
Response-Time Measurements using the Sun Java
Adventure Builder

Philipp Reinecke
preineck@informatik.hu-

berlin.de

Sebastian Wittkowski
wittkows@informatik.hu-

berlin.de

Katinka Wolter
wolter@informatik.hu-

berlin.de

Humboldt-Universität zu Berlin
Unter den Linden 6

10099 Berlin, Germany

ABSTRACT

Extensive data sets are an indispensable prerequisite for
modelling the behaviour of service-oriented systems. As
part of an ongoing research effort we are developing a SOA
testbed that allows for fault-injection at various levels of the
system. Within our current testbed, we utilise the Java Ad-
venture Builder reference application as an example service-
oriented system. We inject IP packet loss and measure re-
sponse times for three load levels. In this paper, we report on
preliminary results and present data from the experiments.

Categories and Subject Descriptors

C.4 [Performance of systems]: Fault tolerance, Perfor-
mance attributes, Modeling techniques

General Terms

Experimentation, measurement, performance

Keywords

Service-Oriented Architectures, Phase-type distributions, Mo-
dels, Fault-Injection

1. INTRODUCTION
Quality of service (QoS) of service-oriented systems be-

comes increasingly important, and, consequently, methods
to assure QoS levels enjoy increasing attention. The de-
velopment and evaluation of such methods requires general
models for the performance of service-oriented systems un-
der realistic use conditions. In particular, our focus lies on
models that reflect user-perceived system behaviour when
the system is confronted with common faults and distur-
bances, such as IP packet loss and high load situations. We
will employ these models in abstract formalisms (e.g. queue-
ing systems) to develop methods that assure QoS levels for a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QUASOSS’09, August 25, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-709-7/09/08 ...$10.00.

Activity

OPC Lodging

AirlineBank
Orders &

Requests
Status

L
o

a
d

G
e

n
e

ra
to

r

Web Site

Status Replies

Database Timestamps

FI

FI

Figure 1: Structure of the testbed.

wide range of service-oriented systems. In order to correctly
reflect system behaviour, and to foster a deeper understand-
ing of the characteristics of service-oriented systems, such
models must be parameterised based on real data, which
can be obtained either in experiments on real systems or in
testbeds with fault injection.

Unfortunately, neither data nor ready-made models for
the performance of service-oriented systems are commonly
available. In fact, apart from [16], we are aware of only a
handful of other studies that consider performance in com-
mon working conditions at all: [9] and [4] present data on
publicly available Web Services, while [3, 8, 10, 23] measure
response times in testbeds, but do not inject faults. In [5],
fault-injection is employed, however, the paper does not fo-
cus on performance implications. Apart from [10] and [16],
none of the listed papers provides models for the response
times.

In order to address this lack of models and data, we re-
cently proposed a multi-level fault-injection toolkit (ML-
FIT) for service-oriented systems [17]. The purpose of the
testbed is to study the behaviour of service-oriented sys-
tems under realistic operating conditions, as perceived by
the user. We focus on the response time of individual re-
quests, since we consider response time the primary metric
of interest from a user’s point of view. Based on the measure-
ments we will build and parameterise the required abstract
models. In order to capture realistic behaviour, ML-FIT is
intended to inject faults at various levels in the system (e.g.
in the network, in the operating system, or in the application
server). As faults are handled by the various fault-handling
mechanisms present in a system (e.g. retransmissions in the
network), they are transformed to other faults (e.g. loss is
transformed to timing faults) and finally manifest as realistic
response times.

In this paper we present some preliminary results from
our first implementation of the testbed. The paper is organ-
ised as follows: The next section describes the experiment

Run Mean SD c
2 Min 50% 95% 99% Max

1 55.74 39.76 0.51 29 48 100 168 810

2 55.26 31.40 0.32 29 48 107 155 526

3 52.85 36.31 0.47 28 45 93 149 790

4 54.75 25.81 0.23 28 47 100 163 250

5 53.94 47.86 0.79 28 46 93 143 944

6 53.0 36.28 0.47 29 46 94 136 824

7 53.31 33.13 0.39 29 46 95 134 740

8 53.6 28.19 0.28 28 47 99 137 424

9 52.16 20.17 0.15 29 47 92 125 209

10 52.26 25.01 0.23 29 46 92 139 399

Table 1: Airline response times in ms, no packet
loss, 10 Users

setup. Section 3 presents data from our measurements, and
in Section 4 we derive phase-type distributions that model
the raw data and can be used in further studies. Section 5
concludes the paper and gives an outlook on further work.

2. EXPERIMENT SETUP
The overall structure of our testbed is illustrated in Fig-

ure 1. A request is depicted as solid arrow, while the reply
is shown as a dashed arrow. Solid arrows with hollow heads
indicate the collection of time-stamps.

We utilise Sun’s Java Adventure Builder Reference appli-
cation [19] as an example of a service-oriented system. The
Java Adventure Builder provides a web site interface to a
SOA consisting of four service providers (called Bank, Air-
line, Lodging, and Activity). On the web site, users can
customise adventures, each consisting of a flight, lodging,
and an activity. When the user books an adventure, the
web site submits an order to the Order Processing Centre
(OPC). The OPC calls each of the providers and allows to
retrieve the order status. The OPC implements the follow-
ing workflow: First, the Bank is called by a synchronous web
service invocation. Afterwards, the OPC calls the Airline,
Lodging, and Activity suppliers in an asynchronous man-
ner. Calls to these three suppliers are submitted all at the
same time. The OPC then waits for replies from each of the
suppliers before setting the order status to Completed.

We applied a few modifications to the original Adventure
Builder application, in order to render the system suitable
for use in the testbed. First, we introduced an immediate
status notification on the web site. In our testbed, when the
user submits a booking, the web site stalls (for this user) till
the OPC has finished work on the order. To this end, the
web site polls the OPC for the order status. The original
Adventure Builder returns immediately, offering the user an
option to manually request the status, and also sends an
email notification upon order completion. For the exper-
iments presented here, we chose web-only notification be-
cause it allows us to measure response times immediately
noticeable to the user. We defer the study of response times
with e-mail notifications to future work.

Second, in order to emulate more realistic delays, we added
a simple database access operation to the Airline, Lodging,
and Activity suppliers.

Third, we introduced code to store request/reply time-
stamps at the begin and end of each booking into a database.
Timestamps for complete bookings are stored by the web
site, while the OPC stores timestamps for the calls to the
four service providers. We minimise the impact of the mea-
surement process on the results by deferring the database

Run Mean SD c
2 Min 50% 95% 99% Max

1 385.56 122.69 0.10 155 372 579 764 1236

2 389.02 133.74 0.12 148 369 616 923 1306

3 375.08 122.39 0.11 146 362 550 750 1557

4 380.13 118.23 0.10 141 366 585 740 1231

5 388.68 129.42 0.11 145 374 604 772 1646

6 372.20 107.53 0.08 155 366 534 664 1235

7 392.5 132.52 0.11 143 377 606 833 1462

8 397.93 142.34 0.13 133 379 640 1017 1187

9 376.35 109.54 0.09 142 366 552 709 1243

10 373.18 110.39 0.09 141 366 551 658 1297

Table 2: OPC response times in ms, no packet loss,
10 Users

Run Mean SD c
2 Min 50% 95% 99% Max

1 942.0 1429.98 2.31 25 366 3472 6543 14202

2 693.50 1216.40 3.08 24 165 3595 5566 12708

3 667.57 1453.63 4.74 25 176 2561 8875 15112

4 624.93 947.05 2.30 24 195 2823 4265 6744

5 596.73 1097.52 3.38 25 151 2888 5651 9792

6 732.25 1025.63 1.96 24 301 2873 4456 8356

7 701.87 1289.99 3.38 25 187 3326 5399 13853

8 689.09 1217.96 3.12 25 205 3132 5309 13547

9 409.71 905.51 4.85 25 106 1753 3182 21710

10 523.49 829.44 2.51 25 139 2267 3504 9051

Table 3: Airline response times in ms, no packet
loss, 50 Users

Run Mean SD c
2 Min 50% 95% 99% Max

1 5801.01 5196.8 0.80 175 4183 16675 23026 42623

2 6675.13 5128.31 0.59 191 5720 15108 22974 50264

3 5427.53 4239.88 0.61 124 4288 12937 20370 37633

4 5565.08 4253.46 0.58 220 4422 13106 19153 37699

5 5275.31 4833.28 0.84 168 4060 14841 22631 46791

6 5346.84 4210.91 0.62 196 4356 13068 19978 33712

7 6040.43 4287.29 0.50 163 5342 13605 19544 29440

8 5372.27 4164.95 0.60 158 4670 12122 20862 33300

9 5883.04 5565.85 0.90 238 4184 16265 31152 40935

10 6424.93 4717.26 0.54 182 5411 15515 21793 47307

Table 4: OPC response times in ms, no packet loss,
50 Users

Run Mean SD c
2 Min 50% 95% 99% Max

1 122.98 393.64 10.25 29 50 306 840 6181

2 132.93 453.42 11.63 28 49 311 3037 7606

3 115.78 468.42 16.37 29 48 293 633 8516

4 143.77 516.70 12.92 28 51 294 3034 7308

5 164.76 630.14 14.63 29 51 314 3266 7333

6 84.81 154.15 3.30 28 48 281 514 3562

7 95.99 204.44 4.54 29 50 286 659 3071

8 125.34 670.55 28.62 29 48 276 689 12056

9 98.64 197.55 4.01 28 51 286 391 3522

10 119.11 319.24 7.18 28 51 317 959 4476

Table 5: Airline response times in ms, packet loss
on Airline-OPC link, 10 Users

Run Mean SD c
2 Min 50% 95% 99% Max

1 444.75 399.85 0.81 129 392 704 1379 6364

2 433.17 450.64 1.08 138 384 583 3274 7898

3 434.26 468.08 1.16 132 383 658 1134 8690

4 450.54 512.93 1.30 125 380 689 3301 7439

5 476.60 616.05 1.67 140 389 709 3660 7412

6 401.13 177.24 0.20 122 381 620 871 3826

7 426.29 235.93 0.31 137 392 666 1141 3365

8 439.93 668.95 2.31 144 380 595 1237 12279

9 418.59 224.33 0.29 144 388 662 946 3763

10 454.59 353.54 0.61 122 395 793 1864 4703

Table 6: OPC response times in ms, packet loss on
Airline-OPC link, 10 Users

Run Mean SD c
2 Min 50% 95% 99% Max

1 854.34 1361.39 2.54 26 316 3735 5870 16875

2 570.41 1119.58 3.85 26 163 2679 5138 15320

3 814.38 1501.75 3.40 24 300 3370 6036 18624

4 953.52 1810.10 3.60 26 368 3583 6731 23587

5 740.07 1716.92 5.38 24 223 3297 6491 35597

6 891.28 1597.27 3.21 24 291 3858 6831 19690

7 768.37 1159.08 2.28 25 312 3213 4856 12829

8 714.36 1416.05 3.93 25 258 2952 5208 29616

9 455.86 1261.55 7.66 26 85 2029 6718 15587

10 1076.41 2504.43 5.41 25 261 4548 14984 26264

Table 7: Airline response times in ms, packet loss
on Airline-OPC link, 50 Users

operations required for storing time-stamps to a background
task. Our measurements of response times in Section 3.1 are
obtained from these time-stamps in off-line analysis. The
recorded times are not multiples of the polling interval as
requests are generated in a random process.

Fourth, we changed the OPC to return the status Pending
also on non-existent orders. This addresses a problem that
can occur if an order is not yet stored in the OPC when the
first status check occurs. Our experiment setup ensures that
each order that may be requested has been generated pre-
viously, and consequently we cannot run into the situation
that we access a non-existent order.

Finally, we added the necessary components to inject net-
work faults and to generate load. We use the Linux NetEm
module [24] to inject IP packet loss, and we generate load
using Apache JMeter 2.3.2 [21].

The OPC, Airline, Activity and Lodging services are each
deployed on an Intel Pentium 4 computer (3GHz, Hyper-
threading enabled) with 512MB of RAM and Linux 2.6.22.
Due to limitations in the available hardware, the Bank and
OPC services currently share the same server. The Website
is installed on an Intel Core 2 Duo machine with 2GHz and
2GB RAM running under Mac OS X 10.5.6. The JMeter
load generator runs on an AMD Athlon 64 (2GHz, 1GB
RAM) with Linux 2.6.24. All computers are connected by
a dedicated 100Mbit network routed through an Intel Pen-
tium 3 machine (700MHz, 384MB RAM, Linux 2.6.12) on
which fault injection takes place. We use the Sun GlassFish
application server 9.1 02, build b04-fcs [18].

3. MEASUREMENTS
In our experiments, we measure response times for three

different load scenarios (10, 25, and 50 simulated users). The
workload consists of repeated requests with delays following
a Normal distribution with parameters µ = 300 ms and σ =

Run Mean SD c
2 Min 50% 95% 99% Max

1 6099.66 4986.61 0.67 188 4722 16075 22442 48994

2 5647.03 4407.69 0.61 160 4576 14041 20337 44101

3 5596.60 4834.83 0.75 209 4093 14345 20635 44103

4 7773.61 6563.63 0.71 183 6085 23745 30284 46666

5 5917.18 5065.41 0.73 136 4717 15896 26243 38837

6 5900.61 4739.55 0.65 149 4807 14531 23320 37285

7 5056.15 3844.13 0.58 234 3810 11951 17684 31676

8 5799.99 4668.77 0.65 142 4753 14949 22461 47444

9 5957.10 4914.41 0.68 204 4585 15304 26516 50706

10 7614.09 7058.60 0.86 160 5662 19753 37136 72429

Table 8: OPC response times in ms, packet loss on
Airline-OPC link, 50 Users

Response Time

F
re

q
u
e
n
c
y

0 200 400 600 800

0
5
0

1
0
0

1
5
0

2
0
0

Figure 2: Distribution of response times for the Air-
line (no packet loss, 10 users)

100. We run experiments without packet loss and with 3%
packet loss on the network link between the OPC and the
Airline supplier, and the network links between the OPC and
the Airline and Activity suppliers, respectively (indicated
by ‘FI’ in Figure 1). In this work we report on preliminary
results for the 10 and 50 users scenario, without and with
loss on the link between the Airline and the OPC.

We repeat each experiment ten times, restarting the sys-
tem before each run in order to avoid software aging ar-
tifacts. Since the system exhibits pronounced startup and
breakdown phases (see Figure 6, for instance), we crop the
data sets to the stable phase prior to analysis.

Each experiment run with 10 users results in 1000 obser-
vations of which we drop the first 150 and last 50 measure-
ments leaving us with 800 observations for our analysis. The
experiment runs with 50 users result in 5000 observations of
which the first 1500 and last 500 are deleted.

3.1 Results
Tables 1–8 present statistical summaries of our results.

Since we observe strong variations between the individual
runs, we opted to treat the results separately in this prelim-
inary analysis.

Response Time

F
re

q
u
e
n
c
y

200 400 600 800 1000 1200

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Figure 3: Distribution of response times for the
OPC (no packet loss, 10 users)

Tables 1–4 show response times for the Airline and the
OPC in the scenarios with 10 and 50 users. In these experi-
ments, no packet loss was injected. In the low-load scenario
(10 users), both the Airline and the OPC have low response
times. We also note that the response times exhibit low
variance, as indicated by the standard deviation SD and
the squared coefficient of variation c2 = σ2

/µ2. The 95 and
99 percent quantiles as well as the maximum show that most
service invocations finish very fast. This is corroborated by
the histograms of response times, shown in Figures 2 and 3
(we selected the first run of each scenario to draw the his-
tograms).

In contrast, in the high-load scenario (50 users, Tables 3
and 4) both the mean response time and the variance are
much higher for the Airline and the OPC. Furthermore, from
the histograms we note that the response time distributions
in these scenarios tend to develop a long tail. We attribute
these changes to the fact that with 50 customers the system
was already driven towards an overload situation, possibly
caused by problems in the software itself and by the low-end
hardware. In particular, in the graphs for the response times
over time (Figures 6 and 7) we observe periodic increases of
response times. We suspect that these spikes are due to
the Java garbage collector attempting to free memory by
de-allocating unused objects (a similar effect has been ob-
served in [8]). In our experiment setup, the garbage collector
interval was set to 3600ms, which appears to coincide with
the intervals of the spikes. However, further work is required
in order to establish the effects of the garbage collector on
completion times.

Please note that the variability in all data of the OPC is
much lower than in the data for the Airline. This can be
explained by the polling mechanism which introduces time
slots and hence reduces randomness. This effect is most
pronounced in the low-load scenarios.

We now turn our attention to response times with 3%

Response Time

F
re

q
u
e
n
c
y

0 2000 6000 10000 14000

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Figure 4: Distribution of response times for the Air-
line (no packet loss, 50 users)

IP packet loss on the network link between the Airline and
the OPC (Tables 5–8 and Figures 8–11). First, we note
that increasing the load from 10 to 50 users again results
in an increase of the variance, as should be expected. More
important, however, is the observation that with loss the
variance is higher than without loss, even in the low-load
scenario. Furthermore, we see that in the low-load scenario
there are three runs (2, 4, and 5) where the 99% quan-
tile is above 3000ms. From previous work [12, 13, 15] we
know that packet loss during the connection-setup phase
of the TCP results in message delays in the order of the
RTO timeout values, i.e. 3 s, 6 s, 9 s, . . . , and consequently
we attribute these observations to packet loss during the
connection-setup phase. On the other hand, we note that
the bulges around the RTO timeouts are not as pronounced
here as in our previous work. This difference will be studied
in future work. Among the possible reasons are the compa-
rably low number of observations in our current experiments
(also corroborated by the large variation in c2 over the exper-
iment runs), larger message sizes (which allow the TCP to
apply more efficient fault-handling mechanisms), and also a
different packet loss model (cf. [15], where we used a Gilbert
model).

Considering the high-load scenario with packet loss, we
observe that response times are very large. While mean re-
sponse times for the Airline are still around 800ms, response
times for the OPC are already in the order of several sec-
onds. Furthermore, response times vary greatly, as indicated
by the large standard deviation and the 95 and 99 percent
quantiles as well as the maximum. In one case (run 10), the
maximum response time of the OPC was above 60 s. With
the Airline, response time quantiles also seem to indicate
the effect of the TCP RTO timeout, as discussed above, al-
though upon closer inspection we could not identify a spike
at e.g 3 s in the histogram (Figure 10).

Response Time

F
re

q
u
e
n
c
y

0 10000 20000 30000 40000

0
5
0

1
0
0

1
5
0

2
0
0

Figure 5: Distribution of response times for the
OPC (no packet loss, 50 users)

4. PHASE-TYPEMODELS FORRESPONSE

TIMES
In order to use the observed data in further theoretical

studies, we must derive appropriate models for the response
times. As a first step, we choose to describe system be-
haviour by phase-type models for the response times. In
this section we first give a basic background on phase-type
distributions, and Hyper-Erlang distributions in particular.
We then derive phase-type distributions to model the re-
sponse times observed in the experiments.

4.1 Background
Continuous phase-type (PH) distributions represent the

time to absorption in a CTMC with one absorbing state
[11]. PH distributions are commonly specified as a tuple
(α,Q) of the initial probability vector α = (α1, . . . , αn) and
the sub-generator matrix Q = (λij)1≤i,j≤n, which contains
the transition rates λij . The probability density function,
cumulative density function, and kth non-central moment,
respectively, are defined as follows [11, 7, 20]:

f(x) = αeQxq, where q = −Q1I,

F (x) = 1 − αeQx1I,

E
h

Xk
i

= k!α(−Q)−k1I.

Within the general PH class, acyclic phase-type distribu-
tions (ACPH) have received particular attention for practi-
cal applications [7, 22]. Hyper-Erlang distributions (HErD)
form a sub-class of the ACPH class. A HErD is a mixture
of b Erlang distributions with rates λ = (λ1, . . . , λb) and
lengths m = (m1, . . . , mb) The probability of entering each
Erlang branch is specified by β = (β1, . . . , βb).

4.2 Response Time Models
We employ the moment-matching method from [20] to

derive ACPH(2) models of the response times. The algo-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 200000 400000 600000 800000 1e+06 1.2e+06

R
e

s
p

o
n

s
e

 T
im

e
 i
n

 m
s

Experiment Time in ms

Figure 6: Response times over time for the Airline
(no packet loss, 50 users)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 200000 400000 600000 800000 1e+06 1.2e+06

R
e

s
p

o
n

s
e

 T
im

e
 i
n

 m
s

Experiment Time in ms

Figure 7: Response times over time for the OPC (no
packet loss, 50 users)

rithm attempts to compute (alpha, Q) such that the first
three moments of the corresponding phase-type distribution
match those of the empirical data. Where the first and sec-
ond moment can be matched, but the third moment is out
of bounds for an ACPH(2), the resulting ACPH(2) only ap-
proximates the third moment. As the ACPH(2) class cannot
match the first three moments of every distribution, we also
employ the G-FIT tool [22] to fit Hyper-Erlang distributions
to those data sets where no ACPH(2) can be found. Due
to time constraints we only present approximations for the
data from the first run of each experiment. Models for all
data sets will be made available at [14].

Table 9 presents the resulting ACPH(2) models. The third
moment of the response time distributions of the Airline in
the run with 10 users and no packet loss, and those for the
OPC with packet loss could only be approximated (marked
by an asterisk in Table 9). We note that for the data sets
with low c2 the approximation tends towards a mixture be-
tween an Erlang(2) and an Exponential distribution. In par-
ticular, for the first data set the approximation is very sim-
ilar to an Erlang(2), as λ1 ∼ λ2 and α1 is close to 1.

Table 9 does not contain an entry for OPC response times
with 10 users and no packet loss. Recall from Table 2 that
these have a squared coefficient of variation c2 = 0.10. Since

Response Time

F
re

q
u
e
n
c
y

0 1000 2000 3000 4000 5000 6000

0
1
0
0

2
0
0

3
0
0

4
0
0

Figure 8: Distribution of response times for the Air-
line (packet loss, 10 users)

Data Set α1 λ1 λ2

nl-10-airline-1* 0.98199 0.035568 0.035557
nl-50-airline-1 0.25552 0.000489 0.002390
nl-50-opc-1 0.62461 0.000215 0.000346
l1-10-airline-1 0.03317 0.000660 0.013733
l1-10-opc-1* 0.44850 0.003257 0.003257
l1-50-airline-1 0.24634 0.000501 0.002756
l1-50-opc-1* 0.68751 0.000277 0.000277

Table 9: ACPH(2) models (α2 = 1 − α1). Data
sets where the third moment was approximated are
marked by an asterisk (‘*’).

for every phase-type distribution

c2 ≥
1

n

holds [1], we need a phase-type distribution of at least order
n = 10 to approximate this distribution. Using the G-FIT
tool we found that the Erlang distribution with k = 10 and
rate λ = 0.025943 (i.e. a HErD with only one Erlang branch)
fits this distribution best.

4.3 Evaluation
Table 9 shows that for three data sets the third moment

could only be approximated by an ACPH(2). Furthermore,
one data set required a model of at least order n = 10. For
these four phase-type distributions where there was no exact
fit we compute the relative error in the first three moments,

ei =
|ĉi − ci|

ci

for i = 1, 2, 3,

as proposed in [2, 6], where c1, c2 and c3 are the mean, vari-
ance and centred third moment of the data, and ĉi denotes
the respective moment of the phase-type distribution. The
results are given in Table 10. We observe that, with the ex-
ception of the Erlang distribution for OPC response times

Response Time

F
re

q
u
e
n
c
y

0 1000 2000 3000 4000 5000 6000

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

Figure 9: Distribution of response times for the
OPC (packet loss, 10 users)

Data Set e1 e2 e3

nl-10-airline-1 3.6941e-09 9.5226e-09 0.8668
nl-10-opc-1 1.7106e-14 0.0124 0.6627
l1-10-opc-1 3.4790e-08 8.2298e-08 0.8326
l1-50-opc-1 1.2283e-08 2.1674e-08 0.2817

Table 10: Relative error in the first three moments
for the ACPH(2) approximations from Table 9.

in the 10 users, no loss scenario (nl-10-opc-1), the relative
error in the first two moments is negligible. Furthermore,
in all four cases there is a non-negligible error in the third
moment.

5. CONCLUSION AND FUTUREWORK
In this paper we presented a preliminary analysis of the

response times in a SOA testbed based on Sun’s Java Adven-
ture Builder. We found that packet loss and load increase
both expected response times and variance. We presented
phase-type models that capture the first three moments of
the data sufficiently well.

We are currently in the process of conducting a more in-
depth analysis of the data that will result in more com-
plex phase-type models that allow us to better describe the
shape of the response-time distributions. Furthermore, we
will study the temporal behaviour of response times and de-
rive appropriate models.

In the future we plan to conduct more experiments with
scenarios where we vary the workload and the workflows
within the system, as well as the type and frequency of in-
jected faults.

6. ACKNOWLEDGEMENT
This work has been supported by DFG grant Wo 898/2-1.

Response Time

F
re

q
u
e
n
c
y

0 5000 10000 15000 20000 25000

0
5
0
0

1
5
0
0

2
5
0
0

Figure 10: Distribution of response times for the
Airline (packet loss, 50 users)

7. REFERENCES

[1] D. Aldous and L. Shepp. The least variable phase-type
distribution is erlang. Stochastic Models, 3:467–473,
1987.

[2] A. Bobbio and M. Telek. A Benchmark for PH
Estimation Algorithm: Results for Acyclic-PH, 1994.

[3] V. Datla and K. Goseva-Popstojanova.
Measurement-based performance analysis of
e-commerce applications with web services
components. In Proc. IEEE International Conference
on e-Business Engineering ICEBE 2005, pages
305–314, 2005.

[4] A. Gorbenko, V. Kharchenko, O. Tarasyuk, Y. Chen,
and A. Romanovsky. The threat of uncertainty in
service-oriented architecture. Technical Report 1122,
Newcastle University, School of Computing Science,
Oct 2008.

[5] A. Gorbenko, A. Mikhaylichenko, V. Kharchenko, and
A. Romanovsky. Experimenting with exception
handling mechanisms of web services implemented
using different development kits. Number 1010, School
of Computing Science, March 2007.

[6] A. Horváth and M. Telek. Approximating heavy tailed
behaviour with Phase type distributions. In 3rd
International Conference on Matrix-Analytic Methods
in Stochastic models (MAM03), 2000.

[7] A. Horváth and M. Telek. PhFit: A General
Phase-Type Fitting Tool. In TOOLS ’02: Proceedings
of the 12th International Conference on Computer
Performance Evaluation, Modelling Techniques and
Tools, pages 82–91, London, UK, 2002.
Springer-Verlag.

[8] K. S. Juse, S. Kounev, and A. Buchmann.
PetStore-WS: Measuring the Performance
Implications of Web Services. In Proceedings of the
29th International Conference of the Computer

Response Time

F
re

q
u
e
n
c
y

0 10000 30000 50000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

Figure 11: Distribution of response times for the
OPC (packet loss, 50 users)

Measurement Group on Resource Management and
Performance Evaluation of Enterprise Computing
Systems (CMG 2003), Dallas, Texas, USA, December
7-12, 2003, pages 113–123. Computer Measurement
Group (CMG), Dec. 2003.

[9] S. M. Kim and M. C. Rosu. A survey of public web
services. In WWW Alt. ’04: Proceedings of the 13th
international World Wide Web conference on
Alternate track papers & posters, pages 312–313, New
York, NY, USA, 2004. ACM.

[10] S. Kounev and A. Buchmann. Performance Modeling
and Evaluation of Large-Scale J2EE Applications. In
Proceedings of the 29th International Conference of
the Computer Measurement Group on Resource
Management and Performance Evaluation of
Enterprise Computing Systems (CMG 2003), Dallas,
Texas, USA, December 7-12, 2003, pages 273–283.
Computer Measurement Group (CMG), Dec. 2003.
Best-Paper-Award at CMG-2003.

[11] M. F. Neuts. Matrix-Geometric Solutions in Stochastic
Models. An Algorithmic Approach. Dover Publications,
Inc., New York, 1981.

[12] P. Reinecke, A. P. A. van Moorsel, and K. Wolter. A
measurement study of the interplay between
application level restart and transport protocol. In
M. Malek, M. Reitenspieß, and J. Kaiser, editors,
Service Availability. Proceedings of the First
International Service Availability Symposium, volume
3335 of LNCS, pages 86–100. Springer, May 2004.

[13] P. Reinecke, A. P. A. van Moorsel, and K. Wolter. The
Fast and the Fair: A Fault-Injection-Driven
Comparison of Restart Oracles for Reliable Web
Services. In QEST ’06: Proceedings of the 3rd
International Conference on the Quantitative
Evaluation of Systems, pages 375–384, Washington,
DC, USA, 2006. IEEE Computer Society.

[14] P. Reinecke and K. Wolter. ACPH models for SOA
response times. http://www.informatik.hu-
berlin.de/∼preineck/acphmodels/.

[15] P. Reinecke and K. Wolter. Adaptivity metric and
performance for restart strategies in web services
reliable messaging. In WOSP ’08: Proceedings of the
7th International Workshop on Software and
Performance, pages 201–212, New York, NY, USA,
2008. ACM.

[16] P. Reinecke and K. Wolter. Phase-type
approximations for message transmission times in web
services reliable messaging. In S. Kounev, I. Gorton,
and K. Sachs, editors, Performance Evaluation –
Metrics, Models and Benchmarks, volume 5119 of
Lecture Notes in Computer Science, pages 191–207.
Springer, June 2008.

[17] P. Reinecke and K. Wolter. Towards a multi-level
fault-injection test-bed for service-oriented
architectures: Requirements for parameterisation. In
SRDS Workshop on Sharing Field Data and
Experiment Measurements on Resilience of Distributed
Computing Systems, Naples, Italy, 2008. AMBER.

[18] Sun Microsystems. GlassFish Application Server.
https://glassfish.dev.java.net/. Last visited 23 June
2009.

[19] Sun Microsystems. Java adventure builder reference
application. https://adventurebuilder.dev.java.net/,
2006. Last seen April 28th, 2009.

[20] M. Telek and A. Heindl. Matching Moments for
Acyclic Discrete and Continous Phase-Type
Distributions of second order. International Journal of
Simulation Systems, Science & Technology,
3(3–4):47–57, Dec. 2002.

[21] The Apache Software Foundation. Apache JMeter.
http://jakarta.apache.org/jmeter, 2008.

[22] A. Thümmler, P. Buchholz, and M. Telek. A Novel
Approach for Phase-Type Fitting with the EM
Algorithm. IEEE Trans. Dependable Secur. Comput.,
3(3):245–258, 2006.

[23] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and
J. Schiller. Performance impact of web services on
internet servers. In Proceedings of IASTED
International Conference on Parallel and Distributed
Computing and Systems, Marina Del Rey, California,
USA, 2003.

[24] Various authors. NetEm – LinuxNet.
http://linux-net.osdl.org/index.php/Netem. Last visited
October 8th, 2007.

