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Abstract

The ever-growing complexity of today’s computing systems rendensuaiareconfiguration
infeasible. Instead, systems must be able to adapt themselves to slatiggr environment. Thus
adaptivity becomes a key feature of a system. However, so far revgenetric for the comparison
of systems according to their adaptivity has been established. In this papiEentify the two
dimensions of adaptivity, review a number of approaches and thdntgedefine a sufficiently
generic metric.

I. INTRODUCTION

Today's computing systems grow ever more complex, and hemaeual (re)configuration
becomes less feasible. This results in an increasing siténeadaptive systems, systems that
autonomously modify their behaviour to perform satisfattowithin their environments. For
these systems, adaptivity must be considered among thecktyrés of a system.

However, despite several interesting approaches in \affields, no general metric to assess
a system’s adaptivity exists. In fact, even the concept dbpivity’ itself is often subject to
varying interpretations. In particular, the concept is stimes used to describe the act of external
adaptation, i.e. manual reconfiguration of a system, whsahdonsistent with the goal of making
systems more autonomous.

Consequently, our development of an adaptivity metric ratast with a definition of the concept.
The next step is the formalisation of the problem, followgdabreview of existing approaches
in Sections 1l and 1V. We will then propose our metric, comtithg with a brief discussion of its
characteristics and further work.

As our general approach tends to be rather abstract, we mlay a restart oracle within a
Web Services Reliable Messaging (WSRM) implementation afiuestrative example throughout
the text. Put briefly, WSRM provides delivery guarantees fer tommunication between Web
Services [2], [6], [7]. A restart oracle within the implentation computes retransmission timeouts,
i.e. intervals between restarts of the task of transmitingessage.

A. Adaptivity

We define adaptivity as thability of a system to adapt itself to its environmeAtlaptation
occurs with the aim of delivering optimal performance. Wen ddentify two dimensions of
adaptivity:

1) Starting from its initial state, the system must be abladapt itself in such a way that it
provides an optimal level of performance. That is, it musirgye its internal state in order
to optimally exploit the features of the environment thanftonts it. In this view, a static
environment is assumed.

2) In any state, the system must be able to react to changée ienvironment.
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Fig. 1. Generic system-environment view.

Il. THE PETS SPACE

In a general way, we can view a system within its environmentdapicted in Figure 1:
The systemB acts as a server to another systeini.e. it receives and fulfills certain tasks.
In completing a task it delegates some part of the task tar atymtem(s)C. As seen fromA, task
completion has a number of properties that determine hoefulist is to A, the most prominent
being completion tim& € [0, 00) (WhereT = co amounts to a failure oB).

Both systemA and system(s)’ form the environmentwithin which B operates and which
influences B’s task completion properties. An adaptive system modifiesbehaviour, i.e. its
interactions withA and C, to optimise its properties, as perceived By The system’s changes
are determined by knowledge obtained about the environrigpically, B's knowledge is limited
to what it can infer from observing the streams of tasksltandC'. In particular,B can often not
observe the properties of task completion that are impoitant directly, and usually it cannot
observe internal behaviour @f.

Drawing from the treatment in [5], we refer to the part of theernal state oB that determines
its behaviour within the environment as istructure with system behaviour over time, over
environments or over both forming a sequence of trials afcstires. A payoff function encodes
how useful the structure tried at timién the environment? is to A, i.e. P maps observations of
the metrics that describe task completion propertidl.tdhe current position it (i.e. the current
environment) can change at any time, out of the systems'raiprand usually without explicit
notice. Adaptation refers to the choices of structtirhe system makes; optimal adaptation means
that the system always selects the structure with the higlag®ff within the current environment.

We combine these dimensions in the PEtS space (Figure 2}ifRpticity, we will assume that
all dimensions can be described by scalars, e.g. envirotsniertan be enumerated and drawn
along a single line.

Given a systenB, we can observe its behaviour within this space, that is, awe la function

Obs: {t}— PxExS
Obs(t) := (P(1), E(t), S(1))

that describes the trajectory taken Bythroughout our observation intervét}. That is, every
value for Obs(t) encodes the environmeiit(¢), the structureS(¢) tried within this environment
and the payoffP(t) obtained by this trial, all at time. Note that this observation function implies
an omniscient observer not subject to the limitationg3of

A. Example: A WSRM Oracle

If we consider a WSRM restart oracle as the sysfeénsystemA is the upper-layer application,
whereag” consists of the SOAP Transport and the network stack benaghtask fulfilled byB is
the reliable delivery of a message using the (unreliablslespC. To ensure message transmission,
B may need to restart the transmission task delegatét t@. resend the message. Non-functional
properties of task completion are the single-trip Effextfiransmission Time (ETT), i.e. the time
required for a reliable transmission, and the fairnessciwioan be measured by the Unnecessary
Resource Consumption (cf. [6]). A restart oracle has omhjtéd knowledge about these properties
and about the network stack’s behaviour. In particularait infer only round-trip times (RTTS)
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Fig. 2. The PEtS space.

from observations of message sending times and acknowtegtgearrival times; and it can deduce
unfair behaviour by counting the number of restarts.

Within the PEtS space, thetructure of a WSRM oracle is its choice of a restart timeaut
Environmentscan be described by e.g. the percentage of packet loss aPthayér or by a
characterisation of the workload generated by the apjicaPayoffis a weighted sum of ETT
and URC, for instance:

1
P:
14+ aETT + (1 — a)URC

which has the benefit of being bounded [ 1]. The maximum atl reflects that the (albeit
theoretical) optimum fo{ ETT, URC) lies at(0,0).

(for o € [0, 1)),

IIl. DESIRABLE PROPERTIES OF AMETRIC

Metrics for adaptivity are defined using metrics for the perfance of systen®3, as measured
from systemA’s point of view. An adaptivity metric should possess a numtdfeproperties:

1) Boundedness: The values of the metric should be boundgd fer a systens:
Ad(S) € [0,1].
This property ensures that even single values carry someir@nod information about the
system, without the need for comparison to other valuesiistance, the availability:

MTBF
MTBF + MTTR

A=

has this characteristic.

2) Comparability: Given two values of the metric for two ®rsis, there should be a simple
way of comparing them. Scalar values (e.g. availability)particular, are easily compared
to each other. However, it should be noted that compressittna scalar value inevitably
loses information.

3) Intuitive Interpretation: The metric should be obtainedsuch a way that its values can be
interpreted easily by someone without a strong backgronradspecific modeling technique.
Again, availability provides a good example for this praper

4) Simple and Efficient Computation: On-line computabildf the metric is also desirable,
since then the adaptivity of a system under specific circant&s can be monitored. This
offers the option of exchanging systems on the fly, should Haaptivity prove insufficient.



IV. APPROACHES IN THEPETS SPACE

Basically, any assessment of adaptivity amounts to sonma fifranalysis of the observation
function Obs, which, in order to ensure boundedness and intuitive inétagion, is often set in
relation to the behaviour of an optimally adaptive systeithée theoretical or practical). In the
following we will discuss several approaches, startindghveibncepts limited to certain dimensions
of the PELtS space and then addressing two more general fields.

A. Robustness

In [1], Ali et al. propose to use th@bustness radius*, that is, the smallest amount of deviation
from the nominal operation point in any parameter that cautise system to leave its robustness
region (the region inE’ where system performande is within acceptable limits) as a measure
for the system’s robustness.

r* is computed using the impact functign which describes the impact perturbation parameters
have on the performance features of the system. In our tetawy, this function can be written
as¢: E— P, from which we see thap only takes into account changes in the environment.
must be obtained by observing an actual system’s react@olanges in the environment, which
amounts to an averaging of the structures and time dimesision

B. Optimal Allocation of Trials

Concentrating on the structure dimension instead, then@ptAllocation of Trials (OAT), as
discussed in [5], refers to adaptation in a static enviramtmeere, the structures dimension is
treated as a multi-armed bandit: Each trial of a structumallte in a certain payoff, and the
system strives to accumulate the highest payoff possibteveder, since it does not know the
distribution of payoffs among structures, it has to opevethin the tradeoff between exploitation
and exploration. l.e., at each triél has to decide whether to try the structure with the highest
observed payoff (thus exploiting knowledge obtained s¢ farto try another structure, which
might yield higher payoff (exploration).

According to [5], given an ordering of structures reflectiigir average payoff the optimal
numbern* out of N trials to assign to the observed best structure can be detim@ihen, the
ratio of actual trials allocated to the observed best atinecton* is a metric for the adaptivity.

In practice, this requires samplin@bs to obtain the ordering of the structures, which implies
averaging the environment dimension (the time dimension lwa safely ignored if we assume
that P is time-invariant).

C. Payoff Accumulation
Still assuming a static environment, but now focusing on tinge dimension, the payoff
accumulation rate [5] is another metric for the adaptividyven the payoffP* an optimal system
would have obtained at any timteadaptivity is measured by the ratio between actual accated!
payoff and optimal accumulated payoff in the observatiderival [0, T7:
T
5= IN PB(t)dt.
[ P(t)dt
An obvious extension of this metric would be to include chemin the environment, yielding
B f{t} [ Pa(e, t)dedt
f{t} [ P*(e,t)dedt”

Ads



D. Control Analysis and Sensitivity Analysis

In contrast to the first three approaches, both control aisabnd sensitivity analysis take into
account all dimensions of the PEtS space, that is, they stydiem behaviour over changes in
the environment, the structures and time.

In sensitivity analysis, the focus lies on identifying paeters that influence system output,
and on finding points in the parameter space around whichytera either behaves optimally or
critically. Control analysis is largely concerned with mdiying the system’s response to certain
inputs; where the response is considered in terms of dtghitbntrol accuracy, settling time and
overshoot [3], [4].

Both fields share one common trait in that they analyse a mofigdhe system in question.
That is, based obs, system behaviour is approximated by a set of functionschviaire then
analysed, e.g. control analysis may model system behatipur

z(k+1) Ax(k) + Bu(k)
y(k) = Cux(k),

wherez(k + 1) describes the next structurg(k) describes the payoff and the matricdsB, C
encode system behaviour. To obtain these matrices, one hgaito observ®bs and fit a model
to the observations.

E. Discussion

Reviewing these approaches in regard to our initial two disiens of adaptivity, we note that the
OAT metric and the first payoff accumulation metric measw&pgation in the first sense, whereas
the robustness radius only considers changes in the envinatn Control analysis and sensitivity
analysis study both adaptation to a static environment aitisinnchanging environments. The
second payoff accumulation metric also considers changimgronments, however, being an
integral, it only provides an average value.

Considering the desirable properties for a metric, we riwdé most of these approaches do not
exhibit all of them: The robustness radius offers an intaifinterpretation and comparability, but
is neither bounded nor easily computed, since it relies aowdadge of the impact functiog.
The OAT metric requires an ordering of structures, which aaly be obtained through prolonged
observation ofDbs; furthermore, the procedure to estimateworks only for large total numbers
of trials. Lastly, both sensitivity analysis and controbfsis do not lend themselves to intuitive
interpretations easily, since they rely on extensive mindelThus results for models with the
same model structure (but different parameters) are cabpgrwhile differing model structures
(e.g. higher-order difference equations in control arig)ysight introduce factors that hamper
comparability of the results.

V. METRIC PROPOSAL

We attempt to work within the dimension®, E, {t} and S directly. We study the quality of
the system’s decisions at each triak 1,2,..., N and use the probability of beneficial decisions
as a measure of adaptivity. In the following, we assume thatpayoff function is bounded to
[0, 1], with 1 representing the optimal payoff.

We consider the trajectory described by the observatioatiomObs and order the observations
by ¢, so thati refers to theith trial, occuring at time;. This trial of a structures; = S(¢;) yields
a payoffp; = P(t;). Whetherp; is lower, equal to or larger than the payoff for the previaue,t
pi—1 = P(t;—1), shows how good the system’s decision at this trial was; > p; reflects a
bad decision, since the system chose a structure that gieldeorse payoff than the one in the



previous trial.p;_1 = p; amounts to a neutral decision. Finally,_; < p; indicates a positive
decision, i.e. the system chose a structure that increampaffpLet

Ip = {i‘pi—l = pz‘}
Ig = {ilpi—1 < pi}

denote the set of neutral and positive decisions, resgdytiv

Clearly, positive decisions are beneficial. Neutral decisiare beneficial as well, since they
refer to trials where the system was able to maintain itsl lefgayoff. However, the benefit
obtained in a trial must be quantified. The benefit of a newsision is equal tg;, e.g. a
constant payoff of) is certainly not beneficial at all, whilg; = 1v: would be optimal. A positive
decision’s benefit is equal to the payoff increase = p; — p;,_1, i.e. large increases are more
beneficial than small ones.

We propose to use

ZI Ay + XI:pv:

i€lg i€l

Adyg i = —————
3 N -1

as a metric for the adaptivity of the system.

V1. FURTHERWORK

We argue that the metridds has all the desirable properties and also expresses bo#nsdions
of adaptivity in one scalar value. However, some aspects meayg further investigation:

Payoff changes can be caused by a new choice of structurey @&maronment or both. So
far the metric does not fully take into account these polisits. In particular, decreased payoff
due to deteriorating environmental parameters is corsitieegative. Possible implications for its
applicability need to be discussed in more detail.

The metric only considers one-step changes. It has to badewad whether this limitation has
undesirable consequences. Namely, adaptation may regehepting small short-term losses to
obtain large long-term gains, however, in the current diédimiacceptance of short-term loss is
punished.

Finally, the usefulness of the metric must be shown throtgyhpplication in a practical setting.
While the algorithm for the metric as defined above is strafighward, the two previous paragraphs
point at possibly necessary modifications that may renderoite difficult.
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