
A Short Investigation into an Underexplored Model for RetriesAad P. A. van MoorselShool of Computing SieneUniversity of Newastle upon TyneNewastle upon Tyne, NE1 7RUUnited KingdomAad.vanMoorsel�newastle.a.uk
and Katinka WolterHumboldt-Universit�at BerlinInstitut f�ur InformatikUnter den Linden 6, 10099 Berlin,Germanywolter�informatik.hu-berlin.deAbstratWe provide a short overview of models being usedfor the performane analysis of retry mehanisms insoftware systems, inluding hekpointing, preventivemaintenane, rejuvenation, restarts and time-outs.We relate this to a simple model we reently anal-ysed, and hypothesise why this partiular model hasnot been analysed in detail before.1 IntrodutionSeveral methods for software performane and relia-bility enhanements have been investigated over thelast deades, inluding hekpointing, software reju-venation, preventive maintenane and restart. Forthose mehanisms, many di�erent stohasti mod-els have been proposed and analysed. These modelshave a lot in ommon, sine the mentioned meh-anisms have many similarities. All deal with sys-tems that operate in an environment that is subjetto maintenane and failures (and assoiated repairs),so that proessing is interrupted and restarted, thelatter possibly from an intermediate hekpoint.Reently, we provided a detailed analysis of `yet an-other' model [6℄, namely one for restart, suitable forsenarios with highly variable response times. Themodel has a striking simpliity, and the questionarises why the model had not been analysed before.In this paper, we try to answer that question by dis-ussing the modelling literature for systems with re-tries in light of our restart model.2 Basi Restart ModelOur model is very simple [6℄. A task is started, andwhen it has not ompleted at a threshold time, it isretried. The task is assumed to omplete aordingto some probability distribution, and it is assumedthat eah retry terminates the previous attempt. Thequestion is: in order to minimise the ompletion time,what is the best time to restart?We found a number of elegant and interesting re-sults. A restart should not neessarily take plae at

`�xed' times between suessive tries. Only when onewants to minimise the �rst moment of ompletiontime, the best strategy is to retry at �xed intervals.In partiular, the retry should take plae at the timepoint where the hazard rate is reiproal to the in-verse of the resulting ompletion time. For highermoments of ompletion time, it is better to initiaterestarts at a fast pae at the beginning, and thenslow down. For the distribution of the ompletiontime, also interesting results hold. For instane, tomaximise the probability of making a deadline, oneshould do restarts at time points at whih the haz-ard rates are equal. A speial ase that obeys thisriterion is to restart at equi-distant time points, butthis is not always the global optimum (it ould in fatorrespond to a loal or global sub-optimum).3 Time-Out ModelsA losely related problem is that of setting time-outs,suh as time-outs in the TCP transport protool [3℄,or in failure detetors (see [6℄). Extensive researhhas gone into pratial solutions for determining areasonable TCP time-out as a funtion of the ex-peted round trip time (i.e., ompletion time). Expo-nential bak-o� is then employed to make sure thatone does not endlessly retry too quik.In a similar vain, models for restart that do notmake any assumption about the distribution of om-pletion time have been developed (see [6℄. It has beenshown that a bak-o� mehanism that is not dissim-ilar to exponential bak-o� is of optimal order, nomatter what the atual distribution of response timeis. A ore assumption in this work is that onse-utive tries are statistially independent and retriesabort earlier attempts. This work does not onsiderthe `network e�et', whih ours when many tasksfollow the same strategy. Instead, all analysis is donefor one isolated end-point, assuming all other sys-tems to behave as before. Only Huberman ondutsa disrete-event simulation to study the network ef-fet (see [6℄.For the quality of servie of failure detetors, aseondary issue omes into play: when retrying, theprevious attempt is not anelled. If sareness of1



resoures is not modelled, the optimal strategy is toontinuously retry. In a real system, this obviouslyleads to bandwidth and CPU overload. The modelsonsidered by Chen et. al. therefore inlude band-width onerns (see [6℄.4 Chekpointing and Rejuve-nationChekpointing models [1, 5℄ typially assume that a�xed amount of work needs to be performed in anenvironment that is subjet to failures. Many ofthe models inlude state information that desribeswhether the system is operational or in repair. Themodels vary in onditions upon the state model: somelimit the number of visits to the failed state, otherslimit the total time spent in the failed state to repre-sent the proessing of ritial real-time tasks. Uponfailure of the system either no work is saved, all workis saved, or some intermediate amount is saved, rep-resenting the plaement of hekpoints. The modelsfurthermore di�er in whether they allow for failuresduring hekpointing or not. A speial ase is theone where hekpointing at zero ost is performed.The optimisation problem then is to �nd the besthekpoints suh that the probability of ompletinga given amount of work in the given environment ismaximised.A hekpointing model with immediate repair andrepeat strategy (all work is lost) is very similar tothe restart model. The only di�erene is that in therestart model the amount of work is a random vari-able whereas in the hekpointing literature it typi-ally is a onstant.Software rejuvenation models [1℄ typially assume,similar to the hekpointing models, a �xed amountof work to be ompleted. However, the metri ofinterest usually is not ompletion time, but systemavailability. Software rejuvenation models have arather sophistiated state desription. The systemmay be up or down, and it an be down after a fail-ure or out of order due to rejuvenation tasks. It isassumed that rejuvenation takes less time than re-pair and the problem is to determine how often thesystem should be rejuvenated suh that the overallsystem availability is maximised and system downtime is minimised.The main di�erene between models for rejuvena-tion and restart is that the rejuvenation models in-lude system detail to desribe the aging or degrada-tion aspet of the system, while the restart model in-ludes no system information. In both type of modelsjob proessing is interrupted, but in the rejuvenationmodel this is a side e�et of rejuvenation, while forthe restart model it is the essential model behaviour.Chekpointing and rejuvenation an be ombined,the former operating on the software and task oper-ation and the latter improving system reliability and

performane. In this ase the onsidered metri isthe moments of task ompletion time, as typial inhekpointing models.5 Preventive Maintenane andSurvival AnalysisPreventive maintenane models [2℄ aim at maximis-ing system operation time, whih leads to an optimi-sation problem that is almost the dual to that on-sidered in restart, time-outs and hekpointing (andto some extend rejuvenation). Hene, a strategy thatmade sense for restart would have the opposite e�etin preventive maintenane. Nevertheless, the mathe-matis is essentially idential (always related to set-ting derivatives to zero) and the results should there-fore translate between the two opposed objetives.A main di�erene, however, is the following. Whenminimising the ompletion time, it is natural to add atime penalty in the model every time a restart takesplae (every restart kills the previous attempt andtriggers the next attempt, and this takes time). How-ever, when maximising system life time, suh a timepenalty does not make sense, sine it only enlargesthe life time. This would imply that very long andontinuous maintenane is best for the system, some-thing that does not orrespond to real life. As a on-sequene, preventive maintenane models introdueosts into the model to represent a penalty assoi-ated with triggering maintenane.Survival analysis [4℄ deals with estimation of thesuess of mediine on the life time of humans (or, infat, other speies). The fous in this work is typi-ally on statistial estimation of hazard rates, whihplay a ruial role in haraterising the life time ofa subjet. The importane of the hazard rate omesforward in restart analysis as well, but the survivalanalysis literature rarely onerns itself with modelsfor optimal timing of ertain ations, probably sineproviding mediines is not an instantaneous ativity.6 ConlusionWe have given a brief overview of various modelsthat deal with the e�et of retries on task omple-tion time. We did this in light of a reent modelwe analysed, and whih, muh to our surprise, hadnot been analysed in detail before. In this write-up,it beomes lear that the model possibly never wasonsidered useful. First of all, the analysis only leadsto non-trivial results if the ompletion time distribu-tion has high variane (suh as in the Internet), or isa defetive distributions (modelling failed attempts).Furthermore, in preventive maintenane models, the'dual' objetive makes it impossible to inlude penal-ties as easily as in the restart model. Hene, thepreventive maintenane literature is onerned with



models that inlude maintenane osts. In hek-pointing and rejuvenation, the simple model we dis-uss omes forward as a speial ase, but it never hasbeen analysed in detail. This may be beause di�er-ent metris are of interest, or beause more aspetsof the system are onsidered important, suh as thesystem aging phenomenon in rejuvenation.Note: muh more relevant literature ould be listed inthis paper. For this short ontribution, we do not pro-vide all referenes, but instead point the reader to thereferenes in the following artiles.Referenes[1℄ A. Bobbio, S. Garg, M. Gribaudo, A. Horvath, M.Sereno and M. Telek, \Modeling Software Systemswith Rejuvenation, Restoration and Chekpointingthrough Fluid Stohasti Petri Nets," IEEE PetriNets and Performane Models, pp. 82{91, IEEEComputer Soiety Press, 1999.[2℄ I. Gertsbakh, Reliability Theory, With Appliationsto Preventive Maintenane, Springer Verlag, Berlin,2000.[3℄ B. Krishnamurthy and J. Rexford, Web Protoolsand Pratie, Addison Wesley, 2001.[4℄ J. Lawless, Statistial Models and Methods for Life-time Data, John Wiley and Sons, 1982.[5℄ V. Niola, \Chekpointing and the Modeling of Pro-gram Exeution Time," in Trends in Software 3:Software Fault Tolerane, M. Lyu (Ed.), Wiley &Sons, Chihester, UK, Chapter 7, pp. 167{188, 1995.[6℄ A. van Moorsel and K. Wolter, \Analysis andAlgorithms for Restart," IEEE Quantitative Eval-uation of Systems, IEEE Computer Soiety Press,pp. 195{204, 2004.


