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Abstract

The ever-growing complexity of today’s computing systems renders manual reconfiguration
infeasible. Instead, systems must be able to adapt themselves to changes in their environment. Thus
adaptivity becomes a key feature of a system. However, so far no general metric for the comparison
of systems according to their adaptivity has been established. In this paper we identify the two
dimensions of adaptivity, review a number of approaches and then seek to define a sufficiently
generic metric.

I. I NTRODUCTION

Today’s computing systems grow ever more complex, and hencemanual (re)configuration
becomes less feasible. This results in an increasing interest in adaptive systems, systems that
autonomously modify their behaviour to perform satisfactorily within their environments. For
these systems, adaptivity must be considered among the key features of a system.

However, despite several interesting approaches in various fields, no general metric to assess
a system’s adaptivity exists. In fact, even the concept of ‘adaptivity’ itself is often subject to
varying interpretations. In particular, the concept is sometimes used to describe the act of external
adaptation, i.e. manual reconfiguration of a system, which is inconsistent with the goal of making
systems more autonomous.

Consequently, our development of an adaptivity metric muststart with a definition of the concept.
The next step is the formalisation of the problem, followed by a review of existing approaches
in Sections II and IV. We will then propose our metric, concluding with a brief discussion of its
characteristics and further work.

As our general approach tends to be rather abstract, we will employ a restart oracle within a
Web Services Reliable Messaging (WSRM) implementation as anillustrative example throughout
the text. Put briefly, WSRM provides delivery guarantees for the communication between Web
Services [2], [6], [7]. A restart oracle within the implementation computes retransmission timeouts,
i.e. intervals between restarts of the task of transmittinga message.

A. Adaptivity

We define adaptivity as theability of a system to adapt itself to its environment. Adaptation
occurs with the aim of delivering optimal performance. We can identify two dimensions of
adaptivity:

1) Starting from its initial state, the system must be able toadapt itself in such a way that it
provides an optimal level of performance. That is, it must change its internal state in order
to optimally exploit the features of the environment that confronts it. In this view, a static
environment is assumed.

2) In any state, the system must be able to react to changes in the environment.
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Fig. 1. Generic system-environment view.

II. T HE PETS SPACE

In a general way, we can view a system within its environment as depicted in Figure 1:
The systemB acts as a server to another systemA, i.e. it receives and fulfills certain tasks.
In completing a task it delegates some part of the task to other system(s)C. As seen fromA, task
completion has a number of properties that determine how ‘useful’ it is to A, the most prominent
being completion timeTC ∈ [0,∞) (whereTC = ∞ amounts to a failure ofB).

Both systemA and system(s)C form the environmentwithin which B operates and which
influencesB’s task completion properties. An adaptive system modifies its behaviour, i.e. its
interactions withA and C, to optimise its properties, as perceived byA. The system’s changes
are determined by knowledge obtained about the environment. Typically, B’s knowledge is limited
to what it can infer from observing the streams of tasks toA andC. In particular,B can often not
observe the properties of task completion that are important to A directly, and usually it cannot
observe internal behaviour ofC.

Drawing from the treatment in [5], we refer to the part of the internal state ofB that determines
its behaviour within the environment as itsstructure, with system behaviour over time, over
environments or over both forming a sequence of trials of structures. A payoff function encodes
how useful the structure tried at timet in the environmentE is to A, i.e. P maps observations of
the metrics that describe task completion properties toIR. The current position inE (i.e. the current
environment) can change at any time, out of the systems’ control, and usually without explicit
notice. Adaptation refers to the choices of structureS the system makes; optimal adaptation means
that the system always selects the structure with the highest payoff within the current environment.

We combine these dimensions in the PEtS space (Figure 2). Forsimplicity, we will assume that
all dimensions can be described by scalars, e.g. environments E can be enumerated and drawn
along a single line.

Given a systemB, we can observe its behaviour within this space, that is, we have a function

Obs : {t} 7→ P × E × S

Obs(t) := (P (t), E(t), S(t))

that describes the trajectory taken byB throughout our observation interval{t}. That is, every
value forObs(t) encodes the environmentP (t), the structureS(t) tried within this environment
and the payoffP (t) obtained by this trial, all at timet. Note that this observation function implies
an omniscient observer not subject to the limitations ofB.

A. Example: A WSRM Oracle

If we consider a WSRM restart oracle as the systemB, systemA is the upper-layer application,
whereasC consists of the SOAP Transport and the network stack beneath. The task fulfilled byB is
the reliable delivery of a message using the (unreliable) systemC. To ensure message transmission,
B may need to restart the transmission task delegated toC, i.e. resend the message. Non-functional
properties of task completion are the single-trip Effective Transmission Time (ETT), i.e. the time
required for a reliable transmission, and the fairness, which can be measured by the Unnecessary
Resource Consumption (cf. [6]). A restart oracle has only limited knowledge about these properties
and about the network stack’s behaviour. In particular, it can infer only round-trip times (RTTs)
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Fig. 2. The PEtS space.

from observations of message sending times and acknowledgement arrival times; and it can deduce
unfair behaviour by counting the number of restarts.

Within the PEtS space, thestructureof a WSRM oracle is its choice of a restart timeoutτ .
Environmentscan be described by e.g. the percentage of packet loss at the IP layer or by a
characterisation of the workload generated by the application. Payoff is a weighted sum of ETT
and URC, for instance:

P =
1

1 + αETT + (1 − α)URC
(for α ∈ [0, 1]),

which has the benefit of being bounded to[0, 1]. The maximum at1 reflects that the (albeit
theoretical) optimum for(ETT,URC) lies at (0, 0).

III. D ESIRABLE PROPERTIES OF AMETRIC

Metrics for adaptivity are defined using metrics for the performance of systemB, as measured
from systemA’s point of view. An adaptivity metric should possess a number of properties:

1) Boundedness: The values of the metric should be bounded, e.g., for a systemS:

Ad(S) ∈ [0, 1].

This property ensures that even single values carry some amount of information about the
system, without the need for comparison to other values. Forinstance, the availability:

A =
MTBF

MTBF + MTTR

has this characteristic.
2) Comparability: Given two values of the metric for two systems, there should be a simple

way of comparing them. Scalar values (e.g. availability), in particular, are easily compared
to each other. However, it should be noted that compression into a scalar value inevitably
loses information.

3) Intuitive Interpretation: The metric should be obtainedin such a way that its values can be
interpreted easily by someone without a strong background in a specific modeling technique.
Again, availability provides a good example for this property.

4) Simple and Efficient Computation: On-line computabilityof the metric is also desirable,
since then the adaptivity of a system under specific circumstances can be monitored. This
offers the option of exchanging systems on the fly, should their adaptivity prove insufficient.



IV. A PPROACHES IN THEPETS SPACE

Basically, any assessment of adaptivity amounts to some form of analysis of the observation
function Obs, which, in order to ensure boundedness and intuitive interpretation, is often set in
relation to the behaviour of an optimally adaptive system (either theoretical or practical). In the
following we will discuss several approaches, starting with concepts limited to certain dimensions
of the PEtS space and then addressing two more general fields.

A. Robustness

In [1], Ali et al. propose to use therobustness radiusr∗, that is, the smallest amount of deviation
from the nominal operation point in any parameter that causes the system to leave its robustness
region (the region inE where system performanceP is within acceptable limits) as a measure
for the system’s robustness.

r∗ is computed using the impact functionφ, which describes the impact perturbation parameters
have on the performance features of the system. In our terminology, this function can be written
asφ : E 7→ P , from which we see thatφ only takes into account changes in the environment.φ

must be obtained by observing an actual system’s reactions to changes in the environment, which
amounts to an averaging of the structures and time dimensions.

B. Optimal Allocation of Trials

Concentrating on the structure dimension instead, the Optimal Allocation of Trials (OAT), as
discussed in [5], refers to adaptation in a static environment. Here, the structures dimension is
treated as a multi-armed bandit: Each trial of a structure results in a certain payoff, and the
system strives to accumulate the highest payoff possible. However, since it does not know the
distribution of payoffs among structures, it has to operatewithin the tradeoff between exploitation
and exploration. I.e., at each trialB has to decide whether to try the structure with the highest
observed payoff (thus exploiting knowledge obtained so far) or to try another structure, which
might yield higher payoff (exploration).

According to [5], given an ordering of structures reflectingtheir average payoff the optimal
numbern∗ out of N trials to assign to the observed best structure can be estimated. Then, the
ratio of actual trials allocated to the observed best structure ton∗ is a metric for the adaptivity.

In practice, this requires samplingObs to obtain the ordering of the structures, which implies
averaging the environment dimension (the time dimension can be safely ignored if we assume
that P is time-invariant).

C. Payoff Accumulation

Still assuming a static environment, but now focusing on thetime dimension, the payoff
accumulation rate [5] is another metric for the adaptivity.Given the payoffP ∗ an optimal system
would have obtained at any timet, adaptivity is measured by the ratio between actual accumulated
payoff and optimal accumulated payoff in the observation interval [0, T ]:

Ad1 =

∫ T

0
PB(t)dt

∫ T

0
P ∗(t)dt

.

An obvious extension of this metric would be to include changes in the environment, yielding

Ad2 =

∫
{t}

∫
E

PB(e, t)dedt
∫
{t}

∫
E

P ∗(e, t)dedt
.



D. Control Analysis and Sensitivity Analysis

In contrast to the first three approaches, both control analysis and sensitivity analysis take into
account all dimensions of the PEtS space, that is, they studysystem behaviour over changes in
the environment, the structures and time.

In sensitivity analysis, the focus lies on identifying parameters that influence system output,
and on finding points in the parameter space around which the system either behaves optimally or
critically. Control analysis is largely concerned with identifying the system’s response to certain
inputs; where the response is considered in terms of stability, control accuracy, settling time and
overshoot [3], [4].

Both fields share one common trait in that they analyse a modelof the system in question.
That is, based onObs, system behaviour is approximated by a set of functions, which are then
analysed, e.g. control analysis may model system behaviourby

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k),

wherex(k + 1) describes the next structure,y(k) describes the payoff and the matricesA,B,C

encode system behaviour. To obtain these matrices, one again has to observeObs and fit a model
to the observations.

E. Discussion

Reviewing these approaches in regard to our initial two dimensions of adaptivity, we note that the
OAT metric and the first payoff accumulation metric measure adaptation in the first sense, whereas
the robustness radius only considers changes in the environment. Control analysis and sensitivity
analysis study both adaptation to a static environment and within changing environments. The
second payoff accumulation metric also considers changingenvironments, however, being an
integral, it only provides an average value.

Considering the desirable properties for a metric, we note that most of these approaches do not
exhibit all of them: The robustness radius offers an intuitive interpretation and comparability, but
is neither bounded nor easily computed, since it relies on knowledge of the impact functionφ.
The OAT metric requires an ordering of structures, which canonly be obtained through prolonged
observation ofObs; furthermore, the procedure to estimaten∗ works only for large total numbers
of trials. Lastly, both sensitivity analysis and control analysis do not lend themselves to intuitive
interpretations easily, since they rely on extensive modeling. Thus results for models with the
same model structure (but different parameters) are comparable, while differing model structures
(e.g. higher-order difference equations in control analysis) might introduce factors that hamper
comparability of the results.

V. M ETRIC PROPOSAL

We attempt to work within the dimensionsP , E, {t} andS directly. We study the quality of
the system’s decisions at each triali = 1, 2, . . . , N and use the probability of beneficial decisions
as a measure of adaptivity. In the following, we assume that the payoff function is bounded to
[0, 1], with 1 representing the optimal payoff.

We consider the trajectory described by the observation function Obs and order the observations
by t, so thati refers to theith trial, occuring at timeti. This trial of a structuresi = S(ti) yields
a payoffpi = P (ti). Whetherpi is lower, equal to or larger than the payoff for the previous trial,
pi−1 = P (ti−1), shows how good the system’s decision at this trial was:pi−1 > pi reflects a
bad decision, since the system chose a structure that yielded a worse payoff than the one in the



previous trial.pi−1 = pi amounts to a neutral decision. Finally,pi−1 < pi indicates a positive
decision, i.e. the system chose a structure that increased payoff. Let

I⊙ := {i|pi−1 = pi}

I⊕ := {i|pi−1 < pi}

denote the set of neutral and positive decisions, respectively.
Clearly, positive decisions are beneficial. Neutral decisions are beneficial as well, since they

refer to trials where the system was able to maintain its level of payoff. However, the benefit
obtained in a trial must be quantified. The benefit of a neutraldecision is equal topi, e.g. a
constant payoff of0 is certainly not beneficial at all, whilepi = 1∀i would be optimal. A positive
decision’s benefit is equal to the payoff increase∆i = pi − pi−1, i.e. large increases are more
beneficial than small ones.

We propose to use

Ad3 :=

∑

i∈I⊕

∆i +
∑

i∈I⊙

pi

N − 1

as a metric for the adaptivity of the system.

VI. FURTHER WORK

We argue that the metricAd3 has all the desirable properties and also expresses both dimensions
of adaptivity in one scalar value. However, some aspects mayneed further investigation:

Payoff changes can be caused by a new choice of structure, a new environment or both. So
far the metric does not fully take into account these possibilities. In particular, decreased payoff
due to deteriorating environmental parameters is considered negative. Possible implications for its
applicability need to be discussed in more detail.

The metric only considers one-step changes. It has to be considered whether this limitation has
undesirable consequences. Namely, adaptation may requireaccepting small short-term losses to
obtain large long-term gains, however, in the current definition acceptance of short-term loss is
punished.

Finally, the usefulness of the metric must be shown through its application in a practical setting.
While the algorithm for the metric as defined above is straight-forward, the two previous paragraphs
point at possibly necessary modifications that may render itmore difficult.
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