
Reducing the Cost of Generating

APH-distributed Random Numbers

Philipp Reinecke1, Miklós Telek2, and Katinka Wolter1

1 Freie Universität Berlin
Institut für Informatik

Takustr. 9
14195 Berlin, Germany

{philipp.reinecke, katinka.wolter}@fu-berlin.de
2 Budapest University of Technology and Economics

Department of Telecommunications
1521 Budapest, Hungary
telek@webspn.hit.bme.hu

Abstract. Phase-type (PH) distributions are proven to be very powerful
tools in modelling and analysis of a wide range of phenomena in computer
systems. The use of these distributions in simulation studies requires
efficient methods for generating PH-distributed random numbers. In this
work, we discuss algorithms for generating random numbers from PH
distributions and propose two algorithms for reducing the cost associated
with generating random numbers from Acyclic Phase-Type distributions
(APH).

1 Introduction

Phase-type (PH) distributions have been widely used in modelling various phe-
nomena such as response-times, inter-arrival times and failure times in computer
systems. The fact that there are simple and elegant solution techniques available
for PH distributions has made them appealing for analytic solutions.

PH distributions can also be employed in simulation studies, where they allow
the introduction of realistic response-time distributions obtained from measure-
ments into simulations without modification of the typically Markovian simu-
lation tool. Here, the efficiency of generating PH-distributed random numbers
plays a crucial role. In this work we investigate the efficiency of generating ran-
dom numbers from continuous PH distributions. Due to the fact that the Marko-
vian representation of PH distributions is not unique the key issue to investigate
is which representation of a PH distribution is most efficient for random-number
generation. In [1] we posed the following optimisation problem: Starting from a
Markovian representation of a PH distribution, find the (not necessarily mini-
mal) Markovian representation that minimises the cost associated with gener-
ating random numbers. In this paper we study this optimisation problem for
Acyclic Phase-Type (APH) distributions. We provide a result on the optimal

representation and propose a number of algorithms to transform a given APH
representation into a representation with lower simulation cost.

The paper is structured as follows. In the next section we introduce the con-
sidered model class the notation used throughout the paper. We then describe a
number of algorithms for generating random numbers from phase-type distribu-
tions and derive average costs. In Section 5 we study the problem of optimising
bi-diagonal representations for random-number generation. Section 6 illustrates
the application of our algorithms to phase-type distributions fitted to measure-
ment data. Finally, in Section 7 we conclude with an outlook on future work.

2 Definitions and Notation

Continuous phase-type (PH) distributions represent the time to absorption in
a continuous-time Markov chain with one absorbing state [2]. PH distributions
are commonly specified as a tuple (α,A) of the initial probability vector α =
(α1, . . . , αn) and the transient generator matrix A = {aij}, 1 ≤ i, j ≤ n. The
probability density function, the cumulative distribution function, and the kth
moment, respectively, are defined as follows [3, 2, 4]:

f(x) = αeAxa,

F (x) = 1 − αeAx1l,

E
[

Xk
]

= k!α(−A)−k1l.

where a = −A1l, and 1l is the column vector of ones of appropriate size.

Definition 1. The (α,A) representation is called Markovian if α ≥ 0, α1l = 1,
aij ≥ 0, 1 ≤ i 6= j ≤ n and a = −A1l ≥ 0. Then, the generator matrix of the
associated CTMC is

A =

(

A a

0 0

)

.

Definition 2. The size of the (α,A) representation is the size of the vector α,
which is equal to the size of the square matrix A.

The (α,A) representation is not unique. In particular, another representation
of the same size can be obtained by a similarity transformation using a matrix
B:

Definition 3. When B is invertible and B1l = 1l, then the similarity transform

(αB,B−1AB)

provides another representation of the same distribution, since its CDF is

1 − αBeB
−1

ABx1l = 1 − αBB−1eAxB1l = 1 − αeAx1l.

In the following we refer to a PH representation as being bi-diagonal (cf.
Figure 1) if it meets the following requirements:

Fig. 1. A bi-diagonal representation.

Definition 4. A bi-diagonal representation of a PH distribution (α,A) has
aii < 0, aii+1 = −aii and aij = 0 for j < i and j > i+1. An alternative notation
is (α, Λ), with Λ = (a1, . . . , an) a row vector of length n and ai = −aii.

As shown by Cumani [5], every APH can be represented in the CF-1 form, which
is a special bi-diagonal representation where the rates aii are in increasing order:

Definition 5. CF-1 form [5] The CF-1 form represents an acyclic phase-type
distribution as a bi-diagonal matrix with aii < 0, aii+1 = −aii and aij = 0 for
j < i and j > i + 1. Rates are located along the diagonal in increasing order of
magnitude: |aii| ≤ |ai+1i+1|. That is, in Λ, a1 ≤ a2 ≤ · · · ≤ an.

3 Generation of PH-distributed Random Numbers

We now discuss several methods for generating random variates from a gen-
eral PH distribution given in Markovian form. These algorithms all rely on the
following two elementary operations:

– Drawing an exponentially distributed sample with parameter λ

Exp(λ) = −
1

λ
ln(U),

– Generating an Erlang-distributed sample with degree b and parameter λ

Erl(b, λ) = −
1

λ
ln

(

b
∏

i=1

Ui

)

where U denotes a [0, 1] uniformly distributed pseudo-random number. The
Erl(b, λ) sampling is more efficient than drawing b exponentially distributed sam-
ples and summing them up, because the ln operation is applied only once.

The most natural way to simulate a PH-distributed random number is to play
the CTMC until absorption. By ‘play’ we mean to simulate the state transitions
of the CTMC according to the following basic steps. Let ei denote the row vector
with 1 at position i, and 0 everywhere else.

Procedure Play:

1) clock= 0, draw an α-distributed discrete sample for the initial state,
2) the chain is in state i

• draw an ei(−diag〈1/aii, 0〉A+I)-distributed discrete sample for the next
state,

• clock += Exp(−aii),

• if the next state is the absorbing one go to 3), otherwise go to 2)
3) return the clock value

Observe that Play draws one exponentially distributed sample for each visit
to a state. If a state is visited multiple times, this means repeatedly drawing
exponentially distributed samples with the same parameter and then summing
them up. [6] proposed the following approach, which replaces the individual
exponential samples by drawing one Erlang sample for repeated visits for each
state:

Procedure Count:

1) clock= 0, count[i] = 0, (i = 1, .., n), draw an α-distributed discrete sample
for the initial state,

2) the chain is in state i
• count[i] += 1,
• draw an ei(−diag〈1/aii, 0〉A+I)-distributed discrete sample for the next

state,
• if the next state is the absorbing one go to 3) otherwise to 2)

3) for i = 1, . . . , n, clock += Erl(count[i],−aii) and return the clock value.

We point out that both approaches are suited to general PH distributions in
an arbitrary form, where each phase may have several successor phases. With bi-
diagonal representations such as the CF-1 form we can make use of the following
structural restriction: For each phase, there is exactly one successor phase; con-
sequently, there is no need to randomly choose the next state. This observation
allows the following simplification of Play:

Procedure SimplePlay:

1) clock= 0, draw an α-distributed discrete sample for the initial state.
2) The chain is in state i.

• clock += Exp(−aii),
• i += 1,
• if the next state is the absorbing state go to 3), otherwise go to 2).

3) Return the clock value.

4 Average Costs of Generating PH-Distributed Random

Numbers

As we saw in the previous section, PH random number generation requires uni-
form random variates, both for state selection and for generating Erlang and
exponential random variates. Furthermore, for Erlang and exponential random
variates logarithm operations must be performed. Therefore, we consider the
following complexity metrics:

• #uni, the number of required uniform random variates, and
• #ln, the number of logarithms that need to be computed.

The average cost associated with drawing a random variate from a phase-type
distribution depends on the average number of state transitions up to absorption,

n∗ = α(diag〈1/aii〉A)−11l.

For APH in bi-diagonal form this reduces to

n∗ = ανT,

where ν = (n, n − 1, . . . , 1). Thus n∗ =
∑n

i=1
αi(n − i + 1).

All three procedures require one uniform random variate to choose the ini-
tial state. The Play and Count procedures then need two uniforms per step,
because the next phase is chosen randomly. Both Play and Count therefore re-
quire #uni = 2n∗ + 1 uniform random variates, while SimplePlay requires only
#uni = n∗ + 1 uniforms. The number of logarithms required for the Play and
SimplePlay procedures is #ln = n∗, since in each phase an exponentially dis-
tributed random variate is drawn. Using Count, #ln is equal to the number of
visited states, because Count counts repeated visits to the same state and draws
one Erlang random variate per state instead. Thus #ln ≤ n for Count. How-
ever, as APH distributions do not contain cycles, all three procedures require the
same number of logarithms. We can thus conclude that for generating random
numbers from an APH efficiently we should transform the distribution into a
bi-diagonal representation and then apply the SimplePlay procedure.

5 Optimal Representations for APH-PRNG

As illustrated in Section 4, average costs for random-number generation depend
mainly on the number of visited states, n∗. In [1] we posed the problem of finding
a Markovian representation that minimises n∗.

In the following we tackle this optimisation problem for acyclic phase-type
(APH) distributions (α,A) in CF-1 form. We try to find a bi-diagonal represen-
tation (α∗,A∗) for which the average number of traversed states,

n∗ = αν =

n
∑

i=1

αi(n − i + 1). (1)

is minimal.
From the right side of (1) it is immediately obvious that, in order to reduce n∗,

probability mass must be shifted to the higher indices of the initial probability
vector α. Formally, the new probability vector α′ must be stochastically larger
than α:

Definition 6. The stochastic ordering [7] on the set of stochastic vectors of size
n is defined as follows:

α ≤st α′ ⇔ 1 − Pr{α ≤ k} ≤ 1 − Pr{α′ ≤ k} for k = 1, . . . , n,

where

Pr{α ≤ k} :=

k
∑

i=1

αi.

At the same time, we know that in order to represent the same distribution the
matrices A and A∗ must have the same eigenvalues. Since in the bi-diagonal
form the eigenvalues are found on the diagonals, we consider shifting probability
mass to the right by modifying the order of the rates along the diagonals. We
propose the following operator:

Definition 7. The Swap(α,A, i) operator exchanges the ith rate with the (i +
1)th rate (1 ≤ i ≤ n − 1) on the diagonals in a bi-diagonal representation by
swapping the ith and (i + 1)th entry in the vector Λ. The associated similarity
transformation matrix B has the form

B =

. . . 0 0 0 0
0 1 0 0 0
0 bi+1,i bi+1,i+1 0 0
0 0 0 1 0

0 0 0 0
. . .

where

bi+1,i =
ai − ai+1

ai

, and bi+1,i+1 =
ai+1

ai

for 1 ≤ i ≤ n − 1.

Where appropriate, we also use the Swap(α, Λ, i) notation to denote the same
operator.

Let (α′,A′) denote the result of applying Swap(α,A, i) on (α,A). Since
(α′,A′) is derived by applying a similarity transformation to (α,A), both tuples
represent the same distribution. Recall from Definition 3 that

α′ = αB.

Then, the following properties of the result of the Swap operation are immediately
obvious:

∀j 6∈ {i, i + 1} : α′

j = αj (2)

α′

i = αi + αi+1

ai − ai+1

ai

= αi + αi+1(1 −
ai+1

ai

) (3)

α′

i+1 = αi+1

ai+1

ai

(4)

n∗(α′,A′) = n∗(α,A) + αi+1(1 −
ai+1

ai

). (5)

In order to have α <st α′, α′

i < αi and αi+1 < α′

i+1 must hold. From (3) and
(4) we see that 1 < ai+1

ai

(and thus n∗(α′, A′) < n∗(α, A), (5)), i.e. α <st α′

if we move the higher rate to the left. Consequently, by repeatedly exchanging

adjacent rates ai < ai+1 until no such operations are possible anymore, we can
obtain a representation that has minimal costs n∗.

However, the Swap operator is limited by the fact that it will result in a non-
stochastic vector α′ if αi < αi+1(1−

ai+1

ai

), since then the resulting α′

i < 0. In this
case (α′,A) is a non-Markovian matrix-exponential (ME) representation of the
original phase-type distribution. This representation is not suitable as input for
the random-number generation algorithms discussed in Section 3. Furthermore,
both the stochastic ordering and n∗ are only defined for stochastic α. We must
therefore avoid Swap operations that will result in non-stochastic α′. Based on
these observations we propose the following

Lemma 1. Given a Markovian representation (α,A) in CF-1 form, the repre-
sentation (α∗,A∗) that reverses the order of the rates is optimal with respect to
n∗ if α∗ is a stochastic vector.

Proof. By contradiction: Assume the representation (α′,A′) with rates

a′

1, . . . , a
′

i, a
′

i+1, . . . , a
′

n

ordered such that a′

i < a′

i+1 is optimal. Then from (5) it follows that by exchang-
ing a′

i, a
′

i+1 using the Swap operator we can obtain a representation (α′′,A′′) =
Swap(α′,A′, i) for which n∗(α′′,A′′) < n∗(α′,A′). ⊓⊔

5.1 Algorithms for Computing Optimal APH Representations

We will now develop algorithms for finding the Markovian APH representation
that is optimal (with respect to n∗) for generating random numbers. The most
obvious approach proceeds by enumerating all permutations of the rate vector
Λ and minimising n∗ over the subset of permutations for which the associated
initial vector is stochastic. This approach is easily implemented as a modification
to the Steinhaus-Johnson-Trotter algorithm for enumerating permutations [8]
and is guaranteed to find the optimum. Unfortunately, the approach requires
exploring n! permutations for an APH of size n, which makes it infeasible for
APH of realistic size.

The two algorithms presented in this section both implement a directed
search strategy based on Lemma 1 and are thus more efficient than an exhaustive
search. On the other hand, they are not guaranteed to find the optimum.

The first algorithm follows directly from Lemma 1 and is a variant of the
Bubblesort algorithm [9] on the vector Λ:

Algorithm BubblesortOptimise(α, Λ):

For i = 1, . . . , n − 1 do

For j = 1, . . . , n − 1 do

If Λ[j] < Λ[j + 1] ∧ (α′, Λ′) := Swap(α, Λ, i) is Markovian then

(α, Λ) := (α′, Λ′)
Else

break

done

done

Return (α, Λ)

The algorithm attempts to re-order the rates such that the reversed CF-1
form is obtained, i.e. it tries to sort the rates in descending order. Because the
algorithm only performs Swap operations if the result is Markovian, we can-
not guarantee that it finds the optimal Markovian representation, because some
Markovian representations can be hidden ‘behind’ non-Markovian ones.

The second algorithm starts from the reversed CF-1 and tries to find a Marko-
vian representation by successively eliminating negative entries in α if they exist:

Algorithm FindMarkovian:

Let (α′,A′) be the reversed CF-1 of (α,A).
While ∃i ∈ {1, . . . , n − 1} : α′

i < 0
i := argmini {α

′

i < 0}
i := max(1, i)
While α′ is not Markovian ∧∃k : Λ[k] ≥ Λ[k + 1]

k := argminj{i − 1 ≤ j ≤ n − 1 : Λ[j] ≥ Λ[j + 1]}
(α′, Λ′) := Swap(α′, Λ′, k)

end

end

Return (α′, Λ′)

6 Illustrative Examples

We will now illustrate our results on several APH distributions.

Example 1: Consider the generalised Erlang distribution with ΛA = (1, 2, 3, 4)
and α1 = (1, 0, 0, 0). For this distribution, every order of rates in ΛA has costs
n∗ = 4, since no probability mass can be shifted to the right. As expected,
both BubblesortOptimise and FindMarkovian identify (α′

1 = (1, 0, 0, 0), Λ′

A =
(4, 3, 2, 1) as the optimal case.

Example 2: We assign the initial probability vector α2 = (0.7, 0.15, 0.09, 0.06)
to ΛA. Then, the average number of visited states is

n∗(α2, ΛA) = 3.49.

Application of BubblesortOptimise results in the reversed CF-1 form with
Λ′′

A = (4, 3, 2, 1), α2 = (0.46, 0.12, 0.18, 0.24) and costs

n∗(α′

2, Λ
′′

A) = 2.8.

Since the reversed CF-1 is Markovian, FindMarkovian gives the same result. We
observe that probability mass in the initial probability vector has been shifted
towards higher indices.

Example 3: We study (α3,A) with α = (0.5, 0.4, 0.05, 0.05) and again ΛA =
(1, 2, 3, 4). This representation has costs

n∗(α3,A) = 3.35.

The reversed CF-1, (α′

3,A
′) has initial vector α′ = (−0.6, 1.4, 0, 0.2) and is there-

fore non-Markovian. Applying the BubblesortOptimise algorithm provides us
with a representation (α′′

3 , Λ′′

A) with Λ′′

A = (2, 4, 3, 1) and α′′

3 = (0.1, 0.7, 0, 0.2),
for which

n∗(α′′

3 ,A′′) = 2.7.

FindMarkovian starts on the non-Markovian reversed CF-1 representation and
generates the Markovian representation Λ′′′

A = (2, 3, 4, 1) and α′′′

3 = (0.1, 0.7, 0, 0.2),
which has the same costs of 2.7. A complete enumeration of all permutations
shows that both orderings are optimal with respect to n∗.

Example 4: As the last example, we fit an APH(8) to the loss1-50-opc-1data-
set from [10] using the PhFit tool [3]. This data set contains response-time mea-
surements from a SOA system under high load and with network packet loss. The
resulting APH has initial probability vector γ = (0.019, 0.006, 0.069, 0.104, 0.164,
0.371, 0.216, 0.051) and rate vector

ΛG = (7.181e − 05, 2.4280e− 04, 5.854e− 04, 5.863e− 04,

5.956e− 04, 5.965e− 04, 6.178e− 04, 6.332e− 04).

For this representation,

n∗(γ,G) = 3.381.

Again, the reversed CF-1 for this representation has negative entries in the ini-
tial vector. Application of BubblesortOptimise results in (γ′,G′) with initial
probability vector γ′ = (0.006, 0.019, 0.061, 0.093, 0.133, 0.391, 0.242, 0.055) and

Λ′

G = (2.4280e− 04, 7.181e− 05, 6.332e− 04, 6.178e− 04,

5.965e− 04, 5.956e− 04, 5.863e− 04, 5.854e− 04),

which has n∗(γ ′,G′) = 3.257. FindMarkovian terminates with γ′′ = (0.006, 0.019,
0.069, 0.104, 0.164, 0.371, 0.216, 0.051),

Λ′′

G = (2.4280e− 04, 7.181e− 05, 5.854e− 04, 5.863e− 04,

5.956e− 04, 5.965e− 04, 6.178e− 04, 6.332e− 04)

and n∗(γ ′,G′) = 3.357.

6.1 Discussion

In our examples we observe that the effectiveness of the algorithms depends
strongly on the initial representations. Representations with (generalised) Erlang
structure are invariant to re-ordering of rates. The same holds for blocks of
subsequent phases with initial probability 0, as illustrated by the third example.
For representations where the probability mass is already concentrated at the
higher indices in the CF-1, there is also little room for improvement.

In general, our examples indicate that there are phase-type distributions for
which re-ordering of rates does indeed lead to a cost reduction. On the other
hand, we can identify (generalised) Erlang structure and large probability mass
at the higher indices as two properties of representations that are not susceptible
to the proposed optimisation. However, so far we have not been able to find
more formal criteria for when and why the optimisation procedures fail. Such
criteria would not only help in improving the optimisation algorithms, but may
also enable the development of specialised PH-fitting methods that give APH
distributions suited for efficient random-number generation.

7 Conclusion and Future Work

In this paper we considered the complexity of generating random numbers from
phase-type distributions. Our focus lay on bi-diagonal representations of acyclic
phase-type distributions, whose structural limitations enable the SimplePlay

procedure which is more effective than the more general Play and Count pro-
cedures. By re-ordering rates along the diagonal we provided a first attempt
at optimising the bi-diagonal representation for efficient random-number gen-
eration. We provide a limited result for the optimal ordering and propose two
algorithms for finding the optimal representation, given an APH in CF-1 form.

We note that the effectiveness of our approach depends on the given APH.
While we can provide a number of intuitive guidelines, formal criteria for de-
ciding when re-ordering rates may provide an advantage are still future work.
Furthermore, in the near future we will extend our approach to eliminate the
limitations of our result, and we will apply the approach to general phase-type
distributions in Monocyclic form.

Acknowledgements

This work was supported by DFG grant Wo 898/2-1, Wo 898/3-1, and OTKA
grant no. K-61709.

References

1. Reinecke, P., Wolter, K., Bodrog, L., Telek, M.: On the Cost of Generating PH-
distributed Random Numbers. In Horváth, G., Joshi, K., Heindl, A., eds.: Proceed-
ings of the Ninth International Workshop on Performability Modeling of Computer

and Communication Systems (PMCCS-9), Eger, Hungary (September 17–18, 2009
2009)

2. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models. An Algorithmic
Approach. Dover Publications, Inc., New York (1981)

3. Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: TOOLS
’02: Proceedings of the 12th International Conference on Computer Performance
Evaluation, Modelling Techniques and Tools, London, UK, Springer-Verlag (2002)
82–91

4. Telek, M., Heindl, A.: Matching Moments for Acyclic Discrete and Continous
Phase-Type Distributions of Second Order. International Journal of Simulation
Systems, Science & Technology 3(3–4) (December 2002) 47–57

5. Cumani, A.: On the canonical representation of homogeneous Markov processes
modelling failure-time distributions. Microelectronics and Reliability 22 (1982)
583–602

6. Neuts, M.F., Pagano, M.E.: Generating random variates from a distribution of
phase type. In: WSC ’81: Proceedings of the 13th conference on Winter simulation,
Piscataway, NJ, USA, IEEE Press (1981) 381–387

7. Szekli, R.: Stochastic Ordering and Dependence in Applied Probability. Springer
Verlag (1995)

8. Johnson, S.M.: Generation of Permutations by Adjacent Transposition. Mathe-
matics of Computation 17(83) (July 1963) 282–285

9. Knuth, D.E.: The Art of Computer Programming. Volume 3. Addison-Wesley
(1997)

10. Reinecke, P., Wittkowski, S., Wolter, K.: Response-time Measurements Using the
Sun Java Adventure Builder. In: QUASOSS ’09: Proceedings of the 1st Interna-
tional Workshop on Quality of Service-oriented Software Systems, New York, NY,
USA, ACM (2009) 11–18

