The Fast and the Fair:

A Fault-Injection-Driven

Comparison of Restart Oracles for Reliable Web

Services

Philipp Reinecke, Aad P. A. van Moorsél Katinka Woltet
tHumboldt-Universitat zu Berlin

Institut fur Informatik

Berlin, Germany

{pr ei neck, wol t er }@ nf or mati k. hu-berlin. de

tUniversity of Newcastle upon Tyne

School of Computing Science

Newcastle upon Tyne, United Kingdom

aad. vannoor sel @cl . ac. uk

Abstract— Web Services are typically deployed in Internet or
Intranet environments, making message transfers suscejalie to
a wide variety of network, protocol and system failures. To
mitigate these problems, reliable messaging solutions foweb
services have been proposed that retry messages suspectede
lost. It is of interest to evaluate the performance of such riiable
messaging solutions, and in this paper we therefore utilise newly
developed fault-injection environment for the analysis oftime-out
strategies for the Web Services Reliable Messaging standirWe
compare oracles that determine retransmission times withespect
to the tradeoff between two metrics: the effective transfertime
and the overhead in terms of additional message transmissis.
Our fault-injection environment allows faults to be invoked in
the IP layer, representing a variety of failure situations in the
underlying system. The study presented in this paper includs
two adaptive oracles, which set the length of the retransmgon
interval based on round trip time measurements, and two stat
oracles. The study considers both HTTP and Mail as SOAP
transports. We conclude that adaptive oracles may signifiaatly
outperform static oracles when the underlying system exhiits
more complex behaviour.

I. INTRODUCTION

which provides a framework to deliver messages ‘reliably
between distributed applications in the presence of sofiwa
component, system, or network failures’ [BIMTO05]. Of the
four delivery assurances specified in [BIMTO05], both ‘atsea
once’ and ‘exactly once’ necessitate the retransmissidasbf
messages. While the standard describes positive and vegati
acknowledgements to determine the message transmission
status, it does not provide details on the preferred watimg

(for a positive acknowledgement) until re-sending a messag
Although exponential backoff is mentioned as one way to
adjust the retransmission interval, the issue is effelgtileft
open.

In this paper we experimentally investigate the influence
of time-out strategies on the performance of, and overhead
introduced by, WSRM. In particular, we analyse represermgat
algorithms for four classes of restarbracles (as explained in
Section 111). We will see that the more complex the behaviour
of the underlying network and system, the more it pays off
to utilise strategies that adapt the time-out value based on
observed data.

With the continuing acceptance of Web Services technolo-There are two important aspects to the evaluation of WSRM
gies as a means of integrating applications, the deperigabitime-out strategies we will address throughout the paper: t

of the Web Services stack becomes increasingly importaaptimal strategy as decidable at the level of WSRM and

Several attempts of defining an appropriate reliabilitydtad

IThroughout the paper we use restart, retry, resend anchsetitiinter-

have converged in Web Services Reliable Messaging (WSRM)angeably.

the interaction with reliability mechanisms at lower lager

. . _ Application (Client) Application (Server)
in particular TCP. Especially the latter is extremely diffic

to track, and we believe that experimental analysis such as LS SIS LLSIRY BEIIEET
conducted in this paper is needed to gain a better understand | SOAP SOAP

ing of cross-layer issues. Therefore, we have created & faul Transport, e.g. HTTP Transport, e.g. HTTP

injection environment for the analysis of WSRM, in which the
transmission of IP packets can be interrupted. This allew®u
mimic scenarios that from the perspective of the WSRM layer Physical Network T

are representative for a variety of network, protocol arsleay

Network, e.g. TCP/IP Network, e.g. TCP/IP

fail behavi Sj . faul he IP | Fig. 1. A sample WSRM setting. (Adhering to SOAP terminologse do
ailure behaviours. Since we inject faults at the eves, Wnot call HTTP an application, but rather a transport for thgelts above it.)
can experimentally evaluate the complex interaction betwe

TCP and WSRM reliability mechanisms.) .
itself to the prevalent HTTP transport for web services, but

This paper combines the idea of restart to reduce completigigo investigate SOAP over SMTP as an example for more
times [vMWO04] with an explicit consideration for the ensgin intricate lower layer behaviour.
overhead. (We use the term overhead and fairness as referrinThe remainder of this paper is organised as follows. In the
to the same idea.) With restart, there always exists a tfadegext section we elaborate on WSRM and the fault injection
between fairness and timeliness. Whereas shorter intervahvironment. Section 1l introduces the different restar-

help to overcome faults faster, the resulting more frequegles. Section IV discusses the results of our fault injectio
restarts consume more resources. Longer timeouts are meggeriments.

conservative, but also slow down recovery and thus message

end-to-end delay. For all four time-out oracles we studyhiat ||, WSRM AND THE FAULT INJECTIONENVIRONMENT

paper we evaluate their application with respect to thecinéd Fig. 1 depicts a basic WSRM deployment. Resting beneath

between fairmess and timeliness. the application and atop a stack of further layers, the WSRM
We are not aware of other analysis of WSRM time-outomponent provides reliable message transfer between the
mechanisms, although related and complementary work in wajpplication’s endpoints. The direction of message flows is
service fault injection as well as WSRM performance existgeflected in the distinction between a ‘WSRM Source’ and
In particular, Looker and Xiu [LX03] present a framework ta ‘WSRM Destination’: the sending party is the source, while
inject faults using a modified SOAP layer. This allows one tthe recipient is the destination. To ensure transmissioa, t
explore the impact of specific web service failures, but thgource keeps resending each message until it receives an
approach does not yield an understanding of the effects famtknowledgement from the destination.
handling in the lower layers has. Regarding the impact WSRMThere are several complex layers beneath WSRM. The
reliability mechanisms have on performance, Pallickara SOAP layer offers an abstract medium. SOAP implementa-
al. [PFYT] study the overhead of WSRM implementationsions (e.g., Axis [Apaa]) then use lower-level protocols as
in comparison to SOAP (Simple Object Access ProtocolpOAP transports to send and receive messages. As these
focusing on node-specific costs such as processing time, tsahsports are often application level protocols theneselv
not considering the specifics of the time-out mechanism. £&¢.g., HTTP is an application level protocol in the TCP/IP
lower levels of the stack, dependability has been studisthck), and thus they in turn utilise lower network protocol
more extensively. For instance, Allman and Paxson [AP9&jyers.
explore how different parameters of RTO algorithms affect Each higher layer’s reliability is influenced by faults ireth
fault recovery in TCP. Our work complements such researtdyers beneath it. These faults may eventually lead tonfaili
in that we study several oracles in regard to the generadtifhd message transfers. On the other hand, some lower layers offe
between fairness and timeliness on a higher level. We injeeliability as well. TCP, for instance, resends unacknogésl
faults in the IP layer and thus elicit fault-handling in @ykrs [P packets to provide reliable connections over unrelidBle
beneath WSRM. Our study is among the first to not limitetworks. However, fault handling at any point in the stack

AsyncPingClient RMSampleService outgoing SOAP message is encapsulated in an E-Mail and
- T T~ - ~ handed over to an SMTP server for delivery. The destination
Sampling| Sandesha _ | Sandesha - then periodically polls a POP3 server for new mails. Each
AXis Axis of our machines has its own set of SMTP/POP3 servers
HTTP or SMTP HTTP or SMTP (Postfix/Qpopper), and faults were injected on the link teet
TCP Tcp the SMTP servers. Mail servers retry delivery after nomadfat
Fault” ~ - ~ faults. Deferred mails are stored in a queue and assigned a
Injection | IP _UP - timeout for retransmission. If the fault was caused by the
1Mbit T destination (e.g., a failed connection), no delivery ta tiast

will be attempted for some time. The queue is periodically

Fig. 2. Basic experiment setup. checked for mails to be retransmitted. In order to reducd,loa
and since E-Mail is not considered time-critical, all of $he
does not necessarily guarantee reliability at the upperM@siervals are usually large. When delivery time becomesemor
level. Furthermore, fault handling mechanisms may lead §portant, lower timeouts seem more appropriate. We set the
undesirable timing behaviour in upper layers. queue check interval and the minimum and maximum waiting

To elicit fault handling in the stack (including WSRM),times to 60, 60s and 120, respectively, and polled the POP3
we inject faults into the IP layer. By injecting faults atshi gseryver with an interval of 6s.
low level we are able to investigate the inter working of |0 Linux machines, connected by a 100Mbit network
TCP and WSRM reliability mechanisms. The injected faultg,q kept synchronised through NTP provided the physical
correspond to IP packet loss, and may lead to delays andslossgyironment. Paxson [Pax98] notes that NTP is designed for
in message transfer. From the perspective of the WSRM 'ay%rmg-term synchronisation and thus may not be sufficiently
these effects may be representative for a wide variety &ffiai ccyrate in small timescales. We tried to minimise thesesiss
scenarios, including server hardware and software as \aellb'%, explicitly synchronising one machine to the other before
network failures. On the other hand, faults in the higheetay o5 experiment run and disabling synchronisation dutieg t
(e.g., at SOAP level) will typically show distinctly diffent ;s On this basis we emulated a 1Mbit/1Mbit up/downstream
patterns than those studied here because they affect demplgork, which seems to us a minimum requirement for most
messages, rather than individual packets. In this paper(wetgpica“ applications using web services. Faults typicapodr
not study faults at the higher layers. To study such fault§enyork conditions were injected into the IP layer using a
additional experimentation using a SOAP fault injectionlto .ompination of Linux’s NetEm queueing discipline and IP
like [LXO03] is in order. firewalling facilities (see, e.g., [HGM)).

Fig. 2 shows the basic setting for the experiments. In
our simple application the client sent one 50 byte message
every 500ms. Transmission dependability was provided @y Metrics for the Fairness-Timeliness tradeoff
the WSRM implementation Sandesha 1.0 RC1 [Apab] with To describe precisely the metrics we analysed, we formalise
in-memory storage of messages and some modifications,agsfollows. Each message;,i = 1, ... M out of a sequence
follows. First, Sandesha and its SOAP engine Axis 1.2RG} M/ messages will be sent > 1 times, and thus there are
[Apaa] were de-coupled so that new messages could be s@ples(s;;,r;;) of dispatch/receipt times;;, 7;; € R for each
without waiting for previous SOAP invocations to finishy,;. Then; one-way transmission times for every message are
Second, code to sample dispatch and receive timestamps wefned as;; = r;; — sij, With ¢;; = oo for failures.
added. Third, a non-standard WSRM header entry was addegyle measure the timeliness of individual messagesin

to track transmission numbers for messages, and thustdems of the Effective Transmission Time (ETT), defined as

uniquely identify them. the time betweemn,’s first dispatch and its first arrival:
For SOAP over HTTP, the WSRM destination was deployed
on a Tomcat 4.1 application server. For the Mail transport ri = min{ry}

we enabled the prototypical implementation in Axis. Every ETT;, = rf—si

The following line of thought yields a generic measure dh the sender, hence it enhances a reliability mechanism
fairness.m; is sentn; > 1 times. A number of these already present in virtually any communication system. tJpo
transmissions may fail, but at timeg® < oo the first one receipt of a positive message acknowledgement at tirthee
(with index k) is successful. Now while other transmissionsender can determine theansmission status and estimate
initiated beforer;, but completed afterwards might have takethe transmission time. (Whereas from a negative acknowl-
longer thank, they were not strictly necessary. Additionallyedgement it can only infer the status.) Two aspects about
every retransmission aftet! is clearly obsolete. Thus, theestimating transmission time in this way are noteworthgstfi
only unavoidable retransmissions are those that startfedebe this notion of transmission time corresponds to the coreplet
r?, but failed, andk}. With every other transmission theRound-Trip Time (RTT), rather than the one-way time from
sender consumed resources it did not really need. We tesender to receiver, and secondly, if acknowledgements to no
this behaviour Unnecessary Resource Consumption (BtRC)carry additional information to assign them to a particular
. transmission, a ‘retransmission ambiguity’ [KP91] mayueel

kf = argmin{r;;}

j accuracy of these samples.
URC; = ni—[{ry=o0lj <ki} -1 To discuss the oracles precisely, we build forward on the

Since URC is independent of the nature of the resourcefmmal'sat'on in the previous section. Recall that eachsags

guestion (e.g., network bandwidth, processing power) &nd girt = 1,...M out of a sequence alf messages will be

assumptions regarding other parties accessing it (i.eseth SENt7i = 1 times, and thus there are tuples (sq;, ;) Of

to be fair towards), it allows us to compare fairness acrogéspamh/ receipt times for each message. &héransmission

many applications. It is limited in that it centers on indival ™MeS for every message then afe= ry; — si;, With ¢;; = oo

messages and does not show aggregate load. The Ia{%rr,
Without additional means, the sender cannot measyre

lost messages.

however, is usually determined by the application’s segdin

rate, and therefore out of scope for restart oracles. Instead, it guesses the transmission time from positive ac-

knowledgements. The sender observes

[1l. ORACLES FORRESTART z an acknowledgement for; arrived at timez

. . a/i‘ =
In our experiments, we compared time-out oracles based oo else,

on different algorithms: fixed, fixed with back-offs, dynami o orival times of acknowledgements, from which it infers

intervals using Jacobson/Karn and dynamic intervals uamg y, ¢ the message has reached its destination some timesbefor

algorithm we proposed earlier [RvMWO04]. These respectiv(;_ It thus estimates;; by i;; < ai;, e.qg., by the RTT
] (%] (%] 171 Y

oracles are representatives of different classes of time-cmeT .— a;; — 5. We distinguish four types of oracles by
17 Ty YV

oracles. We explain the classification and provide the H;etaii]éw they utilise this data.
of the oracles in this section.

In short, oracles compute timeouts for messages. OAr Oracles using Fixed Intervals
concept of an oracle differs from that of an algorithm in

A timeout 7 is given at compilation time or startup, and

that it describes a distinct component (and thus encomsasg\%ry - time units the sender checks whether an acknowl-

structural information) potentially combining severah&out edgement forn; has arrived, and resends; otherwise. .e.,

algorithms. For example, an oracle might choose betweerlmf amz_ has been sent at timé,, the sender will look for an

fair and a fast algorithm based on additional system state d%cknowledgement &+ 7T+ 27 T+ 37, ..

Furthermore, an oracle can be a simple heuristic, as well Ferformance of a fixed intervals oracle hinges on whether

an elaborate algorithm using known stochastic charattesis is consistent with actual medium characteristics. In entsea

of the system. The four oracles we study in this paper COViheout lower than the RTT leads to retransmissions of every

the whole range. message, and therefore a fixed interval will rarely be used in

The oracle mechanism is an almost non-intrusive way E)?actical systems

improve performance. It only changes retransmissionvater In general, the larger the timeout, the more likely it beceme

2Whereargmin; {z;c1} :=4 € I : (z; = min {x;}). that expiry sighals message loss and hence the need for re-

Jacobson/Karn| QEST Oracle

transmission to ensure dependability in the strict senagge. |_Fixed Intervals | Exp. Backoff

timeouts increase fairness by avoiding unnecessary testap H1TP Transport
. . . Tij = 4s T, =4s,8s, T:=4s T:=4s

but sacrifice possible speed gains to be had by restart and" 16s. .. o= s Fran = 60

result in longer loss detection times. Setting a lower tioieo az =1/4 H = 1000

allows for faster failure detection and might also help dvoi k=4 c=0s

L . Mail Transport

unusually large transmission times, but makes unnecessat = 1ds = 145,985, | 7 =105 = 10s

retransmissions more likely. 565, ... a; =1/s Tmaz = 608
g =1/a H = 1000
k=4 c=0s

B. Oracles using Growing Intervals TABLE |

These augment Fixed Intervals by addltlona”y traCkiné)RACLE PARAMETERS WE CHOSE LONGER INITIAL TIMEOUTS FOR THE

oracle decisions. That is, if a timeoutj for m; expires, MAIL TRANSPORT TO ACCOUNT FOR THE LARGERETT OBSERVED

they a.SSUme'ij to have been too Short and increase |t b)yVITHOUT RESTART. SINCE STATIC ORACLES CANNOT ADAPTWE ADDED

. . AN EXTRA SAFETY MARGIN TO THEIR TIMEOUTS. PARAMETERS FOR THE
a substantial amount, e.g., exponentially: s eINTO ouTs. sFo
JAcOBSONKARN ORACLE WERE SET BASED ONAP99].

Tii = T

T (j+1) = 2-Tij.

o o _ The variance measure
While this reduces unnecessary retransmissions, faigmess

1
still depend on the initial timeout. Furthermore, any suph a RTTVAR, = §SRTT1
proach hurts timeliness, which is most pronounced in séemar RTTVAR; 41 = (1—a2)-RTTVAR, +
where messages are sent or consumed synchronously. +ag - [SRTT 41 — fﬁjl ,

was introduced by Jacobson to improve similarity (i). Inaney
C. Oracles using Basic Adaptive Intervals to the retransmission ambiguity, Karn and Partridge pregos

With these oracles, the timeout is allowed to shrink 49 Only use fresh samples; from acknowledgements for

well as to grow. In essence, they parametrise an assunféych n: = 1, and to back off exponentially upon encoun-

probability distribution F,, for RTTs based on estimates Oilering a timeout [KP91]. The retransmission timeout (RTO) i

the transmission time, and baseor all m; on F,. Because €N computed as

this global7 is usually closer to actual round trip times than 2-RTO; if RT'O, expired
one set beforehand, adaptive oracles can avoid unnecessaty pr(, ; .= SRTT, + k- RTTV AR, (1)
retransmissions and are able to detect loss in a timely mmanne

o . _ _ if a newf. ! is available
Their timeliness may be further improved by their potential

to also detect (and restart) exceptionally slow invoceujonWherek is a flexible parameter, typically set & [AP99],

However, their performance ultimately depends on (i) th%nd starts WithRT'Oo :_ 3s. Our basic adaptive intervals
similarity between the assumed and the actual distributio(f'{aCIe (Jacobson/Karn) implements (1), and thus folloves th

(i) the accuracy of RTT measurements, and notably (iii) th%otion of combining dependability and fast fault-recoverih

impact of the retransmission ambiguity as a factor in fPnservative medium usage.

accuracy of RTT measurements.)]
_ D. Oracles using Advanced Adaptive Intervals
Perhaps the best known example is the TCP RTO compu-

tation which keeps track of the mean and variance of RTTsStartIng from the premise that the complgnc_m tinfeof
using successive samplé%l — 1,2,.... After the smoothed 2 task (e.g., the RTT for message transmission) are drawn
round-trip time (SRTT) was initialised with the first obsedv

RTT, subsequen$ R1"1;,; are computed using

from independent and identically distributed random \a&s,
governed by some probability density functigiii;;), it can
be shown that for certain distribution8(;;) (e.g., heavy-
SRTTi4+1 = (1—a)SRTT 4+ o tijl tailed) restart minimises transmission time [vVMWO04]. Base

on this idea, an oracle can find the optimal timeout, providdd | NoRestart| Fisedint. | Exp. Backott | sac.kam QEST

No Faults

the distribution functionF(t}j), or, more often, an estimate
avg. ETT 0.17+0.01 0.16+ 0.00 0.18+ 0.00 0.18+ 0.00 0.16+ 0.00

avg. URC | 0.00+0.00 | 0.00+ 0.00 0.00+ 0.00 | 0.03+ 0.00 | 0.03+ 0.00
a comparison of anticipated transmission times, and becausios pisruption

F(fz]) can be |earned fr-om Obsel’vations, OraCleS employir gavg. ETT 0.274+0.01 | 0.2240.01 0.23+£0.01 | 0.23+0.01 | 0.274+0.01
avg. URC | 0.00£0.00 | 0.01+0.00 0.01£0.00 | 0.04+0.00 | 0.04+ 0.00

F(fij) thereof is known. Since timeout selection is based on

this approach potentially improve transmission times imyna 505 Disruption

scenarios, even when the distribution f@r is not known [agerr | 303018 | 2204012 | 2124012 | 2344013 | 238+ 013

beforehand. Shortcomings lie in an inherent assumptiot thaave-URC | 0.00+£0.00 | 0424003 | 0144001 | 0.06+0.00 | 0074000
2% Packet Loss

restart does preempt previous attempts, and, as with t

<
avg. ETT - 0.76 £ 0.02 0.77£0.02 | 0.79£0.02 | 0.73+0.01

Basic Adaptive Intervals, in the sensitivity t0 iNaCCUBECI | 44 Urc _ | 0074000 | o008+000 | 018+001 | 0344001

in measurements or estimates of the transmission time |0fo% PacketLoss

messagen;, ;. If the former is not true, restart may lead| *% ™" T | 383£006 | 45TEOI0 | 4782008 | 287004
. avg. URC - 0.25+ 0.01 0.224+ 0.01 0.25+ 0.01 0.33+£0.01
to overload. We therefore applied Karn's and Karn/Par#isig TABLE I

RTO algorithm modifications (viz. exponential backoff and
SUMMARY OF RESULTS FOR THEHTTP TRANSPORTETTS GIVEN IN

ignorance towards samples from retransmissions) to thie bas
SECONDS WITH 95%CONFIDENCE INTERVALS WE DO NOT SUPPLYETT

oracle to enhance its fairness.
AND URC FOR‘N O RESTART IN THE LAST TWO SCENARIOS BECAUSE IN

The on-line algorithm in Appendix A to [RvYMWO04] learns

A~ THESE ALL RUNS LOST MESSAGES
F(t;;) by building a histogram. It divides the range of ob-

served transmission time[sj < Tmae iNt0 H bucketsk =

1,....H of sizeh = Tmaw/H- To find the Optlmal timeout, it one that minimises the expected RTT in (2)

computes estimat&ém of the expected transmission time for
restart after each of the intervals and then selects thevalte T = arngin Er.
k

with the lowestE,,. Hence, all intervalsr, = k - h are _ : .
* k For a derivation of the theoretical result corresponding?o

candidate retry times. To account for known constant delag/ge [VMWO4]. We label this oracle QEST, because of the

irectl i with r r Vi n . Th - L .
directly associated with restart, a cost vaiuean be set. The venue of the original publication of the algorithm.

estimate
X M 1-F
B, == (7) + (7) (T +©)) IV. RESULTS
F(7k) F(ry)

We studied two sets of scenarios. In the first one, an

is obtained using the average return times and number . . . o
9 9 otherwise perfect network connection temporarily exleibit

of samplesNy, within the intervals(k — 1) - h. k- h). If we)50, packet loss of variable duratiotDg and60s) after an

label all known observations; in bucketk ¥, ...tk M, . . "
5 b N 2R nitial 60's warm-up period. In the second, network conditio

's estimated by remained stable throughout the experiment, with sevevalde
M, = 1 Ztk_ (3) of random packet loss enforced on outgoing packets on both
=1 sides. Based on Paxson’s observation that average packet
Using the numbenV;, of observations that take at leagt loss on the Internet may reach up to 5.2% [Pax97], we
time units, the estimators of the distribution function bét injected loss at 0%, 1% and 5% in each direction (resulting

job completion time and of its first partial moment evaluatian an effective loss of0%, 2% and 10%, respectively, for

to: i bidirectional communication). Table | shows the parameter
F(Tk) — Hzlzl Ni values for all oracles in our experiments. In addition tosthe
i N+ Nr., oracles, we also conducted a series of experiments without
and restart.
SN - M ;
M(Tk) _ l:1k LA Care has been taken to both prevent software aging from
2o Vi changing the results and to minimise the influence of owstlier

The global timeoutr is chosen to be the optimay,, i.e., the Preliminary runs indicated severe aging within Sandesha th

| No Restart Fixed Int. Exp. Backoff Jac./Karn QEST 3200 T T T T T T T T T
No Restart

Fixed Intervals
No Faults Exponential Backoff
Jacobson/Karn

QEST Oracle 4

mEo X+

T

avg. ETT 4.63+ 0.05 4.60+ 0.05 4.69+ 0.05 4.6440.05 4.56+ 0.05 3000
avg. URC 0.00+ 0.00 0.05+ 0.00 0.06+ 0.00 0.01+0.00 0.02+ 0.00

T
1

105s Disruption 2800
avg. ETT 4.72+ 0.06 4.76+ 0.05 4.714+ 0.05 4.69+ 0.05 4.66+ 0.05
avg. URC 0.00+ 0.00 0.06+ 0.00 0.06+ 0.00 0.02+ 0.00 0.00+ 0.00

2600

T
1

60 s Disruption
avg. ETT 13.794+ 058 | 1158+ 0.38 | 11.70+0.44 | 13.37+0.55 | 11.93+0.46

Average ETT in ms

2400 —

avg. URC | 0.0040.00 | 0614003 | 0324001 | 0.04+000 | 0124001 af . N
2% Packet Loss &
avg. ETT 5.114 0.06 5.164 0.06 5.254 0.06 5.184 0.06 5.154 0.06 2200 ° . XXX b
avg. URC | 0.0040.00 | 0104001 | 0124001 | 0.02+000 | 0.01+0.00 § « XXX
10% Packet Loss 2000 L L L L L L L L L |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

avg. ETT 9.0740.17 | 9.604+0.11 | 8974012 | 861+0.14 | 88540.15 Average URC
avg. URC | 0.0040.00 | 0604001 | 0494001 | 0.03+£000 | 0.02+0.00

TABLE Il Fig. 3. Performance with 60 s disruptions (HTTP Transpd)scatter plots

show 95% confidence bars for both measures.
RESULT SUMMARY FOR THEMAIL TRANSPORT ETTS GIVEN IN

SECONDS WITH 95% CONFIDENCE INTERVALS DUE TO LIMITED TIME,

THESE ARE BASED ON ONLY5 RUNS PER ORACLE I.E., 10000SAMPLES. on the TCP’s fault-handling. In this case, we see step-wise
constant ETT that start slightly above 90s and then decrease
sharply. This reflects the TCP RTO timeout mechanism. Each

resulted in exponentially growing transmission times whedransmission attempt required one TCP connection to the

more than 2500 messages were sent. As a consequencesevger. To set up a connection, TCP engages in a three-way
divided the experiments into runs of 2000 messages each &iagidshake with the server. The initiating party first sends
restarted both server and client before each run. Sincdtsesa SYN packet to the destination. If there is no reply, it
from these runs are sensitive to random influences, we regpeaetransmits the packet. The interval between retransomssi
experiment runs for each oracle ten times per scenario. is determined by the RTO, which starts at 3s and doubles

In a summarised view (Table Il and IIl), no single oraclen every retransmission: 6s, 12s, Waiting times for the
clearly outperforms all others in all scenarios and with aflonnections (and hence for the messages) grow accordingly,
transports. We will see, however, that the adaptive oraclts instance3s+6s+...48s = 93 s for messages whose setup
perform better under more complex network and systepiase experiences 5 TCP timeouts, 8sd-6s+12s+24s =
conditions, such as exemplified by the SMTP experiments.45s if the 4th retransmission is successful. In effect, TCP

delayed messages by up to 93s seconds—much longer than

A. HTTP Transport the duration of the fault (60s).

a) 60s Disruption: The scatter plot in Fig. 3 shows All oracles yielded ETTs at most slightly above 60s. By
average measures for each of the ten runs per oracle in tastarting, they initiated new TCP connection setups, fiog.
scenario with a 60s disruption. ETT is depicted over UR@ach restart the TCP entered a new three-way handshake and
hence, the closer to the origin they are, the better the @sacimmediately sent a new SYN packet. Since there were more
perform regarding the tradeoff. We note that all oracles acennection setups, one of them was likely to hit the end of the
faster and less fair than the runs without restart, and thdisruption without engaging the RTO. This connection would
there is little variation between runs. The adaptive oaele then be established faster than one that had to wait for its
fairer and slower than the static ones, and Exponential &ackbacked-off RTO to time out to detect the end of the fault and
performs best in both dimensions. complete its connection setup. Fixed Intervals exemplhiig t

Both the gain in timeliness through restart and the dibest. A message sent exactly at the beginning of the fault
ferences between oracles can be explained by the way T@P= 60s) could be subject to at mosfs/as = 15 timeouts,
handles packet loss. Fig. 4 shows ETT and URC for messagfes last of which was at = 120s. Since the fault was
hit by a 60 s disruption. Without restart, ETT depends elytireover by then, the connection setup for the 16th transmission

T T
No Restart 0 No Restart
Fixed Intervals ------- ::‘v‘ Fixed Intervals -------
Exponential Backoff -------- 14 + g Exponential Backoff -------- 1
Jacobson/Karn i Jacobson/Karn
QEST Oracle ———~ (. QEST Oracle ———~

80000

10
60000

ETTinms
URC

40000

20000

100 150 200 250 300 350 100 150 200 250
Message Number Message Number

Fig. 4. ETT and URC for messages hit by a 60s disruption (HTT@h3port). ETT curves have been smoothed to improve rdagabi

(15th retransmission) succeeded, and the message could bé"° ‘ ‘ ‘ ‘ ‘ T Fied Intervaly 1

Exponential Backoff
1050 x Jacobson/Karn

transmitted almost immediately, with a low transmissiondi QEST Oracle

1000 [} -

mEox

tilg = Tile — Sil6- ETT is thUST’ﬂS —8;1 ~ 60s. On the other
hand, none of the other transmissions failed. They reached T

900 b

the destination as well, albeit with higher completion time £ . .

dominated by the TCP (e.g.; =~ 93s, see above). Therefore, % :: ?; . .
URC for this message i$6 — 1 = 15. Exponential Backoff £ 150 L -]
achieved the same ETT in a fairer manner. With restarts at .| ’ . i
t =60+4s,60+12s,60+28s,60+60s, there were only five es0 | X o ° © - T)
transmissions, four of which were unnecessary. Both agapti o} *) <

oracles’ even lower URC is a result of their global timeout. s : t : t : t : t

J
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

With every elapsed;;, be it for a new transmission or one Average URC
attempted previously; grew exponentially, which, due to thegiy 5. performance with 2% packet loss (HTTP Transport).
number of such events, yielded a very rapid increase. When
the first message was again transmitted without a restart,
dropped to about the same value as before the disruption, &king effect. (See pp. 303-306 in [KRO1] for details.) With
then all messages previously held back by the higher timed@ss rates as high as those studied here, TCP’s fault-mayigli
were retransmitted at once. therefore likely to manifest in connections that are ded&fpe

b) Packet Loss: Without retransmissions, packet losd@rge amounts of time. Actual implementations, however; ca
rates of 2% and 10% led to message loss, i.e., not all messag@iswait forever and have to give up eventually. Since HTTP
that were sent reached the destination. This highlights¢eel does notretry failed connections, these timeouts transfioro
for a reliability mechanism on top of HTTP. Although TCPTessage loss.
provides reliable connections for HTTP, the HTTP transport In regard to oracle performance, we observed different out-
can still fail. Again, this can be attributed to the way TCPha comes depending on the packet loss rate. With 2% loss, there
dles faults. As pointed out above, packet loss in the setapghwere only small differences between oracles (see Table II).
delays a connection by at least 3s. Furthermore, the numbBairness, on the other hand, varied considerably. Botlic stat
of TCP segments exchanged during HTTP transfers is usuallpcles are much fairer than the adaptive ones. Obviously,
small. In consequence, TCP connections that carry HT TR ofteore frequent restarts did not help timeliness. If we loothat
do not leave the slow-start phase, and thus congestionatonsicatter plot for this scenario (Fig. 5), we observe that for a
prevents fast fault-handling (via duplicate ack detedtfioom oracles higher URCs tend to correspond to higher ETTs, which

6500 ‘ ‘ ‘ Fixed Inervals ones are less fair, but not faster. The Jacobson/Karn Oracle
B oo

QEST Oracle

mEox

6000

T
o

1 exhibits a fairness and timeliness almost identical to runs

5500 without restart.

T
1

° o These findings can again be explained by characteristics of
o © the SOAP transport. SMTP servers utilise TCP to transfer

4500 x 5 0 o g
o ° . mails to their destination. As we laid out in the discussion
4000 ° x
o “ . of HTTP results, TCP connections can be delayed by packet
3500 o <

" loss. When using the HTTP transport, very long delays lead

3000 - u b

x to SOAP message loss. Unlike the HTTP transport, Mail

5000

T
1

Average ETT in ms
T
X
X
X
L

T

2500 - . 1 does employ a reliability mechanism: SMTP servers retry

2000 t : . : . delivery attempts that failed due to non-permanent fatli@P
0.15 0.2 0.25 0.3 0.35 0.4 0.45
Average URC failures, and failed connection setups in particular, aaaily
considered transient. The SMTP server detects these faults

means of its own timeouts. To the client's SMTP server, the

Fig. 6. Performance with 10% packet loss (HTTP Transport).

15000 - T T T T

. o Restar 60s disruption manifested itself as repeated timeouts when
% Exponential Backoff
19000 apotmnican

g . . gueueing system we sketched earlier to retransmit the réeffer

mOox +

1 connecting to the destination. The SMTP server then used the

13000 [~

o o messages.

X

12000 | X We can, unfortunately, not endeavour to fully explore the

go x 2 intricate interactions between timeouts and queues in the
SMTP server and restarts initiated by the WSRM component.
We will thus only point out interesting aspects of the ETT

11000

T

Average ETT in ms

10000

T
1

curves shown in Fig. 8 and their implications for oracle
9000

T
1

performance. What first meets the eye is a pronounced two-

X

8000 - : . . ‘ peak ‘saw-tooth’ pattern for transmissions without restar

L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Average URC

probably caused by periodic flushing of a queue. Second, both
Fig. 7. Performance for 60s disruptions (Mail Transport). static oracles generally manage to achieve ETTs below these
peaks. The apparent gain is especially large with the second

is contrary to our notion of a tradeoff between timelines%eak. Here, both static oracles were about 80 s faster than No

and fairness. This fact indicates that the costs assocvted Restart. Third, the transport exhibits some sort of memory

restart might indeed by high enough to offset its benefits. effect. In all runs, ETT curves for the static oracles spart a

Results for the 10% scenario demonstrate that, as the I(l)esasSt one additional peak with a height of about 40s and a

.}l\ﬁldth of about 120 messages that absorbed previous gains.

improvement. Here, the QEST Oracle as the least fair li=s<)urth, even though the QEST Oracle reduces ETT to roughly

ng during the second peak, it does not provoke delays in late

rate increases, restart begins to pay off in terms of an E

also the fastest. Our finding that with 10% packet loss mo

. L . m . This f xplains i imal timeliness. Binal
frequent restarts yield better timeliness is corroboratgthe essages s fact explains its optimal timeliness. Fina

. ith th n/Karn Oracle r rts are almost n i
scatter plot (Fig. 6), where we note a general trend towar\gst the Jacobson/Karn Oracle restarts are almost norteeitis

lower ETT with higher URC even within observations for théSee UR_C plotin Fig. 8), hence the similarity of its resutts t
QEST Oracle. those without restart.

V. CONCLUSIONS

B. Mail Transport In this paper we analysed restart oracles in Web Services

As with HTTP, the scatter plot for a 60s disruption wheReliable Messaging, using a fault injection test bed. Thétda
using Mail (Fig. 7) shows clearly defined clusters for aldre injected at the IP level, and represent a variety of lewer
oracles. Here, the QEST Oracle performs best, and botle stéivel network and system faults. Fault injection at the Nele

140000

120000

100000

80000

ETTinms

60000

40000

20000

T
No Restart
Fixed Intervals ------- 4
Exponential Backoff --------
Jacobson/Karn
QEST Oracle ———~

100 200 300 400 500 600
Message Number

10

T
No Restart
Fixed Intervals -------
Exponential Backoff --------
Jacobson/Karn 4
QEST Oracle ———~

Fig. 8. ETT and URC for messages hit by a 60s disruption (Medn$port). ETT curves have been smoothed.

allows us to investigate experimentally the consequenées[eax97]
the intricate relation between TCP and WSRM time-out and
retransmission mechanisms. We carried out experiments for

both HTTP and SMTP as SOAP transports.

The recommendation supported by our study is that whéfx98]
using the HTTP transport on top of a simple network, static
oracles such as fixed intervals can suffice to maintain a

good balance between fairness and timeliness. Howeveg mor .
[PFY+]

sophisticated adaptive oracles will be fairer when theesyist

exhibits long periods of packet loss, without being much

slower, and faster with continuously high-loss rates. Far t

Mail transport, which exhibits more intricate timing befaw,

adaptive oracles are a better choice.

[AP99]
[Apaa]

[Apab]

[BIMTO5]

[HGMT]

[KP91]

[KRO1]

[LX03]

REFERENCES

M. Allman and V. Paxson. On Estimating End-to-End Wartk [VMWO04]

Path PropertiesACM SGCOMM, September 1999.

Apache. Apache Axishtt p: //ws. apache. or g/ axi s/ .
Apache. Apache Sandeshahttp://ws. apache. org/
sandesha/ .

BEA Systems, IBM, Microsoft Corporation Inc, andIBCO
Software Inc. Web Services Reliable Messaging Protocol (WS
ReliableMessaging), February 2005.

B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Ooster-
hout, P. Schroeder, and P. Larroy. Linux Advanced Routimg) an
Traffic Control. http://lartc. org.

P. Karn and C. Partridge. Improving Round-Trip Tim&imates

in Reliable Transport Protocol&\CM Transactions on Computer
Systems, 9(4):364-373, November 1991.

B. Krishnamurthy and J. RexfordAeb Protocols and Practice.
Addison Wesley, 2001.

N. Looker and J. Xiu. Assessing the Dependability dDAP-
RPC-Based Web Services by Fault Injection. %th |EEE In-
ternational Workshop on Object-oriented Real-time Dependable
Systems, pages 163-170, 2003.

[RVMWO4]

V. Paxson. End-to-End Internet Packet DynamicsPrisceed-
ings of the ACM SSGCOMM 97 conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication, volume 27,4 ofComputer Communication Review,
pages 139-154, Cannes, France, September 1997. ACM Press.
V. Paxson. On Calibrating Measurements of Packensit
Times. INSGMETRICS ' 98/PERFORMANCE ' 98: Proceedings

of the 1998 ACM SSIGMETRICSjoint international conference on
Measurement and Modeling of computer systems, pages 11-21,
New York, NY, USA, 1998.

S. Pallickara, G. Fox, B. Yidiz, S. L. Pallickara,
S. Patel, and D. Yemme. An Analysis of the Costs for
Reliable Messaging in Web/Grid Service Environments.
http://grids.ucs.indiana.edu/ptliupages/

publ i cati ons/ Wsrm Per f or mance. pdf .

P. Reinecke, A. van Moorsel, and K. Wolter. A Measument
Study of the Interplay between Application Level Restartl an
Transport Protocol. IrProc. International Service Availability
Symposium (1SAS), volume 3335 ofLecture Notes in Computer
Science, Munich, May 2004. Springer.

A. van Moorsel and K. Wolter. Analysis and Algorittsmfor
Restart. InProc. 1st International Conference on the Quantitative
Evaluation of Systems (QEST), pages 195-204, Twente, The
Netherlands, September 2004.

