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Abstract— Web Services are typically deployed in Internet or

Intranet environments, making message transfers susceptible to

a wide variety of network, protocol and system failures. To

mitigate these problems, reliable messaging solutions forweb

services have been proposed that retry messages suspected to be
lost. It is of interest to evaluate the performance of such reliable

messaging solutions, and in this paper we therefore utilisea newly

developed fault-injection environment for the analysis oftime-out

strategies for the Web Services Reliable Messaging standard. We

compare oracles that determine retransmission times with respect

to the tradeoff between two metrics: the effective transfertime

and the overhead in terms of additional message transmissions.

Our fault-injection environment allows faults to be invoked in

the IP layer, representing a variety of failure situations in the

underlying system. The study presented in this paper includes

two adaptive oracles, which set the length of the retransmission

interval based on round trip time measurements, and two static

oracles. The study considers both HTTP and Mail as SOAP

transports. We conclude that adaptive oracles may significantly
outperform static oracles when the underlying system exhibits

more complex behaviour.

I. I NTRODUCTION

With the continuing acceptance of Web Services technolo-

gies as a means of integrating applications, the dependability

of the Web Services stack becomes increasingly important.

Several attempts of defining an appropriate reliability standard

have converged in Web Services Reliable Messaging (WSRM),

which provides a framework to deliver messages ‘reliably

between distributed applications in the presence of software

component, system, or network failures’ [BIMT05]. Of the

four delivery assurances specified in [BIMT05], both ‘at least

once’ and ‘exactly once’ necessitate the retransmission oflost

messages. While the standard describes positive and negative

acknowledgements to determine the message transmission

status, it does not provide details on the preferred waitingtime

(for a positive acknowledgement) until re-sending a message.

Although exponential backoff is mentioned as one way to

adjust the retransmission interval, the issue is effectively left

open.

In this paper we experimentally investigate the influence

of time-out strategies on the performance of, and overhead

introduced by, WSRM. In particular, we analyse representative

algorithms for four classes of restart1 oracles (as explained in

Section III). We will see that the more complex the behaviour

of the underlying network and system, the more it pays off

to utilise strategies that adapt the time-out value based on

observed data.

There are two important aspects to the evaluation of WSRM

time-out strategies we will address throughout the paper: the

optimal strategy as decidable at the level of WSRM and

1Throughout the paper we use restart, retry, resend and retransmit inter-

changeably.
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the interaction with reliability mechanisms at lower layers,

in particular TCP. Especially the latter is extremely difficult

to track, and we believe that experimental analysis such as

conducted in this paper is needed to gain a better understand-

ing of cross-layer issues. Therefore, we have created a fault

injection environment for the analysis of WSRM, in which the

transmission of IP packets can be interrupted. This allows us to

mimic scenarios that from the perspective of the WSRM layer

are representative for a variety of network, protocol and system

failure behaviours. Since we inject faults at the IP level, we

can experimentally evaluate the complex interaction between

TCP and WSRM reliability mechanisms.

This paper combines the idea of restart to reduce completion

times [vMW04] with an explicit consideration for the ensuing

overhead. (We use the term overhead and fairness as referring

to the same idea.) With restart, there always exists a tradeoff

between fairness and timeliness. Whereas shorter intervals

help to overcome faults faster, the resulting more frequent

restarts consume more resources. Longer timeouts are more

conservative, but also slow down recovery and thus message

end-to-end delay. For all four time-out oracles we study in this

paper we evaluate their application with respect to the tradeoff

between fairness and timeliness.

We are not aware of other analysis of WSRM time-out

mechanisms, although related and complementary work in web

service fault injection as well as WSRM performance exists.

In particular, Looker and Xiu [LX03] present a framework to

inject faults using a modified SOAP layer. This allows one to

explore the impact of specific web service failures, but this

approach does not yield an understanding of the effects fault

handling in the lower layers has. Regarding the impact WSRM

reliability mechanisms have on performance, Pallickaraet.

al. [PFY+] study the overhead of WSRM implementations

in comparison to SOAP (Simple Object Access Protocol),

focusing on node-specific costs such as processing time, but

not considering the specifics of the time-out mechanism. At

lower levels of the stack, dependability has been studied

more extensively. For instance, Allman and Paxson [AP99]

explore how different parameters of RTO algorithms affect

fault recovery in TCP. Our work complements such research

in that we study several oracles in regard to the general tradeoff

between fairness and timeliness on a higher level. We inject

faults in the IP layer and thus elicit fault-handling in all layers

beneath WSRM. Our study is among the first to not limit
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Fig. 1. A sample WSRM setting. (Adhering to SOAP terminology, we do

not call HTTP an application, but rather a transport for the layers above it.)

itself to the prevalent HTTP transport for web services, but

also investigate SOAP over SMTP as an example for more

intricate lower layer behaviour.

The remainder of this paper is organised as follows. In the

next section we elaborate on WSRM and the fault injection

environment. Section III introduces the different restartora-

cles. Section IV discusses the results of our fault injection

experiments.

II. WSRM AND THE FAULT INJECTIONENVIRONMENT

Fig. 1 depicts a basic WSRM deployment. Resting beneath

the application and atop a stack of further layers, the WSRM

component provides reliable message transfer between the

application’s endpoints. The direction of message flows is

reflected in the distinction between a ‘WSRM Source’ and

a ‘WSRM Destination’: the sending party is the source, while

the recipient is the destination. To ensure transmission, the

source keeps resending each message until it receives an

acknowledgement from the destination.

There are several complex layers beneath WSRM. The

SOAP layer offers an abstract medium. SOAP implementa-

tions (e.g., Axis [Apaa]) then use lower-level protocols as

SOAP transports to send and receive messages. As these

transports are often application level protocols themselves

(e.g., HTTP is an application level protocol in the TCP/IP

stack), and thus they in turn utilise lower network protocol

layers.

Each higher layer’s reliability is influenced by faults in the

layers beneath it. These faults may eventually lead to failing

message transfers. On the other hand, some lower layers offer

reliability as well. TCP, for instance, resends unacknowledged

IP packets to provide reliable connections over unreliableIP

networks. However, fault handling at any point in the stack
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Fig. 2. Basic experiment setup.

does not necessarily guarantee reliability at the uppermost

level. Furthermore, fault handling mechanisms may lead to

undesirable timing behaviour in upper layers.

To elicit fault handling in the stack (including WSRM),

we inject faults into the IP layer. By injecting faults at this

low level we are able to investigate the inter working of

TCP and WSRM reliability mechanisms. The injected faults

correspond to IP packet loss, and may lead to delays and losses

in message transfer. From the perspective of the WSRM layer,

these effects may be representative for a wide variety of failure

scenarios, including server hardware and software as well as

network failures. On the other hand, faults in the higher layers

(e.g., at SOAP level) will typically show distinctly different

patterns than those studied here because they affect complete

messages, rather than individual packets. In this paper we do

not study faults at the higher layers. To study such faults,

additional experimentation using a SOAP fault injection tool

like [LX03] is in order.

Fig. 2 shows the basic setting for the experiments. In

our simple application the client sent one 50 byte message

every 500 ms. Transmission dependability was provided by

the WSRM implementation Sandesha 1.0 RC1 [Apab] with

in-memory storage of messages and some modifications, as

follows. First, Sandesha and its SOAP engine Axis 1.2RC2

[Apaa] were de-coupled so that new messages could be sent

without waiting for previous SOAP invocations to finish.

Second, code to sample dispatch and receive timestamps was

added. Third, a non-standard WSRM header entry was added

to track transmission numbers for messages, and thus to

uniquely identify them.

For SOAP over HTTP, the WSRM destination was deployed

on a Tomcat 4.1 application server. For the Mail transport

we enabled the prototypical implementation in Axis. Every

outgoing SOAP message is encapsulated in an E-Mail and

handed over to an SMTP server for delivery. The destination

then periodically polls a POP3 server for new mails. Each

of our machines has its own set of SMTP/POP3 servers

(Postfix/Qpopper), and faults were injected on the link between

the SMTP servers. Mail servers retry delivery after non-fatal

faults. Deferred mails are stored in a queue and assigned a

timeout for retransmission. If the fault was caused by the

destination (e.g., a failed connection), no delivery to that host

will be attempted for some time. The queue is periodically

checked for mails to be retransmitted. In order to reduce load,

and since E-Mail is not considered time-critical, all of these

intervals are usually large. When delivery time becomes more

important, lower timeouts seem more appropriate. We set the

queue check interval and the minimum and maximum waiting

times to 60 s, 60 s and 120 s, respectively, and polled the POP3

server with an interval of 6 s.

Two Linux machines, connected by a 100Mbit network

and kept synchronised through NTP provided the physical

environment. Paxson [Pax98] notes that NTP is designed for

long-term synchronisation and thus may not be sufficiently

accurate in small timescales. We tried to minimise these issues

by explicitly synchronising one machine to the other before

each experiment run and disabling synchronisation during the

runs. On this basis we emulated a 1Mbit/1Mbit up/downstream

network, which seems to us a minimum requirement for most

typical applications using web services. Faults typical ofpoor

network conditions were injected into the IP layer using a

combination of Linux’s NetEm queueing discipline and IP

firewalling facilities (see, e.g., [HGM+]).

A. Metrics for the Fairness-Timeliness tradeoff

To describe precisely the metrics we analysed, we formalise

as follows. Each messagemi, i = 1, . . .M out of a sequence

of M messages will be sentni ≥ 1 times, and thus there areni

tuples(sij , rij) of dispatch/receipt timessij , rij ∈ IR for each

mi. Theni one-way transmission times for every message are

defined astij = rij − sij , with tij = ∞ for failures.

We measure the timeliness of individual messagesmi in

terms of the Effective Transmission Time (ETT), defined as

the time betweenmi’s first dispatch and its first arrival:

r∗i := min{rij}

ETTi := r∗i − si1
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The following line of thought yields a generic measure of

fairness. mi is sent ni ≥ 1 times. A number of these

transmissions may fail, but at timer∗i < ∞ the first one

(with index k∗i ) is successful. Now while other transmissions

initiated beforer∗i , but completed afterwards might have taken

longer thank∗i , they were not strictly necessary. Additionally,

every retransmission afterr∗i is clearly obsolete. Thus, the

only unavoidable retransmissions are those that started before

r∗i , but failed, andk∗i . With every other transmission the

sender consumed resources it did not really need. We term

this behaviour Unnecessary Resource Consumption (URC)2:

k∗i := argmin
j

{rij}

URCi := ni − |{rij = ∞|j < k∗i }| − 1

Since URC is independent of the nature of the resource in

question (e.g., network bandwidth, processing power) and of

assumptions regarding other parties accessing it (i.e., those

to be fair towards), it allows us to compare fairness across

many applications. It is limited in that it centers on individual

messages and does not show aggregate load. The latter,

however, is usually determined by the application’s sending

rate, and therefore out of scope for restart oracles.

III. O RACLES FORRESTART

In our experiments, we compared time-out oracles based

on different algorithms: fixed, fixed with back-offs, dynamic

intervals using Jacobson/Karn and dynamic intervals usingan

algorithm we proposed earlier [RvMW04]. These respective

oracles are representatives of different classes of time-out

oracles. We explain the classification and provide the details

of the oracles in this section.

In short, oracles compute timeouts for messages. Our

concept of an oracle differs from that of an algorithm in

that it describes a distinct component (and thus encompasses

structural information) potentially combining several timeout

algorithms. For example, an oracle might choose between a

fair and a fast algorithm based on additional system state data.

Furthermore, an oracle can be a simple heuristic, as well as

an elaborate algorithm using known stochastic characteristics

of the system. The four oracles we study in this paper cover

the whole range.

The oracle mechanism is an almost non-intrusive way to

improve performance. It only changes retransmission intervals

2Whereargmini {xi∈II} := i ∈ II : (xi = min {xi}).

in the sender, hence it enhances a reliability mechanism

already present in virtually any communication system. Upon

receipt of a positive message acknowledgement at timet the

sender can determine thetransmission status and estimate

the transmission time. (Whereas from a negative acknowl-

edgement it can only infer the status.) Two aspects about

estimating transmission time in this way are noteworthy. First,

this notion of transmission time corresponds to the complete

Round-Trip Time (RTT), rather than the one-way time from

sender to receiver, and secondly, if acknowledgements do not

carry additional information to assign them to a particular

transmission, a ‘retransmission ambiguity’ [KP91] may reduce

accuracy of these samples.

To discuss the oracles precisely, we build forward on the

formalisation in the previous section. Recall that each message

mi, i = 1, . . .M out of a sequence ofM messages will be

sentni ≥ 1 times, and thus there areni tuples (sij , rij) of

dispatch/receipt times for each message. Theni transmission

times for every message then aretij = rij −sij, with tij = ∞

for lost messages.

Without additional means, the sender cannot measurerij .

Instead, it guesses the transmission time from positive ac-

knowledgements. The sender observes

aij :=







z an acknowledgement formi arrived at timez

∞ else,

the arrival times of acknowledgements, from which it infers

that the message has reached its destination some time before

aij . It thus estimatestij by t̂ij < aij , e.g., by the RTT

t̂RTT
ij := aij − sij . We distinguish four types of oracles by

how they utilise this data.

A. Oracles using Fixed Intervals

A timeout τ is given at compilation time or startup, and

every τ time units the sender checks whether an acknowl-

edgement formi has arrived, and resendsmi otherwise. I.e.,

if mi has been sent at timeTi, the sender will look for an

acknowledgement atTi + τ, Ti + 2τ, Ti + 3τ, . . . .

Performance of a fixed intervals oracle hinges on whetherτ

is consistent with actual medium characteristics. In extremis, a

timeout lower than the RTT leads to retransmissions of every

message, and therefore a fixed interval will rarely be used in

practical systems.

In general, the larger the timeout, the more likely it becomes

that expiry signals message loss and hence the need for re-
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transmission to ensure dependability in the strict sense. Large

timeouts increase fairness by avoiding unnecessary restarts

but sacrifice possible speed gains to be had by restart and

result in longer loss detection times. Setting a lower timeout

allows for faster failure detection and might also help avoid

unusually large transmission times, but makes unnecessary

retransmissions more likely.

B. Oracles using Growing Intervals

These augment Fixed Intervals by additionally tracking

oracle decisions. That is, if a timeoutτij for mi expires,

they assumeτij to have been too short and increase it by

a substantial amount, e.g., exponentially:

τi1 = τ

τi (j+1) = 2 · τij .

While this reduces unnecessary retransmissions, fairnessdoes

still depend on the initial timeout. Furthermore, any such ap-

proach hurts timeliness, which is most pronounced in scenarios

where messages are sent or consumed synchronously.

C. Oracles using Basic Adaptive Intervals

With these oracles, the timeout is allowed to shrink as

well as to grow. In essence, they parametrise an assumed

probability distributionFc for RTTs based on estimates of

the transmission time, and baseτ for all mi on Fc. Because

this globalτ is usually closer to actual round trip times than

one set beforehand, adaptive oracles can avoid unnecessary

retransmissions and are able to detect loss in a timely manner.

Their timeliness may be further improved by their potential

to also detect (and restart) exceptionally slow invocations.

However, their performance ultimately depends on (i) the

similarity between the assumed and the actual distribution,

(ii) the accuracy of RTT measurements, and notably (iii) the

impact of the retransmission ambiguity as a factor in the

accuracy of RTT measurements.

Perhaps the best known example is the TCP RTO compu-

tation which keeps track of the mean and variance of RTTs

using successive samplest̂lij , l = 1, 2, . . .. After the smoothed

round-trip time (SRTT) was initialised with the first observed

RTT, subsequentSRTTl+1 are computed using

SRTTl+1 := (1 − α1)SRTTl + α1 · t̂
l+1
ij .

Fixed Intervals Exp. Backoff Jacobson/Karn QEST Oracle

HTTP Transport

τij := 4 s τi = 4 s, 8 s, τ := 4 s τ := 4 s

16 s . . . α1 = 1/8 τmax := 60 s

α2 = 1/4 H = 1000

k = 4 c = 0 s

Mail Transport

τij := 14 s τi = 14 s, 28 s, τ := 10 s τ := 10 s

56 s, . . . α1 = 1/8 τmax := 60 s

α2 = 1/4 H = 1000

k = 4 c = 0 s

TABLE I

ORACLE PARAMETERS. WE CHOSE LONGER INITIAL TIMEOUTS FOR THE

MAIL TRANSPORT TO ACCOUNT FOR THE LARGERETT OBSERVED

WITHOUT RESTART. SINCE STATIC ORACLES CANNOT ADAPT, WE ADDED

AN EXTRA SAFETY MARGIN TO THEIR TIMEOUTS. PARAMETERS FOR THE

JACOBSON/KARN ORACLE WERE SET BASED ON[AP99].

The variance measure

RTTV AR1 =
1

2
SRTT1

RTTV ARl+1 := (1 − α2) · RTTV ARl +

+α2 · |SRTTl+1 − t̂l+1
ij |,

was introduced by Jacobson to improve similarity (i). In regard

to the retransmission ambiguity, Karn and Partridge proposed

to only use fresh sampleŝti1 from acknowledgements for

which ni = 1, and to back off exponentially upon encoun-

tering a timeout [KP91]. The retransmission timeout (RTO) is

then computed as

τ := RTOl+1 :=



















2 · RTOl if RTOl expired

SRTTl + k · RTTV ARl

if a new t̂l+1
i1 is available,

(1)

where k is a flexible parameter, typically set to4 [AP99],

and starts withRTO0 = 3 s. Our basic adaptive intervals

oracle (Jacobson/Karn) implements (1), and thus follows the

notion of combining dependability and fast fault-recoverywith

conservative medium usage.

D. Oracles using Advanced Adaptive Intervals

Starting from the premise that the completion timesT of

a task (e.g., the RTT for message transmission) are drawn

from independent and identically distributed random variables,

governed by some probability density functionf(t̂ij), it can

be shown that for certain distributionsF (t̂ij) (e.g., heavy-

tailed) restart minimises transmission time [vMW04]. Based
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on this idea, an oracle can find the optimal timeout, provided

the distribution functionF (t̂ij), or, more often, an estimate

F̂ (t̂ij) thereof is known. Since timeout selection is based on

a comparison of anticipated transmission times, and because

F̂ (t̂ij) can be learned from observations, oracles employing

this approach potentially improve transmission times in many

scenarios, even when the distribution forT is not known

beforehand. Shortcomings lie in an inherent assumption that

restart does preempt previous attempts, and, as with the

Basic Adaptive Intervals, in the sensitivity to inaccuracies

in measurements or estimates of the transmission time of

messagemi, t̂ij . If the former is not true, restart may lead

to overload. We therefore applied Karn’s and Karn/Partridge’s

RTO algorithm modifications (viz. exponential backoff and

ignorance towards samples from retransmissions) to the basic

oracle to enhance its fairness.

The on-line algorithm in Appendix A to [RvMW04] learns

F̂ (t̂ij) by building a histogram. It divides the range of ob-

served transmission timeŝtij < τmax into H bucketsk =

1, . . . , H of sizeh = τmax/H . To find the optimal timeout, it

computes estimateŝEτk
of the expected transmission time for

restart after each of the intervals and then selects the interval

with the lowest Êτk
. Hence, all intervalsτk = k · h are

candidate retry times. To account for known constant delays

directly associated with restart, a cost valuec can be set. The

estimate

Êτk
=

M̂(τk)

F̂ (τk)
+

1 − F̂ (τk)

F̂ (τk)
· (τk + c) (2)

is obtained using the average return timesMk and number

of samplesNk within the intervals[(k − 1) · h, k · h). If we

label all known observationŝtij in bucketk tk1 , . . . tkNk
, Mk

is estimated by

M̂k =
1

Nk

Nk
∑

l=1

tkl . (3)

Using the numberNk of observations that take at leastτk

time units, the estimators of the distribution function of the

job completion time and of its first partial moment evaluate

to:

F̂ (τk) =

∑k

l=1 Nl
∑H

l=1 Nl + Nτmax

and

M̂(τk) =

∑k

l=1 Nl · M̂l
∑k

l=1 Nl

.

The global timeoutτ is chosen to be the optimalτk, i.e., the

No Restart Fixed Int. Exp. Backoff Jac./Karn QEST

No Faults

avg. ETT 0.17± 0.01 0.16± 0.00 0.18± 0.00 0.18± 0.00 0.16± 0.00

avg. URC 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.03± 0.00 0.03± 0.00

10 s Disruption

avg. ETT 0.27± 0.01 0.22± 0.01 0.23± 0.01 0.23± 0.01 0.27± 0.01

avg. URC 0.00± 0.00 0.01± 0.00 0.01± 0.00 0.04± 0.00 0.04± 0.00

60 s Disruption

avg. ETT 3.03± 0.18 2.20± 0.12 2.12± 0.12 2.34± 0.13 2.38± 0.13

avg. URC 0.00± 0.00 0.42± 0.03 0.14± 0.01 0.06± 0.00 0.07± 0.00

2% Packet Loss

avg. ETT – 0.76± 0.02 0.77± 0.02 0.79± 0.02 0.73± 0.01

avg. URC – 0.07± 0.00 0.08± 0.00 0.18± 0.01 0.34± 0.01

10% Packet Loss

avg. ETT – 3.83± 0.06 4.57± 0.10 4.78± 0.08 2.87± 0.04

avg. URC – 0.25± 0.01 0.22± 0.01 0.25± 0.01 0.33± 0.01

TABLE II

SUMMARY OF RESULTS FOR THEHTTP TRANSPORT. ETTS GIVEN IN

SECONDS, WITH 95%CONFIDENCE INTERVALS. WE DO NOT SUPPLYETT

AND URC FOR ‘N O RESTART’ IN THE LAST TWO SCENARIOS BECAUSE IN

THESE ALL RUNS LOST MESSAGES.

one that minimises the expected RTT in (2):

τ := argmin
τk

Êτk
.

For a derivation of the theoretical result corresponding to(2)

see [vMW04]. We label this oracle QEST, because of the

venue of the original publication of the algorithm.

IV. RESULTS

We studied two sets of scenarios. In the first one, an

otherwise perfect network connection temporarily exhibited

100% packet loss of variable duration (10 s and60 s) after an

initial 60 s warm-up period. In the second, network conditions

remained stable throughout the experiment, with several levels

of random packet loss enforced on outgoing packets on both

sides. Based on Paxson’s observation that average packet

loss on the Internet may reach up to 5.2% [Pax97], we

injected loss at 0%, 1% and 5% in each direction (resulting

in an effective loss of0%, 2% and 10%, respectively, for

bidirectional communication). Table I shows the parameter

values for all oracles in our experiments. In addition to these

oracles, we also conducted a series of experiments without

restart.

Care has been taken to both prevent software aging from

changing the results and to minimise the influence of outliers.

Preliminary runs indicated severe aging within Sandesha that
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No Restart Fixed Int. Exp. Backoff Jac./Karn QEST

No Faults

avg. ETT 4.63± 0.05 4.60± 0.05 4.69± 0.05 4.64± 0.05 4.56± 0.05

avg. URC 0.00± 0.00 0.05± 0.00 0.06± 0.00 0.01± 0.00 0.02± 0.00

10 s Disruption

avg. ETT 4.72± 0.06 4.76± 0.05 4.71± 0.05 4.69± 0.05 4.66± 0.05

avg. URC 0.00± 0.00 0.06± 0.00 0.06± 0.00 0.02± 0.00 0.00± 0.00

60 s Disruption

avg. ETT 13.79± 0.58 11.58± 0.38 11.70± 0.44 13.37± 0.55 11.93± 0.46

avg. URC 0.00± 0.00 0.61± 0.03 0.32± 0.01 0.04± 0.00 0.12± 0.01

2% Packet Loss

avg. ETT 5.11± 0.06 5.16± 0.06 5.25± 0.06 5.18± 0.06 5.15± 0.06

avg. URC 0.00± 0.00 0.10± 0.01 0.12± 0.01 0.02± 0.00 0.01± 0.00

10% Packet Loss

avg. ETT 9.07± 0.17 9.60± 0.11 8.97± 0.12 8.61± 0.14 8.85± 0.15

avg. URC 0.00± 0.00 0.60± 0.01 0.49± 0.01 0.03± 0.00 0.02± 0.00

TABLE III

RESULT SUMMARY FOR THEMAIL TRANSPORT. ETTS GIVEN IN

SECONDS, WITH 95% CONFIDENCE INTERVALS. DUE TO LIMITED TIME ,

THESE ARE BASED ON ONLY5 RUNS PER ORACLE, I .E., 10000SAMPLES.

resulted in exponentially growing transmission times when

more than 2500 messages were sent. As a consequence we

divided the experiments into runs of 2000 messages each and

restarted both server and client before each run. Since results

from these runs are sensitive to random influences, we repeated

experiment runs for each oracle ten times per scenario.

In a summarised view (Table II and III), no single oracle

clearly outperforms all others in all scenarios and with all

transports. We will see, however, that the adaptive oracles

perform better under more complex network and system

conditions, such as exemplified by the SMTP experiments.

A. HTTP Transport

a) 60 s Disruption: The scatter plot in Fig. 3 shows

average measures for each of the ten runs per oracle in the

scenario with a 60 s disruption. ETT is depicted over URC,

hence, the closer to the origin they are, the better the oracles

perform regarding the tradeoff. We note that all oracles are

faster and less fair than the runs without restart, and that

there is little variation between runs. The adaptive oracles are

fairer and slower than the static ones, and Exponential Backoff

performs best in both dimensions.

Both the gain in timeliness through restart and the dif-

ferences between oracles can be explained by the way TCP

handles packet loss. Fig. 4 shows ETT and URC for messages

hit by a 60 s disruption. Without restart, ETT depends entirely
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Fig. 3. Performance with 60 s disruptions (HTTP Transport).All scatter plots

show 95% confidence bars for both measures.

on the TCP’s fault-handling. In this case, we see step-wise

constant ETT that start slightly above 90 s and then decrease

sharply. This reflects the TCP RTO timeout mechanism. Each

transmission attempt required one TCP connection to the

server. To set up a connection, TCP engages in a three-way

handshake with the server. The initiating party first sends

a SYN packet to the destination. If there is no reply, it

retransmits the packet. The interval between retransmissions

is determined by the RTO, which starts at 3 s and doubles

on every retransmission: 6 s, 12 s, . . . . Waiting times for the

connections (and hence for the messages) grow accordingly,

for instance3 s+6 s+. . . 48 s = 93 s for messages whose setup

phase experiences 5 TCP timeouts, and3 s+6 s+12 s+24 s =

45 s if the 4th retransmission is successful. In effect, TCP

delayed messages by up to 93 s seconds—much longer than

the duration of the fault (60 s).

All oracles yielded ETTs at most slightly above 60 s. By

restarting, they initiated new TCP connection setups, i.e., for

each restart the TCP entered a new three-way handshake and

immediately sent a new SYN packet. Since there were more

connection setups, one of them was likely to hit the end of the

disruption without engaging the RTO. This connection would

then be established faster than one that had to wait for its

backed-off RTO to time out to detect the end of the fault and

complete its connection setup. Fixed Intervals exemplify this

best. A message sent exactly at the beginning of the fault

(t = 60 s) could be subject to at most60 s/4 s = 15 timeouts,

the last of which was att = 120 s. Since the fault was

over by then, the connection setup for the 16th transmission
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Fig. 4. ETT and URC for messages hit by a 60 s disruption (HTTP Transport). ETT curves have been smoothed to improve readability.

(15th retransmission) succeeded, and the message could be

transmitted almost immediately, with a low transmission time

ti16 = ri16 − si16. ETT is thusri16 − si1 ≈ 60 s. On the other

hand, none of the other transmissions failed. They reached

the destination as well, albeit with higher completion times

dominated by the TCP (e.g.,ti1 ≈ 93 s, see above). Therefore,

URC for this message is16 − 1 = 15. Exponential Backoff

achieved the same ETT in a fairer manner. With restarts at

t = 60+4 s, 60+12 s, 60+28 s, 60+60 s, there were only five

transmissions, four of which were unnecessary. Both adaptive

oracles’ even lower URC is a result of their global timeout.

With every elapsedτij , be it for a new transmission or one

attempted previously,τ grew exponentially, which, due to the

number of such events, yielded a very rapid increase. When

the first message was again transmitted without a restart,τij

dropped to about the same value as before the disruption, and

then all messages previously held back by the higher timeout

were retransmitted at once.

b) Packet Loss: Without retransmissions, packet loss

rates of 2% and 10% led to message loss, i.e., not all messages

that were sent reached the destination. This highlights theneed

for a reliability mechanism on top of HTTP. Although TCP

provides reliable connections for HTTP, the HTTP transport

can still fail. Again, this can be attributed to the way TCP han-

dles faults. As pointed out above, packet loss in the setup phase

delays a connection by at least 3 s. Furthermore, the number

of TCP segments exchanged during HTTP transfers is usually

small. In consequence, TCP connections that carry HTTP often

do not leave the slow-start phase, and thus congestion control

prevents fast fault-handling (via duplicate ack detection) from
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Fig. 5. Performance with 2% packet loss (HTTP Transport).

taking effect. (See pp. 303–306 in [KR01] for details.) With

loss rates as high as those studied here, TCP’s fault-handling is

therefore likely to manifest in connections that are delayed for

large amounts of time. Actual implementations, however, can-

not wait forever and have to give up eventually. Since HTTP

does not retry failed connections, these timeouts transform into

message loss.

In regard to oracle performance, we observed different out-

comes depending on the packet loss rate. With 2% loss, there

were only small differences between oracles (see Table II).

Fairness, on the other hand, varied considerably. Both static

oracles are much fairer than the adaptive ones. Obviously,

more frequent restarts did not help timeliness. If we look atthe

scatter plot for this scenario (Fig. 5), we observe that for all

oracles higher URCs tend to correspond to higher ETTs, which
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Fig. 7. Performance for 60 s disruptions (Mail Transport).

is contrary to our notion of a tradeoff between timeliness

and fairness. This fact indicates that the costs associatedwith

restart might indeed by high enough to offset its benefits.

Results for the 10% scenario demonstrate that, as the loss

rate increases, restart begins to pay off in terms of an ETT

improvement. Here, the QEST Oracle as the least fair is

also the fastest. Our finding that with 10% packet loss more

frequent restarts yield better timeliness is corroboratedby the

scatter plot (Fig. 6), where we note a general trend towards

lower ETT with higher URC even within observations for the

QEST Oracle.

B. Mail Transport

As with HTTP, the scatter plot for a 60 s disruption when

using Mail (Fig. 7) shows clearly defined clusters for all

oracles. Here, the QEST Oracle performs best, and both static

ones are less fair, but not faster. The Jacobson/Karn Oracle

exhibits a fairness and timeliness almost identical to runs

without restart.

These findings can again be explained by characteristics of

the SOAP transport. SMTP servers utilise TCP to transfer

mails to their destination. As we laid out in the discussion

of HTTP results, TCP connections can be delayed by packet

loss. When using the HTTP transport, very long delays lead

to SOAP message loss. Unlike the HTTP transport, Mail

does employ a reliability mechanism: SMTP servers retry

delivery attempts that failed due to non-permanent faults.TCP

failures, and failed connection setups in particular, are usually

considered transient. The SMTP server detects these faultsby

means of its own timeouts. To the client’s SMTP server, the

60 s disruption manifested itself as repeated timeouts when

connecting to the destination. The SMTP server then used the

queueing system we sketched earlier to retransmit the deferred

messages.

We can, unfortunately, not endeavour to fully explore the

intricate interactions between timeouts and queues in the

SMTP server and restarts initiated by the WSRM component.

We will thus only point out interesting aspects of the ETT

curves shown in Fig. 8 and their implications for oracle

performance. What first meets the eye is a pronounced two-

peak ‘saw-tooth’ pattern for transmissions without restart,

probably caused by periodic flushing of a queue. Second, both

static oracles generally manage to achieve ETTs below these

peaks. The apparent gain is especially large with the second

peak. Here, both static oracles were about 80 s faster than No

Restart. Third, the transport exhibits some sort of memory

effect. In all runs, ETT curves for the static oracles sport at

least one additional peak with a height of about 40 s and a

width of about 120 messages that absorbed previous gains.

Fourth, even though the QEST Oracle reduces ETT to roughly

70 s during the second peak, it does not provoke delays in later

messages. This fact explains its optimal timeliness. Finally,

with the Jacobson/Karn Oracle restarts are almost non-existent

(see URC plot in Fig. 8), hence the similarity of its results to

those without restart.

V. CONCLUSIONS

In this paper we analysed restart oracles in Web Services

Reliable Messaging, using a fault injection test bed. The faults

are injected at the IP level, and represent a variety of lower-

level network and system faults. Fault injection at the IP level
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Fig. 8. ETT and URC for messages hit by a 60 s disruption (Mail Transport). ETT curves have been smoothed.

allows us to investigate experimentally the consequences of

the intricate relation between TCP and WSRM time-out and

retransmission mechanisms. We carried out experiments for

both HTTP and SMTP as SOAP transports.

The recommendation supported by our study is that when

using the HTTP transport on top of a simple network, static

oracles such as fixed intervals can suffice to maintain a

good balance between fairness and timeliness. However, more

sophisticated adaptive oracles will be fairer when the system

exhibits long periods of packet loss, without being much

slower, and faster with continuously high-loss rates. For the

Mail transport, which exhibits more intricate timing behaviour,

adaptive oracles are a better choice.
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