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Abstract

We present an on-line algorithm for optimizing and
adapting the retry times for failure detection mecha-
nisms. The optimization is carried out with respect
to both the expectation and the variance of total de-
tection time. We discuss in this paper the situation
with transient failures.

1 Model

Assume one uses a ‘ping’ mechanism to diagnose if a
service is up or down. That is, the ‘source’ sends a
message to the diagnosed service and expects a reply
stating the service is up. If the reply does not come,
either the service is indeed down, or some failure hap-
pened in the transmission or computation needed to
process pings. In the latter case, one may retry the
ping, possibly with better luck. The question that
arises is how quick and how often one should retry.
This paper provides an on-line scalable algorithm
that optimizes and adapts the retry time for situa-
tions where only transient failures need to be con-
sidered. That is, we assume the service is not expe-
riencing a hard or permanent failure but that other
phenomena caused the source not to receive a reply.
This assumption allows us to model consecutive di-
agnosis attempts as independent of each other. Our
analysis also assumes that retries preempt earlier at-
tempts, thus leading to a worst case analysis. The
resulting analysis and algorithms are rather elegant,
and provide the base for future work on systems with
mixtures of transient and permanent failures.

2 Basic Results

Let f(t) be the probability density function of the re-
turn time without retries. Assume 7 is a retry time,
and the overhead associated with retrying is c time
units for each retry. Then we can introduce the ran-
dom variable T corresponding to the total diagnosis
time when an unlimited number of retries is allowed.
That is, every time no response is received at the
source after 7 time units, one retries. Assuming that
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a retry preempts the previous attempt, the expected
total diagnosis time E; is given in [1] as:
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Maurer and Huberman [1] also remark that both the
expectation and variance of T} have their minimum
at the same time value 7*. Moreover, one can derive
that for this optimal retry time 7* it holds that:
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Under certain regularity conditions, this implies that

a retry time 7 is not optimal and should be increased
as long as
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3 The Algorithm

In our scalable on-line algorithm, we assume we col-
lect data for a system with some retry time 7 set be-
forehand, out of our control. Based on the collected
data, we adapt 7 to improve the expectation and vari-
ance of the total diagnosis time T'-. Of course, if one
continues collecting data, the amount of data even-
tually gets prohibitely large. We therefore keep track
of results per ‘bucket,” that is, we divide the observa-
tions over H buckets, each of size h = 7/H, and only
keep track of the average return time M; and number
of samples N; within each interval (i = 1,2,..., H).
In the i-th bucket, we thus consider the observations
with values in the interval [(¢ — 1) - h,i - h], and we
label the observations t; ...t; n;- Then M; is esti-

mated by:
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We also keep count of N, the total number of obser-
vations that take at least 7 time units. (Note that
for these observations a retry is initiated, and that
this number thus also includes possible failures.) For
candidate retry time 7; = 7 - h, we then obtain the
following estimators for (2) and (3):
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We estimate the expected diagnosis time E., by the
asymptotically unbiased estimator
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We can also estimate the probability density at each
interval, to get for (5):
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This latest result we use to judge if the used retry
time should be increased beyond its current value.

4 Simulation

We test our algorithm by sampling return times from
what we term the ‘failed exponential’ distribution.
The failed exponential is a degenerate distribution:
it is exponentially distributed with probability 1 — f,
and takes ‘infinite’ value with probability f. The lat-
ter case represents the situation in which no reply
is received at the source, thus indicating a transient
failure. For the failed exponential, (2) and (3) be-
come:
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Provided f > 0 and ¢ > 0, we derive for the optimal
retry time 7* that
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These analytic expressions and equation we compare
against our estimators. It is worthwhile to note that
if f =0 and ¢ = 0 all retry times are equally good
(and have expected diagnosis time }), as it should
be for the memoryless exponential distribution. If
f =0 and ¢ > 0 it never pays off to retry. If f > 0
and ¢ = 0 (that is, retrying consumes no time), one
should always retry immediately again (7* = 0)! The
non-pathological case arises for f > 0 and ¢ > 0, in
which case there is an optimum retry time 7* > 0, as
follows from (9). Also realize that retrying guarantees

that the expected diagnosis time is finite, even though
the expected return time for a single ping has non-
defined (‘infinite’) expectation. This important result
was also observed in [2] in general setting.

In our simulation the failed exponential has pa-
rameters A = 1, f = 0.5, and the cost of retrying is
¢ = 1.0. It turns out that the optimal retry time is
t* = 1.505, with expected total diagnosis time equal
to E;+ = 4.505. The following tables then show the
estimate of 7* and E,- as a function of the number
of samples and of the size of the buckets. Since we
only consider the multiples of bucket size as candi-
dates retry times, we present for each bucket size the
theoretical best 7* and associated E .

As expected, with smaller bucket size, one tends to
get better results, but note that both 7* and E.~ do
not converge particulary fast to the analytic results,
and that smaller buckets do not necessarily lead to
retry times closer to 7*. More rigorous analysis in-
volving confidence intervals is needed to identify what
bucket size works best.

samples/ 1000 10000 100000 1000000 best

bucket size
0.64 1.28 1.92 1.28 1.28 1.28
0.32 1.6 1.6 1.6 1.6 1.6
0.16 1.44 1.44 1.44 1.44 1.44
0.08 1.44 1.44 1.52 1.52 1.52
0.04 1.44 1.44 1.48 1.48 1.52
0.02 1.44 1.46 1.48 1.48 1.5
0.01 1.44 1.45 1.48 1.48 1.51

Table 1: Optimal retry time 7* as function of sample
and bucket size

samples/ | 1000 10000 100000 1000000 best
bucket
0.64 4.495 4.509 4.517 4.548 4.543
0.32 4.423  4.448 4.475 4.517 4.511
0.16 4.356  4.440 4.468 4.511 4.508
0.08 4.356  4.440 4.465 4.509 4.505
0.04 4.356  4.440 4.464 4.509 4.505
0.02 4.356 4.439 4.464 4.509 4.503
0.01 4.356 4.436 4.464 4.509 4.503

Table 2: Expected total diagnosis time E,. as func-
tion of sample and bucket size
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