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Abstract. Modern complex information systems require management
mechanisms that operate to a large extent independently and au-
tonomously. One such mechanism is the restart of components or trans-
actions in case a failure in the system occurs. In this paper we introduce a
pragmatic algorithm to determine close to optimal restart times on-line.
We present a method for choosing best restart times based on empirical
data, if no theoretical distribution is known. The best restart time is
determined based on the empirical hazard rate. We study the sample size
required to come to a reasonably good estimate, the effect of the failure
probability of a job and issues of parameter selection for the hazard rate
estimation. The application considered in this paper is the connection
setup time in HTTP GET necessary for the download of web pages.

1 Introduction

In various situations in computer systems a restart of system components, a re-
issuing of a request, or a re-establishment of a network connection improves the
performance or availability of the component under consideration significantly.
Not always is it known why precisely restart of a process or job becomes neces-
sary or beneficial. Most Internet users, however, are familiar with the fact that
clicking the reload button often helps in speeding up the download of a page,
although we understand only to a limited extent what is happening exactly in
the Internet. Another example is software ‘aging’, for which rejuvenation - the
restart of the software environment - helps in preventing application failures
hence also improves the completion time. But little understanding exists about
the causes of aging and we are not usually able to identify the source of the
problem and remove it. In practical situations, therefore, we will not be able to
come to the required understanding to remove the problems, instead we want to
optimise the deployment of 'black-box’ restart to improve system availability or
performance.

The use of restart has first been proposed for optimising Internet agent activities
in [2], and further experiments have been carried out in [6]. [3] presents mathe-
matics to optimise the expected download time, and based on this, [5] introduces



a proxy server based architecture for restart including a software module for the
computation of the optimal timeout value. Our objective is to automate restart,
building on the above work. We decide on-line whether restart will be benefi-
cial and when to do it. In this paper we simulate an on-line procedure by using
increasingly more data from measurements taken earlier [5], but the applied
methods can easily be included in a software module like the proxy server in [5]
to be executed in real-time.

The shape of the hazard rate of a probability distribution indicates whether
restart is beneficial. For empirical data the correct theoretical distribution is
unknown and the hazard rate therefore needs to be estimated based on obser-
vations. Estimating the hazard rate is not a straightforward task, since it needs
numerical computation of the derivative of the cumulative hazard rate. In this
paper we derive and implement a new and simple rule based on the hazard rate
that allows us to find the optimal restart time to maximise the probability of
making a deadline. This rule approximates the optimal restart time indepen-
dent of the exact value of the deadline, and is asymptotically exact (when the
deadline increases). Moreover, the rule is very simple, making it a likely can-
didate for run-time deployment. Not in all cases doe the optimal restart time
exists. Restart is applicable to a system if (and only if) the rule finds an optimal
restart time. So, our simple rule actually serves a two-fold purpose: it enables
us to decide whether restart will be beneficial in the given situation, and if so,
it provides us with the optimal restart time.

We apply the rule to data sets we collected for HTTP, thus mimicking the on-
line execution of the algorithm. We explore how much data is required to arrive
at reasonable estimates of the optimal restart time. We also study the effect
of failed HTTP requests by artificially introducing failures in the data sets.
Based on these explorations we provide engineering insights useful for run-time
deployment of our algorithm.

Finally, an important technical detail when using the hazard rate is the value
of the bandwidth in the required smoothing algorithm. Based on many experi-
ments, we obtain a reasonably robust rule for setting the bandwidth based on the
variance of observations. This greatly speeds up the execution of the algorithm,
thus improving its on-line performance.

2 The restart model

To automate restart, we need to decide the metric of interest, and postulate a
mathematical model. In our earlier work, we use restart to minimise the expected
download time of a web page in an algorithm that does not make use of the haz-
ard rate [5]. But restart can also be used to increase the probability of making
a deadline and for a finite deadline and a finite number of restarts algorithms
based on the theoretical distribution and lognormally distributed completion



times have been presented in [4]. In our experiments we measured different vari-
ables involved in the download of a web page. In this paper we only use the
connection setup time from data sets already studied in [5]. We again study the
probability of making a deadline, but unlike the formulation in [4] here we use
an approximation to estimate the optimal restart time. Using the approximation
we can formulate a very simple rule based on the hazard rate, which in fact is
independent of the deadline to be met.

Our mathematical model assumes statistical independence of consecutive pre-
emptive tries. We found this very often to be a realistic assumption in HTTP
downloads from one URL [5]. Let the random variable T' denote the comple-
tion time of a job, with probability distribution F'(t),# € [0,0c). Assume 7 is
a restart time, and introduce the random variable T, to denote the completion
time when an unbounded number of retries is allowed. That is, a retry takes
place periodically, every 7 time units, until completion of the job or until the
deadline has passed, which ever comes first. We write f,(¢) and F,(¢) for the
density and distribution of T);. A distribution can equally well be described by
the hazard rate
wo - S

1 F(t)

and the cumulative hazard

which both are very important throughout our analysis. One useful relation
between the cumulative hazard rate and a distribution function is given by

H(t) = —log(1 — F(t)).

Restart at time 7 is beneficial only if the probability F (¢) of making the deadline
t under restart is greater than the probability of making the deadline without
restart, i.e.

F.(t) > F(t). (1)

As we have shown in [4], one can intuitively reason about the completion time
distribution with restarts as Bernoulli trials. At each interval between restarts
there is a probability F/(r) the completion ‘succeeds.” Hence, if the time ¢ is
a multiple of the restart time 7, we can relate the probability of missing the
deadline without and with restart through:

L= F,(t) = (1 = F(r)*. (2)
Eqn. (2) is correct only for values of ¢t and 7 such that ¢ is an integer multiple

of 7. But if we ignore this fact, or simply accept (2) as an approximation, we
can find the optimal restart time in a straightforward way. Surprisingly, it turns



out that the approximation gives us a restart time independent of the deadline
t, which is optimal in the limit ¢ — oo. That is, it optimises the tail of the
completion time distribution under restarts, and is therefore beneficial for many
other metrics as well, such as higher moments of the completion time.

Theorem 1. If the restart time 7 is an extreme (in ) of (1 — F(7))* for any
deadline t then 7 is a point where 7*.h(7*) = —log (1 — F(1*));

Proof. We use that

L (g(a)" = (s(@)” (—d_"g) - log<g(x))> . ®)

*

7* is an extreme when the derivative of (1 — F(7))* equates to 0:

- re)t = re)* (LR v Fo)) =0 @

Irrespective of the value of ¢ it immediately follows that

f(r) _ —log(1—F(r))
1—-F(r) T ’ 5)

and thus the conclusion holds if and only if the premiss holds. O

Eqn. (5) can be rewritten as
7-h(r) = H(7) (6)

where H(7) can be interpreted as the surface under the hazard rate curve up
to point 7. We can therefore reason that (5) expresses the fact that if (1) holds
there exists a point on the hazard rate curve such that the rectangle defined
by x- and y-value of this point equals the integral under the hazard rate curve
up to this point. We will refer to 6 as the rectangle equals surface rule. This
very appealing and simple rule is used in this paper for an empirical hazard
rate to find an empirical optimal restart time that maximises the probability of
completion, that is the probability of making an infinite deadline.

It should be noted that if the hazard rate is monotonously increasing, no value
of 7 exists, such that (6) holds. In that case restart will not help increasing the
probability of completion. Only if the hazard rate decreases after some point a

value of 7 exists, such that (6) holds. Only then restart can be applied success-
fully.



3 Estimating the hazard rate

It follows from (6) that an estimate h(t) of the hazard rate curve is needed to
determine the optimal restart time following the rectangle equals surface rule.
We will in this section provide the main steps of how to estimate the hazard
rate and implement the rule (6) in an algorithm. Some details are shifted to the
appendix. We use the theory on survival analysis in [1].

The hazard rate h(t) can not be estimated directly from a given data set. Instead,
first the cumulative hazard rate H(t) is estimated and then the hazard rate itself
is computed as a numerical derivative.

Let us consider a sample of n individuals, that is n completions in our study.
We sample the completion times and if we order them, we obtain a data set of
D distinct times t; <ty < ... < tp where at time ¢; there are d; events, that is
d; completions take time ¢;. The random variable Y; counts the number of jobs
that need more or equal to t; time units to complete. We can write Y; as

All observations that have not complete at the end of the regarded time period,
usually time tp, are called right censored. There are Y, — d,, right censored
observations. The experimental data we use falls in that category, since Internet
transactions commonly use TCP, which aborts (censors) transactions if they do
not succeed within a given time.

The hazard rate estimator h(t) is the derivative of the cumulative hazard rate
estimator ﬁ(t), which is defined in Appendix A. It is estimated as the slope of
the cumulative hazard rate. Better estimates are obtained when using a kernel
function to smooth the numerical derivative of the cumulative hazard rate. The
smoothing is done over a window of size 2b. A bad estimate of the hazard rate
will yield a bad estimate of the optimal restart time and the optimised metric is
very sensitive to whether the restart time is chosen too short. Therefore a good
estimate of the hazard rate is needed.

Let the magnitude of the jumps in H(t) and in the estimator of its variance
V[H(t)] at the j Jjump instants #; be AH()‘,) = H(t;) — H(t;—1) and AV[ (t;)] =
VI[H(t;)] — V[H (t;_1)]- Note that AH(t;) is a crude estimator for h(t;).

The kernel-smoothed hazard rate estimator is defined separately for the first and

last points, for which £ —b < 0 or t+b > tp. For inner points with b <t <tp—b
the kernel-smoothed estimator of h(t) is given by

D
W) b YK <t _bt> AH (). (7)



The variance of h(t) is needed for the confidence interval and is estimated by

Plh()] = b YK <tbti> AVIH(t). (8)

The function K(.) is the Epanechnikov kernel defined in Appendix B.

A (1 —a)-100% point wise confidence interval around h(t) is constructed as

0 ey | a2t BT S [z1agpo(h()
iy [ 222280 i [aam0]]

where z;_, /s is the (1 — a/2) quantile of the standard normal distribution.

The choice of the right bandwidth b is a delicate matter, but is important since
the shape of the hazard rate curve greatly depends on the chosen bandwidth
(see figure 2) and hence a badly chosen bandwidth will have a serious effect
on the optimal restart time. One way to pick a good bandwidth is to use a
cross-validation technique of determining the bandwidth that minimises some
measure of how well the estimator performs. One such measure is the mean
integrated squared error (MISE) of h over the range Tmin tO0 Tmax- 1he mean
integrated squared error can be found in Appendix C. To find the value of b
which minimises the MISE we find  which minimises the function

M—-1

o) = 3 (B 20 + i) -

=1

%S K <%) AH()AH().  (10)
oy

Then g(b) is evaluated for different values of b. Each evaluation of g(b) requires
the computation of the estimator of the hazard rate. The optimal bandwidth can
be determined only in a trial-and-error procedure. We found in our experiments
that the optimal bandwidth is related with the size of the data set and the
variance of the data. We use the standard deviation to determine a starting value
and then do a simple step-wise increase of the bandwidth until g(b) takes on its
minimal value. In case the hazard rate is increasing in the first steps, we decrease
b and start again, since then we are obviously beyond the minimum already. In
our experiments and in the literature we always found a global minimum, never
any local minima. Advanced hill-climbing algorithms can be applied to find the
minimum more quickly and more accurately than we do here.

Once the best estimate of the hazard rate is found we need to determine the
point i* that satisfies the rectangle equals surface rule (6).

The following simple algorithm determines the optimal restart time 7* by testing
all observed points t;,i = 1,...,n as potential candidates.



Algorithm 1 (Optimal restart time)

Input il, H and t;

i=1; #{t=t1,...,tpn)

While((i < n) and (#;-h(t;) > H(t)) ) {
i+ +;

}

return {t;;

This algorithm returns in the positive case the smallest observed value that is
greater than the estimated optimal restart time 7*.

In many cases, however, the studied data set does not contain observations large
enough to be equal or greater than the optimal restart time. Then we extrapolate
the estimated hazard rate to find the point where the rectangle equals the surface
under the curve. Assuming we have a data set of n observations ¢;,i = 1,...,n, at
first the slope of the estimated hazard rate at the end of the curve is determined
as the difference quotient

slope = —h(tn) — h(tnfl). (11)
tn - tnfl

Then ¢, = t, + At is determined such that for ¢, eqn. (5) holds.

(tn + At) - (h(tn) + slope - At) = H(t,) - slope - At - t,

H(t,)—t-h
A (t) — ¢ hA(t”) .
h(tn) — 2 slope t, — H(t,) — slope

(12)

3.1 Complexity

The computational complexity depends in first place on the number of iterations
needed to find the optimal bandwidth for the hazard rate estimator. In our
experiments we used a heuristic based on the standard deviation of the data set
that gave us the optimal bandwidth often in less than 5 iterations, but sometimes
took up to 20 iterations.

The second important parameter is the number of observations considered. Each
iteration on the bandwidth requires the computation of the estimated hazard
rate, which in turn needs traversing all observations and uses for each point a
window of size 2b. Complexity of the hazard rate estimator is therefore at most
O(n?). Tmproving on the heuristic for the bandwidth, so that in all cases only
few iterations are needed is certainly worth while.



4 Experiments

We have implemented the algorithm to estimate the hazard rate and determine
the optimal restart time as defined in theorem 1. The implementation is done
in Mathematica and has been applied to the HTTP connection setup data stud-
ied in [5]. This data in fact consists of the time needed for TCP’s three-way
handshake to set up a connection between two hosts.

In our experiments we investigate various issues. One is the uncertainty intro-
duced by small sample sizes. The available data sets consist of approximately one
thousand observations for each URL, that is thousand connection setup times to
the same Internet address. We use these data sets and take subsets of first one
hundred then two hundred observations etc. as indicated in the caption of the
figure and in the table. We do not use data of different URLs in one experiment
since we found that very often different URLs have different distributions or at
least distribution parameters. Furthermore, the application we have in mind is
web transactions between two hosts.

The data we study is data set ‘28’ consisting of the connection setup times to
http://nuevamayoria.com, measured in seconds. This data set shows character-
istics such as a lower bound on all observation and a pattern of variation which
we found in many other data sets as well, even though usually not with the same
parameters. The chosen data set is therefore to be seen as one typical representa-
tive of a large number of potential candidates. The considered connection setup
times are shown in figure 1. The largest observation in this data set is 0.399678
seconds.
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Fig. 1. Data set No. 28; connection setup times (in seconds).



For each of the mentioned subsamples the optimal smoothing factor, or band-
width, is computed by evaluating (10) several times, finding the minimum in a
simple search. Figure 2 shows estimates of the hazard rate for different values
of the bandwidth. Parameter b1 is too large, whereas b2 is too small, b3 is the
one that minimises the error and is therefore the optimal bandwidth. One can
see that too large a bandwidth leads to an extremely smooth curve, whereas
too small a bandwidth produces over-emphasised peaks. From the figure one
might conclude that rather too large a bandwidth should be chosen than one
that is too small, but more experiments are needed for a statement of this kind.
Using the optimal bandwidth, the hazard rate and its 95% confidence interval
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Fig. 2. Hazard rate for data set No. 28 and different values of the bandwidth b.

are estimated according to (7) and (9). Finally, for each estimated hazard rate
the optimal restart time 7* is computed using algorithm 1. In some cases, the
algorithm finds the optimal restart time, since the data set includes still an
observation greater than the optimal restart time. If the data set has no obser-
vation large enough to be greater than the optimal restart time, we extrapolate
according to (12). The optimal restart times are drawn as vertical bars in the
plots in figures 3 and 4. Note that in figure 3 although it looks like all optimal
restart times are extrapolated in fact none of them is. The extrapolated optimal
restart times are indicated by an asterisk in table 1.

The hazard rate curve has no value at the point of the largest observation, since
for the numerical derivation always two data points are needed. Furthermore,
because of the limited amount of data in the tail, it is not surprising that the
confidence interval at the last observations grows rapidly.
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Fig. 3. Estimated hazard rates and confidence intervals for the estimates for increasing
sample size (top row n = 100 and n = 200, middle row n = 400 and n = 600, bottom
row n = 800) and failure probability 0.0

Table 1 shows some characteristics obtained in the program runs for data set
28. Each block of the table belongs to a subset of size n with corresponding
standard deviation. The standard deviation changes as more observations come
into consideration. For each subsample three different cases are studied. In the
first one only the n observations are used and the failure probability equals
either zero, or the relative fraction of observations that are greater than 3.0.
This threshold is the first retransmission timeout of TCP and hence observations
greater 3.0 are (somewhat arbitrarily) censored and retried. We treat them as
censored observations and all censored observations contribute to the failure
probability. Data set ‘28’ does not have any such censored observations, but



n = 100, StdDev = 0.0121551 n = 200, StdDev = 0.0117341
failure prob.| bw T failure prob.| bw T
0.0 0.006758| 0.389027 0.0 0.011557( 0.389027
0.666667 (0.001779(0.597251*|| 0.666667 |0.001398|0.674306™
0.8 0.001779]0.554513" 0.8 0.001271(0.638993"
n = 300, StdDev = 0.0106746 n = 400, StdDev = 0.010383
failure prob.| bw T failure prob.| bw T
0.0 0.011742| 0.389027 0.0 0.010226| 0.399678
0.666667 |0.001272] 0.333271 || 0.666667 |0.001124| 0.333271
0.8 0.001156| 0.333271 0.8 0.001124| 0.333271
n = 500, StdDev = 0.00997916 || n = 600, StdDev = 0.00941125
failure prob.| bw T failure prob.| bw T
0.0 0.010977| 0.399678 0.0 0.010352| 0.399678
0.666667 |0.001081| 0.333271 || 0.666667 |0.001138| 0.333271
0.8 0.001081| 0.333271 0.8 0.001019| 0.333271
n = 700, StdDev = 0.00895504 || n = 800, StdDev = 0.00851243
failure prob.| bw " failure prob.| bw T"
0.0 0.009850{ 0.309209 0.0 0.0103 | 0.399678
0.66667 ]0.000970| 0.333271 0.66667 |0.000922| 0.332014
0.8 0.000970| 0.333271 0.8 0.000922 0.332014
n = 900, StdDev = 0.00816283 ||n = 1000, StdDev = 0.00784583
failure prob.| bw " failure prob.| bw T"
0.0 0.009877| 0.308456 0.0 0.009493| 0.308456
0.6667 |0.000884| 0.332014 0.6667 |0.000949| 0.333271
0.8 0.000884| 0.332014 0.8 0.000850( 0.332014

Table 1. Optimal restart time (7*) and optimal bandwidth (bw) for different subsam-
ple sizes of data set 28 and different failure probabilities

many other data sets do. The second group consists of the n observations plus
2n censored ones and has therefore failure probability 2/3, or a little higher if
there are additional censored observations present in the data set. Analogously,
the third group has n + 4n observations and a failure probability of n/5n = 0.8
(or more if there are censored observations in the data set).

If we look at the results for failure probability zero, also plotted in figure 3 for n =
100, 200, 400, 600, 800 we see that the small data sets lead to an overestimated
optimal restart time (if we assume that the full 1000 observations give us a
correct estimate), but the ‘correct’ value is overestimated by less than 5%.

We used such high, and perhaps unrealistic, failure probabilities in our study
since a failure probability of e.g. 0.1 does not show in the results at all. Looking
at the results for the different sample sizes in the group with high failure prob-
ability, we also find that with the small samples the optimal restart time gets
overestimated.



We also investigate the impact of the failure probability within a group of fixed
sample size. The failure probability is increased by subsequently adding more
failed (and hence censored) observations and then estimates for the hazard rate
and optimal restart time are computed. The failed attempts of course increase
the sample size. We notice (as can be seen in table 1) that the bandwidth used
for estimating the hazard rate decreases for increasing failure rate, while the
sample standard deviation is computed only from non-failed observations and
hence does not change with changing failure probability. We found in [4] that
for theoretical distributions the optimal restart time decreases with increasing
failure probability. Typically our experiments agree with this property, which,
however, is not true for some subsets of data set ‘28’.

An additional purpose of the experiments was to find out whether we can relate
the optimal bandwidth to any characteristic of the data set. In the literature
no strategy is pointed out that helps in finding the optimal bandwidth quickly.
In our implementation we set the standard deviation as a starting value for the
search. If we have no censored observations (failure probability zero) we always
find the optimal bandwidth within less than five iterations. If the data set has
many censored observations the optimal bandwidth roughly by factor 5 and we
need more iterations to find that value, since our heuristic has a starting value
far too large in that case.

Figure 4 compares two hazard rates using another data set for data with identical
sample size, the first has zero failure rate and the second has failure rate 0.8.
It can be seen that the high number of added censored observations leads to a
much more narrow hazard rate, with lower optimal restart time. Note that this
figure is based on a different data set than the ones above.

hazard rate hazard rate
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Fig. 4. Estimated hazard rates and confidence intervals for sample size n = 1000,
failure probability 0.0 (left) and 0.8 (right)

In summary, we have provided an algorithm that gives us an optimal restart time
to maximise the probability of meeting a deadline only if restart will indeed
help maximising that metric. So if the algorithm returns an optimal restart



time we can be sure that restart will help. We found a heuristic based on the
variance of the data that helps in finding quickly the bandwidth parameter
needed for the hazard rate estimator. We found that small data sets usually lead
to an overestimated optimal restart time. But we saw earlier (in [4]) that an
overestimated restart time does much less harm to the metric of interest than
an underestimated one and we therefore willingly accept overestimates.

5 Discussion and Conclusions

Self-management of modern, complex systems can include among others the
automatic restart of jobs, or transactions if they are performing badly. As the
considered metric we chose in this paper the probability of completion before
an arbitrary deadline under unlimited number of allowed restarts. We derived
a surface equals rectangle rule for the optimal restart time that is based on the
hazard rate. We implemented an algorithm to estimate the hazard rate from a
given data set and to determine the optimal restart time. The surface equals
rectangle rule provides an answer to the question of whether restart makes sense
in a given scenario. If an optimal restart time is found at all we can be sure that
the shape of the hazard rate is such that restart makes sense and (1) holds. A
very simple heuristic was used to quickly find the best bandwidth for the hazard
rate estimation. The benefit of our algorithm is that it gives reasonably good
estimates on small data sets and can hence be used for fast estimates in on-line
automatic restart.

The run-time of the algorithm depends on the considered number of observations
and on the number of iterations needed to find a good bandwidth for the hazard
rate estimation. We found that for our smaller data sets with up to 400 obser-
vations less than 5 iterations are needed and the algorithm is very fast. We did
not evaluate CPU time and the Mathematica implementation is not run-time
optimised, but a suggestion for an optimal restart time in the above setting can
be provided within a few seconds. If, however, the data set grows large, has e.g.
more than 800 observations, each iteration on the bandwidth takes in the order
of some one or two minutes. The polynomial complexity becomes relevant and
the method is no longer applicable in an on-line algorithm.

A good heuristic for choosing the optimal bandwidth is a key part in the whole
process. The better the first guess, the less iterations are needed and the faster
we obtain the optimal restart time. We cannot compare our heuristic to others
since in the literature nothing but pure ‘trial and error’ is proposed. But we
can say, that for small data sets and failure probability zero the optimal restart
time is obtained very fast since the heuristic provides a good first estimate of
the bandwidth.

In our experience the smallest data sets were usually sufficient for a reasonably
good estimate of the optimal restart time. The optimal restart time will always



be placed at the end of the bulk of the observations and some few hundred obser-
vations are enough to get a notion of ‘bulk’ and ‘end of the bulk’. If we consider
that some web pages consist of up to 200 objects a data set of 100 samples is
not hard to obtain or unrealistic. In Internet transactions some hundred samples
are very quickly accumulated. Furthermore, small samples seem to overestimate
the optimal restart time, which does the maximised metric much less harm than
underestimation.

In practical applications the required number of observations is no limitation to
the applicability of our method and having not too much data has a positive
effect on the run-time while it does not deteriorate the obtained result. The
proposed method is well-suited as an on-line restart module.

One may argue that if everybody applies restart networks become more con-
gested and response times will drop further. And in fact restart changes the
TCP timeout - for selected applications. In our measurements we found that

failures faster than the TCP timeout and to restart failed attempts, since for slow
connections restart typically does not lead to improved response time, whereas
for failed connections in many cases it does. Failed attempts, however, are so
rare that restarting those does not impose significant extra load on a network,
while potentially speeding those up enormously.
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Appendix
A Cumulative hazard rate

The cumulative hazard rate is estimated using the Nelson-Aalen estimator, which has
especially good small sample performance. The Nelson-Aalen estimator is

X 0 it <t
H(t) = 4o (13)
Ztigt 71 if t1 S t.

The estimated variance of the Nelson-Aalen estimator is

on(t)y=>" ?,?' (14)

B Epanechnikov kernel

For the kernel K(.) the Epanechnikov kernel is used
K(z) =0.75(1 — z%) for —1<z<1 (15)

as it is shown in [1] to be often more accurate than other kernel functions. When
t—b<0ort+b>tp the symmetric kernel must be transformed into an asymmetric
one, which is at the lower bound with q = /b

K,(z) = K(z)(a+ Bz), for —1<z<gq, (16)
where
- 2 a3
o= 64(2 — 4q + 6q° — 3¢ ) (17)
(1+q)*(19 — 18q + 3¢?)

240(1 — q)2
(1+q)*(19 — 18q + 34¢?)

B = (18)

For time-points in the right-hand tail ¢ = (¢p — 1)/b the kernel function is K,(—x).

C Bandwidth estimation

The mean integrated squared error (MISE) of the estimated hazard rate h over the
range Tmin t0 Tmax is defined by

MISE®}b) = E ( / " ) — h(u)]? du>

- F ( / :m 72 (u) du) —9F ( / m h(uw)h(w) du)

+E (/T; h* (u) du) . (19)



This function depends on the bandwidth b used in the Epanechnikov kernel. The last
term does not contain b and can be ignored when finding the best value of b. The
first term is estimated by f::l“ h%(u) du. We evaluate h(u) at a not necessarily equi-
distant grid of points Tmin = u1 < u2 < ... < UM = Tmax and apply the trapezoid
rule. The second term we approximate by a cross-validation estimate suggested by
Ramlau-Hansen where we sum over the event times between 7min and Tmax.



