
A Short Investigation into an Underexplored Model for RetriesAad P. A. van MoorselS
hool of Computing S
ien
eUniversity of New
astle upon TyneNew
astle upon Tyne, NE1 7RUUnited KingdomAad.vanMoorsel�new
astle.a
.uk
and Katinka WolterHumboldt-Universit�at BerlinInstitut f�ur InformatikUnter den Linden 6, 10099 Berlin,Germanywolter�informatik.hu-berlin.deAbstra
tWe provide a short overview of models being usedfor the performan
e analysis of retry me
hanisms insoftware systems, in
luding 
he
kpointing, preventivemaintenan
e, rejuvenation, restarts and time-outs.We relate this to a simple model we re
ently anal-ysed, and hypothesise why this parti
ular model hasnot been analysed in detail before.1 Introdu
tionSeveral methods for software performan
e and relia-bility enhan
ements have been investigated over thelast de
ades, in
luding 
he
kpointing, software reju-venation, preventive maintenan
e and restart. Forthose me
hanisms, many di�erent sto
hasti
 mod-els have been proposed and analysed. These modelshave a lot in 
ommon, sin
e the mentioned me
h-anisms have many similarities. All deal with sys-tems that operate in an environment that is subje
tto maintenan
e and failures (and asso
iated repairs),so that pro
essing is interrupted and restarted, thelatter possibly from an intermediate 
he
kpoint.Re
ently, we provided a detailed analysis of `yet an-other' model [6℄, namely one for restart, suitable fors
enarios with highly variable response times. Themodel has a striking simpli
ity, and the questionarises why the model had not been analysed before.In this paper, we try to answer that question by dis-
ussing the modelling literature for systems with re-tries in light of our restart model.2 Basi
 Restart ModelOur model is very simple [6℄. A task is started, andwhen it has not 
ompleted at a threshold time, it isretried. The task is assumed to 
omplete a

ordingto some probability distribution, and it is assumedthat ea
h retry terminates the previous attempt. Thequestion is: in order to minimise the 
ompletion time,what is the best time to restart?We found a number of elegant and interesting re-sults. A restart should not ne
essarily take pla
e at

`�xed' times between su

essive tries. Only when onewants to minimise the �rst moment of 
ompletiontime, the best strategy is to retry at �xed intervals.In parti
ular, the retry should take pla
e at the timepoint where the hazard rate is re
ipro
al to the in-verse of the resulting 
ompletion time. For highermoments of 
ompletion time, it is better to initiaterestarts at a fast pa
e at the beginning, and thenslow down. For the distribution of the 
ompletiontime, also interesting results hold. For instan
e, tomaximise the probability of making a deadline, oneshould do restarts at time points at whi
h the haz-ard rates are equal. A spe
ial 
ase that obeys this
riterion is to restart at equi-distant time points, butthis is not always the global optimum (it 
ould in fa
t
orrespond to a lo
al or global sub-optimum).3 Time-Out ModelsA 
losely related problem is that of setting time-outs,su
h as time-outs in the TCP transport proto
ol [3℄,or in failure dete
tors (see [6℄). Extensive resear
hhas gone into pra
ti
al solutions for determining areasonable TCP time-out as a fun
tion of the ex-pe
ted round trip time (i.e., 
ompletion time). Expo-nential ba
k-o� is then employed to make sure thatone does not endlessly retry too qui
k.In a similar vain, models for restart that do notmake any assumption about the distribution of 
om-pletion time have been developed (see [6℄. It has beenshown that a ba
k-o� me
hanism that is not dissim-ilar to exponential ba
k-o� is of optimal order, nomatter what the a
tual distribution of response timeis. A 
ore assumption in this work is that 
onse
-utive tries are statisti
ally independent and retriesabort earlier attempts. This work does not 
onsiderthe `network e�e
t', whi
h o

urs when many tasksfollow the same strategy. Instead, all analysis is donefor one isolated end-point, assuming all other sys-tems to behave as before. Only Huberman 
ondu
tsa dis
rete-event simulation to study the network ef-fe
t (see [6℄.For the quality of servi
e of failure dete
tors, ase
ondary issue 
omes into play: when retrying, theprevious attempt is not 
an
elled. If s
ar
eness of1



resour
es is not modelled, the optimal strategy is to
ontinuously retry. In a real system, this obviouslyleads to bandwidth and CPU overload. The models
onsidered by Chen et. al. therefore in
lude band-width 
on
erns (see [6℄.4 Che
kpointing and Rejuve-nationChe
kpointing models [1, 5℄ typi
ally assume that a�xed amount of work needs to be performed in anenvironment that is subje
t to failures. Many ofthe models in
lude state information that des
ribeswhether the system is operational or in repair. Themodels vary in 
onditions upon the state model: somelimit the number of visits to the failed state, otherslimit the total time spent in the failed state to repre-sent the pro
essing of 
riti
al real-time tasks. Uponfailure of the system either no work is saved, all workis saved, or some intermediate amount is saved, rep-resenting the pla
ement of 
he
kpoints. The modelsfurthermore di�er in whether they allow for failuresduring 
he
kpointing or not. A spe
ial 
ase is theone where 
he
kpointing at zero 
ost is performed.The optimisation problem then is to �nd the best
he
kpoints su
h that the probability of 
ompletinga given amount of work in the given environment ismaximised.A 
he
kpointing model with immediate repair andrepeat strategy (all work is lost) is very similar tothe restart model. The only di�eren
e is that in therestart model the amount of work is a random vari-able whereas in the 
he
kpointing literature it typi-
ally is a 
onstant.Software rejuvenation models [1℄ typi
ally assume,similar to the 
he
kpointing models, a �xed amountof work to be 
ompleted. However, the metri
 ofinterest usually is not 
ompletion time, but systemavailability. Software rejuvenation models have arather sophisti
ated state des
ription. The systemmay be up or down, and it 
an be down after a fail-ure or out of order due to rejuvenation tasks. It isassumed that rejuvenation takes less time than re-pair and the problem is to determine how often thesystem should be rejuvenated su
h that the overallsystem availability is maximised and system downtime is minimised.The main di�eren
e between models for rejuvena-tion and restart is that the rejuvenation models in-
lude system detail to des
ribe the aging or degrada-tion aspe
t of the system, while the restart model in-
ludes no system information. In both type of modelsjob pro
essing is interrupted, but in the rejuvenationmodel this is a side e�e
t of rejuvenation, while forthe restart model it is the essential model behaviour.Che
kpointing and rejuvenation 
an be 
ombined,the former operating on the software and task oper-ation and the latter improving system reliability and

performan
e. In this 
ase the 
onsidered metri
 isthe moments of task 
ompletion time, as typi
al in
he
kpointing models.5 Preventive Maintenan
e andSurvival AnalysisPreventive maintenan
e models [2℄ aim at maximis-ing system operation time, whi
h leads to an optimi-sation problem that is almost the dual to that 
on-sidered in restart, time-outs and 
he
kpointing (andto some extend rejuvenation). Hen
e, a strategy thatmade sense for restart would have the opposite e�e
tin preventive maintenan
e. Nevertheless, the mathe-mati
s is essentially identi
al (always related to set-ting derivatives to zero) and the results should there-fore translate between the two opposed obje
tives.A main di�eren
e, however, is the following. Whenminimising the 
ompletion time, it is natural to add atime penalty in the model every time a restart takespla
e (every restart kills the previous attempt andtriggers the next attempt, and this takes time). How-ever, when maximising system life time, su
h a timepenalty does not make sense, sin
e it only enlargesthe life time. This would imply that very long and
ontinuous maintenan
e is best for the system, some-thing that does not 
orrespond to real life. As a 
on-sequen
e, preventive maintenan
e models introdu
e
osts into the model to represent a penalty asso
i-ated with triggering maintenan
e.Survival analysis [4℄ deals with estimation of thesu

ess of medi
ine on the life time of humans (or, infa
t, other spe
ies). The fo
us in this work is typi-
ally on statisti
al estimation of hazard rates, whi
hplay a 
ru
ial role in 
hara
terising the life time ofa subje
t. The importan
e of the hazard rate 
omesforward in restart analysis as well, but the survivalanalysis literature rarely 
on
erns itself with modelsfor optimal timing of 
ertain a
tions, probably sin
eproviding medi
ines is not an instantaneous a
tivity.6 Con
lusionWe have given a brief overview of various modelsthat deal with the e�e
t of retries on task 
omple-tion time. We did this in light of a re
ent modelwe analysed, and whi
h, mu
h to our surprise, hadnot been analysed in detail before. In this write-up,it be
omes 
lear that the model possibly never was
onsidered useful. First of all, the analysis only leadsto non-trivial results if the 
ompletion time distribu-tion has high varian
e (su
h as in the Internet), or isa defe
tive distributions (modelling failed attempts).Furthermore, in preventive maintenan
e models, the'dual' obje
tive makes it impossible to in
lude penal-ties as easily as in the restart model. Hen
e, thepreventive maintenan
e literature is 
on
erned with



models that in
lude maintenan
e 
osts. In 
he
k-pointing and rejuvenation, the simple model we dis-
uss 
omes forward as a spe
ial 
ase, but it never hasbeen analysed in detail. This may be be
ause di�er-ent metri
s are of interest, or be
ause more aspe
tsof the system are 
onsidered important, su
h as thesystem aging phenomenon in rejuvenation.Note: mu
h more relevant literature 
ould be listed inthis paper. For this short 
ontribution, we do not pro-vide all referen
es, but instead point the reader to thereferen
es in the following arti
les.Referen
es[1℄ A. Bobbio, S. Garg, M. Gribaudo, A. Horvath, M.Sereno and M. Telek, \Modeling Software Systemswith Rejuvenation, Restoration and Che
kpointingthrough Fluid Sto
hasti
 Petri Nets," IEEE PetriNets and Performan
e Models, pp. 82{91, IEEEComputer So
iety Press, 1999.[2℄ I. Gertsbakh, Reliability Theory, With Appli
ationsto Preventive Maintenan
e, Springer Verlag, Berlin,2000.[3℄ B. Krishnamurthy and J. Rexford, Web Proto
olsand Pra
ti
e, Addison Wesley, 2001.[4℄ J. Lawless, Statisti
al Models and Methods for Life-time Data, John Wiley and Sons, 1982.[5℄ V. Ni
ola, \Che
kpointing and the Modeling of Pro-gram Exe
ution Time," in Trends in Software 3:Software Fault Toleran
e, M. Lyu (Ed.), Wiley &Sons, Chi
hester, UK, Chapter 7, pp. 167{188, 1995.[6℄ A. van Moorsel and K. Wolter, \Analysis andAlgorithms for Restart," IEEE Quantitative Eval-uation of Systems, IEEE Computer So
iety Press,pp. 195{204, 2004.


