A Short Investigation into an Underexplored Model for Retries

Aad P. A. van Moorsel
School of Computing Science
University of Newcastle upon Tyne
Newcastle upon Tyne, NE1 7TRU
United Kingdom
Aad.vanMoorsel@newcastle.ac.uk

Abstract

We provide a short overview of models being used
for the performance analysis of retry mechanisms in
software systems, including checkpointing, preventive
maintenance, rejuvenation, restarts and time-outs.
We relate this to a simple model we recently anal-
ysed, and hypothesise why this particular model has
not been analysed in detail before.

1 Introduction

Several methods for software performance and relia-
bility enhancements have been investigated over the
last decades, including checkpointing, software reju-
venation, preventive maintenance and restart. For
those mechanisms, many different stochastic mod-
els have been proposed and analysed. These models
have a lot in common, since the mentioned mech-
anisms have many similarities. All deal with sys-
tems that operate in an environment that is subject
to maintenance and failures (and associated repairs),
so that processing is interrupted and restarted, the
latter possibly from an intermediate checkpoint.

Recently, we provided a detailed analysis of ‘yet an-
other’ model [6], namely one for restart, suitable for
scenarios with highly variable response times. The
model has a striking simplicity, and the question
arises why the model had not been analysed before.
In this paper, we try to answer that question by dis-
cussing the modelling literature for systems with re-
tries in light of our restart model.

2 Basic Restart Model

Our model is very simple [6]. A task is started, and
when it has not completed at a threshold time, it is
retried. The task is assumed to complete according
to some probability distribution, and it is assumed
that each retry terminates the previous attempt. The
question is: in order to minimise the completion time,
what is the best time to restart?

We found a number of elegant and interesting re-
sults. A restart should not necessarily take place at

and

Katinka Wolter
Humboldt-Universitat Berlin
Institut fur Informatik
Unter den Linden 6, 10099 Berlin,
Germany
wolter@informatik.hu-berlin.de

‘fixed’ times between successive tries. Only when one
wants to minimise the first moment of completion
time, the best strategy is to retry at fixed intervals.
In particular, the retry should take place at the time
point where the hazard rate is reciprocal to the in-
verse of the resulting completion time. For higher
moments of completion time, it is better to initiate
restarts at a fast pace at the beginning, and then
slow down. For the distribution of the completion
time, also interesting results hold. For instance, to
maximise the probability of making a deadline, one
should do restarts at time points at which the haz-
ard rates are equal. A special case that obeys this
criterion is to restart at equi-distant time points, but
this is not always the global optimum (it could in fact
correspond to a local or global sub-optimum).

3 Time-Out Models

A closely related problem is that of setting time-outs,
such as time-outs in the TCP transport protocol [3],
or in failure detectors (see [6]). Extensive research
has gone into practical solutions for determining a
reasonable TCP time-out as a function of the ex-
pected round trip time (i.e., completion time). Expo-
nential back-off is then employed to make sure that
one does not endlessly retry too quick.

In a similar vain, models for restart that do not
make any assumption about the distribution of com-
pletion time have been developed (see [6]. It has been
shown that a back-off mechanism that is not dissim-
ilar to exponential back-off is of optimal order, no
matter what the actual distribution of response time
is. A core assumption in this work is that consec-
utive tries are statistically independent and retries
abort earlier attempts. This work does not consider
the ‘network effect’, which occurs when many tasks
follow the same strategy. Instead, all analysis is done
for one isolated end-point, assuming all other sys-
tems to behave as before. Only Huberman conducts
a discrete-event simulation to study the network ef-
fect (see [6].

For the quality of service of failure detectors, a
secondary issue comes into play: when retrying, the
previous attempt is not cancelled. If scarceness of



resources is not modelled, the optimal strategy is to
continuously retry. In a real system, this obviously
leads to bandwidth and CPU overload. The models
considered by Chen et. al. therefore include band-
width concerns (see [6].

4 Checkpointing and Rejuve-
nation

Checkpointing models [1, 5] typically assume that a
fixed amount of work needs to be performed in an
environment, that is subject to failures. Many of
the models include state information that describes
whether the system is operational or in repair. The
models vary in conditions upon the state model: some
limit the number of visits to the failed state, others
limit the total time spent in the failed state to repre-
sent the processing of critical real-time tasks. Upon
failure of the system either no work is saved, all work
is saved, or some intermediate amount is saved, rep-
resenting the placement of checkpoints. The models
furthermore differ in whether they allow for failures
during checkpointing or not. A special case is the
one where checkpointing at zero cost is performed.
The optimisation problem then is to find the best
checkpoints such that the probability of completing
a given amount of work in the given environment is
maximised.

A checkpointing model with immediate repair and
repeat strategy (all work is lost) is very similar to
the restart model. The only difference is that in the
restart model the amount of work is a random vari-
able whereas in the checkpointing literature it typi-
cally is a constant.

Software rejuvenation models [1] typically assume,
similar to the checkpointing models, a fixed amount
of work to be completed. However, the metric of
interest usually is not completion time, but system
availability. Software rejuvenation models have a
rather sophisticated state description. The system
may be up or down, and it can be down after a fail-
ure or out of order due to rejuvenation tasks. It is
assumed that rejuvenation takes less time than re-
pair and the problem is to determine how often the
system should be rejuvenated such that the overall
system availability is maximised and system down
time is minimised.

The main difference between models for rejuvena-
tion and restart is that the rejuvenation models in-
clude system detail to describe the aging or degrada-
tion aspect of the system, while the restart model in-
cludes no system information. In both type of models
job processing is interrupted, but in the rejuvenation
model this is a side effect of rejuvenation, while for
the restart model it is the essential model behaviour.

Checkpointing and rejuvenation can be combined,
the former operating on the software and task oper-
ation and the latter improving system reliability and

performance. In this case the considered metric is
the moments of task completion time, as typical in
checkpointing models.

5 Preventive Maintenance and
Survival Analysis

Preventive maintenance models [2] aim at maximis-
ing system operation time, which leads to an optimi-
sation problem that is almost the dual to that con-
sidered in restart, time-outs and checkpointing (and
to some extend rejuvenation). Hence, a strategy that
made sense for restart would have the opposite effect
in preventive maintenance. Nevertheless, the mathe-
matics is essentially identical (always related to set-
ting derivatives to zero) and the results should there-
fore translate between the two opposed objectives.

A main difference, however, is the following. When
minimising the completion time, it is natural to add a
time penalty in the model every time a restart takes
place (every restart kills the previous attempt and
triggers the next attempt, and this takes time). How-
ever, when maximising system life time, such a time
penalty does not make sense, since it only enlarges
the life time. This would imply that very long and
continuous maintenance is best for the system, some-
thing that does not correspond to real life. As a con-
sequence, preventive maintenance models introduce
costs into the model to represent a penalty associ-
ated with triggering maintenance.

Survival analysis [4] deals with estimation of the
success of medicine on the life time of humans (or, in
fact, other species). The focus in this work is typi-
cally on statistical estimation of hazard rates, which
play a crucial role in characterising the life time of
a subject. The importance of the hazard rate comes
forward in restart analysis as well, but the survival
analysis literature rarely concerns itself with models
for optimal timing of certain actions, probably since
providing medicines is not an instantaneous activity.

6 Conclusion

We have given a brief overview of various models
that deal with the effect of retries on task comple-
tion time. We did this in light of a recent model
we analysed, and which, much to our surprise, had
not been analysed in detail before. In this write-up,
it becomes clear that the model possibly never was
considered useful. First of all, the analysis only leads
to non-trivial results if the completion time distribu-
tion has high variance (such as in the Internet), or is
a defective distributions (modelling failed attempts).
Furthermore, in preventive maintenance models, the
‘dual’ objective makes it impossible to include penal-
ties as easily as in the restart model. Hence, the
preventive maintenance literature is concerned with



models that include maintenance costs. In check-
pointing and rejuvenation, the simple model we dis-
cuss comes forward as a special case, but it never has
been analysed in detail. This may be because differ-
ent metrics are of interest, or because more aspects
of the system are considered important, such as the
system aging phenomenon in rejuvenation.

Note: much more relevant literature could be listed in
this paper. For this short contribution, we do not pro-
vide all references, but instead point the reader to the
references in the following articles.

References

[1] A. Bobbio, S. Garg, M. Gribaudo, A. Horvath, M.
Sereno and M. Telek, “Modeling Software Systems
with Rejuvenation, Restoration and Checkpointing
through Fluid Stochastic Petri Nets,” IEEE Petri
Nets and Performance Models, pp. 82 91, IEEE
Computer Society Press, 1999.

[2] L. Gertsbakh, Reliability Theory, With Applications
to Preventive Maintenance, Springer Verlag, Berlin,
2000.

[3] B. Krishnamurthy and J. Rexford, Web Protocols
and Practice, Addison Wesley, 2001.

[4] J. Lawless, Statistical Models and Methods for Life-
time Data, John Wiley and Sons, 1982.

[6] V. Nicola, “Checkpointing and the Modeling of Pro-
gram Execution Time,” in Trends in Software 3:
Software Fault Tolerance, M. Lyu (Ed.), Wiley &
Sons, Chichester, UK, Chapter 7, pp. 167-188, 1995.

[6] A. van Moorsel and K. Wolter, “Analysis and
Algorithms for Restart,” IEEE Quantitative Ewval-
uation of Systems, IEEE Computer Society Press,
pp. 195-204, 2004.



