Epane
hnikov kernel de�ned in Appendix B.A (1� �) � 100% point wise 
on�den
e interval around ĥ(t) is 
onstru
ted as"ĥ(t) exp"�z1��=2�(ĥ(t))ĥ(t) # ; ĥ(t) exp"z1��=2�(ĥ(t))ĥ(t) ## : (9)where z1��=2 is the (1� �=2) quantile of the standard normal distribution.The 
hoi
e of the right bandwidth b is a deli
ate matter, but is important sin
ethe shape of the hazard rate 
urve greatly depends on the 
hosen bandwidth(see �gure 2) and hen
e a badly 
hosen bandwidth will have a serious e�e
ton the optimal restart time. One way to pi
k a good bandwidth is to use a
ross-validation te
hnique of determining the bandwidth that minimises somemeasure of how well the estimator performs. One su
h measure is the meanintegrated squared error (MISE) of ĥ over the range �min to �max: The meanintegrated squared error 
an be found in Appendix C. To �nd the value of bwhi
h minimises the MISE we �nd b whi
h minimises the fun
tiong(b) = M�1Xi=1 � ti+1 � ti2 � (ĥ2(ti) + ĥ2(ti+1))�2b�1Xi6=j K � ti � tjb ��Ĥ(ti)�Ĥ(tj): (10)Then g(b) is evaluated for di�erent values of b. Ea
h evaluation of g(b) requiresthe 
omputation of the estimator of the hazard rate. The optimal bandwidth 
anbe determined only in a trial-and-error pro
edure. We found in our experimentsthat the optimal bandwidth is related with the size of the data set and thevarian
e of the data. We use the standard deviation to determine a starting valueand then do a simple step-wise in
rease of the bandwidth until g(b) takes on itsminimal value. In 
ase the hazard rate is in
reasing in the �rst steps, we de
reaseb and start again, sin
e then we are obviously beyond the minimum already. Inour experiments and in the literature we always found a global minimum, neverany lo
al minima. Advan
ed hill-
limbing algorithms 
an be applied to �nd theminimum more qui
kly and more a

urately than we do here.On
e the best estimate of the hazard rate is found we need to determine thepoint i� that satis�es the re
tangle equals surfa
e rule (6).The following simple algorithm determines the optimal restart time �� by testingall observed points ti; i = 1; : : : ; n as potential 
andidates.



Algorithm 1 (Optimal restart time)Input ĥ; Ĥ and t;i = 1; #(t = t1; : : : ; tn)While((i < n) and (ti � ĥ(ti) > Ĥ(ti)) ) fi++;greturn ti;This algorithm returns in the positive 
ase the smallest observed value that isgreater than the estimated optimal restart time ��:In many 
ases, however, the studied data set does not 
ontain observations largeenough to be equal or greater than the optimal restart time. Then we extrapolatethe estimated hazard rate to �nd the point where the re
tangle equals the surfa
eunder the 
urve. Assuming we have a data set of n observations ti; i = 1; : : : ; n, at�rst the slope of the estimated hazard rate at the end of the 
urve is determinedas the di�eren
e quotient slope = ĥ(tn)� ĥ(tn�1)tn � tn�1 : (11)Then t� = tn +�t is determined su
h that for t� eqn. (5) holds.(tn +�t) � (ĥ(tn) + slope ��t) = Ĥ(tn) � slope ��t � tn() �t = Ĥ(tn)� t � ĥ(tn)ĥ(tn)� 2 slope tn � Ĥ(tn)� slope : (12)3.1 ComplexityThe 
omputational 
omplexity depends in �rst pla
e on the number of iterationsneeded to �nd the optimal bandwidth for the hazard rate estimator. In ourexperiments we used a heuristi
 based on the standard deviation of the data setthat gave us the optimal bandwidth often in less than 5 iterations, but sometimestook up to 20 iterations.The se
ond important parameter is the number of observations 
onsidered. Ea
hiteration on the bandwidth requires the 
omputation of the estimated hazardrate, whi
h in turn needs traversing all observations and uses for ea
h point awindow of size 2b. Complexity of the hazard rate estimator is therefore at mostO(n2). Improving on the heuristi
 for the bandwidth, so that in all 
ases onlyfew iterations are needed is 
ertainly worth while.



4 ExperimentsWe have implemented the algorithm to estimate the hazard rate and determinethe optimal restart time as de�ned in theorem 1. The implementation is donein Mathemati
a and has been applied to the HTTP 
onne
tion setup data stud-ied in [5℄. This data in fa
t 
onsists of the time needed for TCP's three-wayhandshake to set up a 
onne
tion between two hosts.In our experiments we investigate various issues. One is the un
ertainty intro-du
ed by small sample sizes. The available data sets 
onsist of approximately onethousand observations for ea
h URL, that is thousand 
onne
tion setup times tothe same Internet address. We use these data sets and take subsets of �rst onehundred then two hundred observations et
. as indi
ated in the 
aption of the�gure and in the table. We do not use data of di�erent URLs in one experimentsin
e we found that very often di�erent URLs have di�erent distributions or atleast distribution parameters. Furthermore, the appli
ation we have in mind isweb transa
tions between two hosts.The data we study is data set `28' 
onsisting of the 
onne
tion setup times tohttp://nuevamayoria.
om, measured in se
onds. This data set shows 
hara
ter-isti
s su
h as a lower bound on all observation and a pattern of variation whi
hwe found in many other data sets as well, even though usually not with the sameparameters. The 
hosen data set is therefore to be seen as one typi
al representa-tive of a large number of potential 
andidates. The 
onsidered 
onne
tion setuptimes are shown in �gure 1. The largest observation in this data set is 0:399678se
onds.
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For ea
h of the mentioned subsamples the optimal smoothing fa
tor, or band-width, is 
omputed by evaluating (10) several times, �nding the minimum in asimple sear
h. Figure 2 shows estimates of the hazard rate for di�erent valuesof the bandwidth. Parameter b1 is too large, whereas b2 is too small, b3 is theone that minimises the error and is therefore the optimal bandwidth. One 
ansee that too large a bandwidth leads to an extremely smooth 
urve, whereastoo small a bandwidth produ
es over-emphasised peaks. From the �gure onemight 
on
lude that rather too large a bandwidth should be 
hosen than onethat is too small, but more experiments are needed for a statement of this kind.Using the optimal bandwidth, the hazard rate and its 95% 
on�den
e interval
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Fig. 2. Hazard rate for data set No. 28 and di�erent values of the bandwidth b.are estimated a

ording to (7) and (9). Finally, for ea
h estimated hazard ratethe optimal restart time �� is 
omputed using algorithm 1. In some 
ases, thealgorithm �nds the optimal restart time, sin
e the data set in
ludes still anobservation greater than the optimal restart time. If the data set has no obser-vation large enough to be greater than the optimal restart time, we extrapolatea

ording to (12). The optimal restart times are drawn as verti
al bars in theplots in �gures 3 and 4. Note that in �gure 3 although it looks like all optimalrestart times are extrapolated in fa
t none of them is. The extrapolated optimalrestart times are indi
ated by an asterisk in table 1.The hazard rate 
urve has no value at the point of the largest observation, sin
efor the numeri
al derivation always two data points are needed. Furthermore,be
ause of the limited amount of data in the tail, it is not surprising that the
on�den
e interval at the last observations grows rapidly.
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on�den
e intervals for the estimates for in
reasingsample size (top row n = 100 and n = 200, middle row n = 400 and n = 600, bottomrow n = 800) and failure probability 0.0

Table 1 shows some 
hara
teristi
s obtained in the program runs for data set28. Ea
h blo
k of the table belongs to a subset of size n with 
orrespondingstandard deviation. The standard deviation 
hanges as more observations 
omeinto 
onsideration. For ea
h subsample three di�erent 
ases are studied. In the�rst one only the n observations are used and the failure probability equalseither zero, or the relative fra
tion of observations that are greater than 3:0.This threshold is the �rst retransmission timeout of TCP and hen
e observationsgreater 3:0 are (somewhat arbitrarily) 
ensored and retried. We treat them as
ensored observations and all 
ensored observations 
ontribute to the failureprobability. Data set `28' does not have any su
h 
ensored observations, but



n = 100, StdDev = 0:0121551 n = 200, StdDev = 0:0117341failure prob. bw �� failure prob. bw ��0.0 0.006758 0.389027 0.0 0.011557 0.3890270.666667 0.001779 0.597251� 0.666667 0.001398 0.674306�0.8 0.001779 0.554513� 0.8 0.001271 0.638993�n = 300, StdDev = 0:0106746 n = 400, StdDev = 0:010383failure prob. bw �� failure prob. bw ��0.0 0.011742 0.389027 0.0 0.010226 0.3996780.666667 0.001272 0.333271 0.666667 0.001124 0.3332710.8 0.001156 0.333271 0.8 0.001124 0.333271n = 500, StdDev = 0:00997916 n = 600, StdDev = 0:00941125failure prob. bw �� failure prob. bw ��0.0 0.010977 0.399678 0.0 0.010352 0.3996780.666667 0.001081 0.333271 0.666667 0.001138 0.3332710.8 0.001081 0.333271 0.8 0.001019 0.333271n = 700, StdDev = 0:00895504 n = 800, StdDev = 0:00851243failure prob. bw �� failure prob. bw ��0.0 0.009850 0.309209 0.0 0.0103 0.3996780.66667 0.000970 0.333271 0.66667 0.000922 0.3320140.8 0.000970 0.333271 0.8 0.000922 0.332014n = 900, StdDev = 0:00816283 n = 1000, StdDev = 0:00784583failure prob. bw �� failure prob. bw ��0.0 0.009877 0.308456 0.0 0.009493 0.3084560.6667 0.000884 0.332014 0.6667 0.000949 0.3332710.8 0.000884 0.332014 0.8 0.000850 0.332014Table 1. Optimal restart time (��) and optimal bandwidth (bw) for di�erent subsam-ple sizes of data set 28 and di�erent failure probabilitiesmany other data sets do. The se
ond group 
onsists of the n observations plus2n 
ensored ones and has therefore failure probability 2=3, or a little higher ifthere are additional 
ensored observations present in the data set. Analogously,the third group has n+ 4n observations and a failure probability of n=5n = 0:8(or more if there are 
ensored observations in the data set).If we look at the results for failure probability zero, also plotted in �gure 3 for n =100; 200; 400; 600; 800 we see that the small data sets lead to an overestimatedoptimal restart time (if we assume that the full 1000 observations give us a
orre
t estimate), but the `
orre
t' value is overestimated by less than 5%.We used su
h high, and perhaps unrealisti
, failure probabilities in our studysin
e a failure probability of e.g. 0:1 does not show in the results at all. Lookingat the results for the di�erent sample sizes in the group with high failure prob-ability, we also �nd that with the small samples the optimal restart time getsoverestimated.



We also investigate the impa
t of the failure probability within a group of �xedsample size. The failure probability is in
reased by subsequently adding morefailed (and hen
e 
ensored) observations and then estimates for the hazard rateand optimal restart time are 
omputed. The failed attempts of 
ourse in
reasethe sample size. We noti
e (as 
an be seen in table 1) that the bandwidth usedfor estimating the hazard rate de
reases for in
reasing failure rate, while thesample standard deviation is 
omputed only from non-failed observations andhen
e does not 
hange with 
hanging failure probability. We found in [4℄ thatfor theoreti
al distributions the optimal restart time de
reases with in
reasingfailure probability. Typi
ally our experiments agree with this property, whi
h,however, is not true for some subsets of data set `28'.An additional purpose of the experiments was to �nd out whether we 
an relatethe optimal bandwidth to any 
hara
teristi
 of the data set. In the literatureno strategy is pointed out that helps in �nding the optimal bandwidth qui
kly.In our implementation we set the standard deviation as a starting value for thesear
h. If we have no 
ensored observations (failure probability zero) we always�nd the optimal bandwidth within less than �ve iterations. If the data set hasmany 
ensored observations the optimal bandwidth roughly by fa
tor 5 and weneed more iterations to �nd that value, sin
e our heuristi
 has a starting valuefar too large in that 
ase.Figure 4 
ompares two hazard rates using another data set for data with identi
alsample size, the �rst has zero failure rate and the se
ond has failure rate 0.8.It 
an be seen that the high number of added 
ensored observations leads to amu
h more narrow hazard rate, with lower optimal restart time. Note that this�gure is based on a di�erent data set than the ones above.
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e intervals for sample size n = 1000;failure probability 0:0 (left) and 0:8 (right)In summary, we have provided an algorithm that gives us an optimal restart timeto maximise the probability of meeting a deadline only if restart will indeedhelp maximising that metri
. So if the algorithm returns an optimal restart



time we 
an be sure that restart will help. We found a heuristi
 based on thevarian
e of the data that helps in �nding qui
kly the bandwidth parameterneeded for the hazard rate estimator. We found that small data sets usually leadto an overestimated optimal restart time. But we saw earlier (in [4℄) that anoverestimated restart time does mu
h less harm to the metri
 of interest thanan underestimated one and we therefore willingly a

ept overestimates.5 Dis
ussion and Con
lusionsSelf-management of modern, 
omplex systems 
an in
lude among others theautomati
 restart of jobs, or transa
tions if they are performing badly. As the
onsidered metri
 we 
hose in this paper the probability of 
ompletion beforean arbitrary deadline under unlimited number of allowed restarts. We deriveda surfa
e equals re
tangle rule for the optimal restart time that is based on thehazard rate. We implemented an algorithm to estimate the hazard rate from agiven data set and to determine the optimal restart time. The surfa
e equalsre
tangle rule provides an answer to the question of whether restart makes sensein a given s
enario. If an optimal restart time is found at all we 
an be sure thatthe shape of the hazard rate is su
h that restart makes sense and (1) holds. Avery simple heuristi
 was used to qui
kly �nd the best bandwidth for the hazardrate estimation. The bene�t of our algorithm is that it gives reasonably goodestimates on small data sets and 
an hen
e be used for fast estimates in on-lineautomati
 restart.The run-time of the algorithm depends on the 
onsidered number of observationsand on the number of iterations needed to �nd a good bandwidth for the hazardrate estimation. We found that for our smaller data sets with up to 400 obser-vations less than 5 iterations are needed and the algorithm is very fast. We didnot evaluate CPU time and the Mathemati
a implementation is not run-timeoptimised, but a suggestion for an optimal restart time in the above setting 
anbe provided within a few se
onds. If, however, the data set grows large, has e.g.more than 800 observations, ea
h iteration on the bandwidth takes in the orderof some one or two minutes. The polynomial 
omplexity be
omes relevant andthe method is no longer appli
able in an on-line algorithm.A good heuristi
 for 
hoosing the optimal bandwidth is a key part in the wholepro
ess. The better the �rst guess, the less iterations are needed and the fasterwe obtain the optimal restart time. We 
annot 
ompare our heuristi
 to otherssin
e in the literature nothing but pure `trial and error' is proposed. But we
an say, that for small data sets and failure probability zero the optimal restarttime is obtained very fast sin
e the heuristi
 provides a good �rst estimate ofthe bandwidth.In our experien
e the smallest data sets were usually suÆ
ient for a reasonablygood estimate of the optimal restart time. The optimal restart time will always



be pla
ed at the end of the bulk of the observations and some few hundred obser-vations are enough to get a notion of `bulk' and `end of the bulk'. If we 
onsiderthat some web pages 
onsist of up to 200 obje
ts a data set of 100 samples isnot hard to obtain or unrealisti
. In Internet transa
tions some hundred samplesare very qui
kly a

umulated. Furthermore, small samples seem to overestimatethe optimal restart time, whi
h does the maximised metri
 mu
h less harm thanunderestimation.In pra
ti
al appli
ations the required number of observations is no limitation tothe appli
ability of our method and having not too mu
h data has a positivee�e
t on the run-time while it does not deteriorate the obtained result. Theproposed method is well-suited as an on-line restart module.One may argue that if everybody applies restart networks be
ome more 
on-gested and response times will drop further. And in fa
t restart 
hanges theTCP timeout - for sele
ted appli
ations. In our measurements we found thatless than 0:5% of all 
onne
tion setup attempts fail. Our method tries to dete
tfailures faster than the TCP timeout and to restart failed attempts, sin
e for slow
onne
tions restart typi
ally does not lead to improved response time, whereasfor failed 
onne
tions in many 
ases it does. Failed attempts, however, are sorare that restarting those does not impose signi�
ant extra load on a network,while potentially speeding those up enormously.Referen
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AppendixA Cumulative hazard rateThe 
umulative hazard rate is estimated using the Nelson-Aalen estimator, whi
h hasespe
ially good small sample performan
e. The Nelson-Aalen estimator isĤ(t) = (0 if t � t1Pti�t diYi if t1 � t: (13)The estimated varian
e of the Nelson-Aalen estimator is�2H(t) =Xti�t diY 2i : (14)B Epane
hnikov kernelFor the kernel K(:) the Epane
hnikov kernel is usedK(x) = 0:75(1 � x2) for � 1 � x � 1 (15)as it is shown in [1℄ to be often more a

urate than other kernel fun
tions. Whent� b < 0 or t+ b > tD the symmetri
 kernel must be transformed into an asymmetri
one, whi
h is at the lower bound with q = t=bKq(x) = K(x)(�+ �x); for � 1 � x � q; (16)where � = 64(2� 4q + 6q2 � 3q3)(1 + q)4(19� 18q + 3q2) (17)� = 240(1 � q)2(1 + q)4(19� 18q + 3q2) (18)For time-points in the right-hand tail q = (tD � 1)=b the kernel fun
tion is Kq(�x).C Bandwidth estimationThe mean integrated squared error (MISE) of the estimated hazard rate ĥ over therange �min to �max is de�ned byMISE(b) = E�Z �max�min [ĥ(u)� h(u)℄2 du�= E�Z �max�min ĥ2(u) du�� 2E�Z �max�min ĥ(u)h(u) du�+E�Z �max�min h2(u) du� : (19)



This fun
tion depends on the bandwidth b used in the Epane
hnikov kernel. The lastterm does not 
ontain b and 
an be ignored when �nding the best value of b. The�rst term is estimated by R �max�min ĥ2(u) du. We evaluate ĥ(u) at a not ne
essarily equi-distant grid of points �min = u1 < u2 < : : : < uM = �max and apply the trapezoidrule. The se
ond term we approximate by a 
ross-validation estimate suggested byRamlau-Hansen where we sum over the event times between �min and �max.


