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Abstract. Restart is an application-level technique that speeds up jobs with highly variable

completion times. In this paper, we present an efficient iterative algorithm to determine the

restart strategy that minimises higher moments of completion time, when the total number of

restarts is finite. We demonstrate its computational efficiency in comparison with alternative

algorithms. We also discuss fast approximations to determine close to optimal restart times

for limiting cases.

1 Introduction

The work in this paper applies to various forms of ‘restart,’ which means that a task is retried after

some time threshold has passed. Restart finds its application in areas ranging from randomised

algorithms [3] to distributed data base queries [7], Internet agents [4] and software rejuvenation

[2]. Probably the most widely exercised restart mechanism is clicking the reload button of the web

browser when a download takes too long.

The basic form of restart can be conveniently modelled assuming that (1) successive downloads

are statistically independent and identically distributed, and (2) new tries abort previous tries.

Such model assumptions have been found realistic for Internet applications [6], and form the basis
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for the analysis in [1, 3, 4] for a variety of restart applications. Interesting enough, even though

rejuvenation and preventive maintenance techniques can be cast as restart methods, they have

always been analysed using relatively intricate models with detailed state information. We believe

that in very ‘random’ environments our simple model applies, as we discuss at length in [5].

Under the stated assumptions, we provide in this paper an efficient algorithm to determine

the optimal time instants at which to initiate restarts, so that higher moments of completion

time are minimised. As we showed in [5], the optimal restart strategy for the first moment can

be determined in straightforward manner, both for finite and infinite number of allowed restarts.

However, determining restart times that minimise higher moments of completion time is consid-

erably more challenging, and requires an iterative approach to deal with the multiple dimensions

of the optimisation problem. Our proposed algorithm leverages various expressions for the mo-

ments of completion time to simplify the minimisation problem. Because of this simplification, the

algorithm outperforms more naive approaches by up to an order of magnitude, as we will show.

From our analysis it follows that it is typically not optimal to apply restarts at constant

intervals when minimising higher moments, even if an infinite number of restarts is allowed. This

is in contrast to the situation for the first moment, as we explain. We also provide insights into the

characteristics of the optimal restart strategy through approximations under limiting conditions.

It turns out that as long as enough restarts are allowed, one can use a first-moment approximation,

with appropriate corrections for the first and last few restarts. Such approximations enable quick

estimates for optimal restart times, and are therefore of practical importance.



2 Model

Let the random variable T represent the completion time of a job without restarts, f(t) its prob-

ability density function, and F (t) its distribution. The total number of restarts is K, and the

overhead associated with restarting is c time units for each restart. The random variable TK (with

density fK(t) and distribution FK(t)) represents the completion time with K restarts, where the

restart intervals have length τ1|K , . . . , τK|K , as shown in Figure 1. The k-th interval starts at time

sk, that is, s1 = 0, s2 = τ1|K + c, . . . , sK+1 =
∑K

k=1
τk|K + Kc.

Setting τK+1|K = ∞ for notational purposes, the density function fK(t) and survival function

F̄K(t) = 1 − FK(t) depend on which restart interval t falls in, as follows [5]:

fK(t) =















∏

k−1

i=1
F̄ (τi|K)f(t − sk) if sk ≤ t < sk + τk|K , k = 1, . . . , K + 1

0 if sk + τk|K ≤ t < sk+1, k = 1, . . . , K

(1)

F̄K(t) =















∏

k−1

i=1
F̄ (τi|K)F̄ (t − sk) if sk ≤ t < sk + τk|K , k = 1, . . . , K + 1

∏

k

i=1
F̄ (τi|K) if sk + τk|K ≤ t < sk+1, k = 1, . . . , K

The N -th moment E[T N

K
], our metric of interest, is by definition:

E[T N

K
] =

∫ ∞

0

tNfK(t)dt =

K+1
∑

k=1

∫

sk+τk|K

sk

tNfK(t)dt. (2)

3 Optimisation

To find the restart times τ1|K , . . . , τK|K that minimise E[T N

K
], one could minimise (2) directly. It

results in a K-dimensional minimisation problem that can be solved with off-the-shelf optimisa-

tion software. However, it is computationally expensive, since every new ‘guess’ for τk|K implies

recomputing the integral term in (2) for all intervals [sl, sl + τl|K) with l ≥ k, to determine if the

guess improves E[T N

K
].

As an alternative, we can use an expression for E[T N

K
] we derived in [5]. We present this

expression here in slightly different form, using the notation k̄ = K − k + 1. It is important to

grasp the intuitive meaning of k̄: where k is the number of restarts preceding and including the



k-th, k̄ is the number of restarts succeeding and including the k-th. We then recursively relate

moments for k̄ restarts with that for k̄− 1 restarts by adding one restart before the existing k̄− 1:

E[T N

k̄
] = Mk[T N ] + F̄ (τk|K)

N
∑

n=0

(

N

n

)

(τk|K + c)N−nE[T n

k̄−1
], (3)

where Mk[T N ] denotes the ‘partial moment,’ defined for k̄ = 1, . . . , K, as:

Mk[T N ] =

∫ τk|K

0

tNf(t)dt.

Instead of minimising (2) one can minimise (3). In this case, however, every new ‘guess’ for τk|K

implies computing E[T N

K
] ‘all the way,’ recursively calculating E[T N

l
] for all values l ≥ k, to

determine if the guess improves E[T N

K
]. This also introduces much computational overhead. (In

Figure 4 we will see that minimising (3) is in fact slightly less expensive than minimising (2), at

least for the discussed example.)

The main idea in this paper is to not minimise (2) or (3) directly, but instead extend to higher

moments an idea that worked very well in [5] for the first moment. Utilising the recursion of

(3), [5] presents an algorithm that sequentially determines the restart time τk|K that minimises

E[Tk̄] = Mk[T ] + F̄ (τk|K)(τk|K + c + E[Tk̄−1]), for k̄ = 1 to K. Its correctness relies on the

fact that the optimal restart time τk|K is independent of preceding restarts, as we discuss in

detail below. We named this algorithm the backward algorithm, since it determines the best

restart times in reversed order, that is, first τK|K , then τK−1|K until finally τ1|K . A single pass

of K optimisations is guaranteed to provide the optimal restart times, which makes the backward

algorithm computationally much more efficient than minimising either (2) or (3). (Figure 4 shows

an improvement of about a factor 20.)

The backward algorithm can not be applied to higher moments, because the optimal value of

a restart interval depends on the restarts that precede it. To resolve this problem, we now prove

that the optimal restart time at interval k depends on preceding restart times solely through

the sum of these restart times, not the individual values. That is, the optimal τk|K depends on

τ1|K , . . . , τk−1|K only through the value of sk. Based on this, we obtain a new expression (namely

expression (4)), which we combine with (3) to simplify the optimisation task.



Theorem 1. For any strictly positive k ≤ K, let the first k − 1 restart times τ1|K , . . . , τk−1|K

be given. The last k̄ restart times τk|K , . . . , τK|K minimise E[T N

K
] if and only if they minimise

E[Tk̄ + sk)N ] (where we equate restart τk+i−1|K in TK with τi|k̄ in Tk̄, for i = 1, . . . , k̄).

Proof. First, by definition:

E[T N

K ] =

∫ sk

0

tNfK(t)dt +

∫ ∞

sk

tNfK(t)dt.

Since the left most integral term does not depend on τk|K , . . . , τK|K , the last k̄ optimal restart

times minimise E[T N

K
] if and only if they minimise

∫ ∞

sk

tNfK(t)dt. If we equate τk+i−1|K with τi|k̄

for i = 1, . . . , k̄, we know from (1) that for any t ≥ 0:

fK(t + sk) =

k−1
∏

l=1

F̄ (τl|K)fk̄(t).

This implies that:

∫ ∞

sk

tNfK(t)dt =

∫ ∞

0

(t + sk)NfK(t + sk)dt =

k−1
∏

l=1

F̄ (τl|K)

∫ ∞

0

(t + sk)Nfk̄(t)dt =

k−1
∏

l=1

F̄ (τl|K)E[(Tk̄ + sk)N ].

The product in this expression is independent of τk|K , . . . , τK|K , and therefore minimising
∫ ∞

sk

tNfK(t)dt

(and thus E[T N

K
]) corresponds to minimising E[(Tk̄ + sk)N ] (with τk+i−1|K = τi|k̄, i = 1, . . . , k̄).

Theorem 1 implies that for any k, k = 1, . . . , K, determining the optimal restart time τk|K

corresponds to minimising:

E[(T
k̄

+ sk)N ] =
N

∑

n=0

(

N

n

)

sN−n

k
E[T n

k̄
], (4)

where E[T n

k̄
] obeys (3):

E[T n

k̄
] = Mk[T n] + F̄ (τk|K)

n
∑

m=0

(

n

m

)

(τk|K + c)n−mE[T m

k̄−1
]. (5)

We are now in a position to show that for the first moment, the optimal value for τk|K does not

depend on earlier restarts, not even through their sum sk. For that reason, the backward algorithm

works correctly for the first moment. We present this as a corollary of Theorem 1.



Corollary 1. The restart times τk|K , . . . , τK|K minimise E[TK ] if and only if they minimise E[T
k̄
]

(with τk+i−1|K = τi|k̄, i = 1, . . . , k̄).

This corollary follows from the fact that Theorem 1 states for N=1 that minimising E[TK ] corre-

sponds to minimising E[Tk̄ + sk]. Obviously, E[Tk̄ + sk] = E[Tk̄] + sk, and since sk is a constant,

it does not influence the optimisation solution. Therefore minimising E[TK ] corresponds to min-

imising E[Tk̄].

We will see in Figure 4 in Section 6 that (for our example) it saves about 70 percent computation

time to minimise the second or third moment of completion time using (4) and (5). The reason for

this speed-up is that with every ‘guess’ of τk|K when minimising (4) using (5), we only recompute

E[T n

k̄
]. That is, the algorithm neither requires to recompute integral terms for all values l ≥ k

(as in (2)), nor terms E[T N

l
] for all values l ≥ k (as in (3)). Effectively, we have isolated the

optimisation of the k-th restart time from interference with the other restart intervals.

4 Algorithm

The resulting optimisation algorithm is given as Algorithm 1. Contrary to the backward algorithm

for the first moment [5] it does not terminate in K steps, but requires to iterate until convergence

(of either E[T N

K
] or the restart times). One can apply generic approaches to decide which restart

time τk to optimise at each iteration (such as the method of steepest descent). However, we propose

three particular ways, which try to leverage the structure of the problem: backward, forward and

alternating.

Algorithm 1 (Backward, Forward and Alternating Optimisation)

Input constants N and K;

Input boolean alternating;

Set either boolean forward or backward to TRUE;

Determine τ∞ that minimises E[T∞];

For n = 1 to N {



Compute and Set E[T n
0 ] (moments without restarts);

For k = K to 1

Initialise E[T n

k̄
] using (5) with τk|K = τ∞;

}

While( not converged ) Do {

If( backward ) then {

For k = K to 1 {

Find τk|K that minimises (4), using (5) for E[T n

k̄
];

For n = 1 to N

Update E[T n

k̄
] using (5) with new value of τk|K;

}

If( forward ) then {

For k = 1 to K

Find τk|K that minimises (4), using (5) for E[T n

k̄
];

Update sk+1 with new value of τk|K;

}

For k = K to 1 {

For n = 1 to N

Update E[T n

k̄
] using (5) with new value of τk|K;

}

}

If( alternating ) then swap backward and forward

}

Return τ1|K , . . . , τK|K;

Each minimisation step in the algorithm can be carried out with any desired general-purpose

optimisation routine. Also, note that at initialisation, E[T∞] can be minimised using the expression
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Fig. 2. Optimal restart times, with respect to the moments E[T15], E[T 2
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15],

respectively.

E[T∞] = (M1[T ] + F̄ (τ∞)(τ∞ + c))/F (τ∞) derived in [5]. The reason to initialise the algorithm

with τ∞ will become apparent when discussing the bulk approximation in the next section.

5 Characteristics of Optimal Restart Times

We applied our algorithm to the case that the completion time T has a lognormal distribution,

with parameters µ = −2.31 and σ = 0.97.3 We determine K = 15 restart times that minimise the

first, second and third moment of the completion time. These restart times (with an interpolating

curve) are shown in Figure 2. The figure also shows τ∞, which is the starting solution set at the

initialisation step in Algorithm 1.

Figure 2 indicates that when minimising the first moment, the optimal restart time τk|K mono-

tonically converges when k gets smaller, to a single optimum τ∞, provided K is large enough. In

fact, as we observed in [5], the backward algorithm is a fixed-point algorithm, with associated con-

vergence properties. This also implies that if an infinite number of restarts is allowed, a constant

restart time is optimal, as has been observed in [1, 3].

3 For the current paper, there is no particular significance to the chosen parameter values. They happen

to be the parameters of a lognormal fit for experimental data of HTTP GET completion times [6].
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The convergence behaviour for higher moments is not as straightforward, as also witnessed by

Figure 2. Nevertheless, there are some interesting insights to be gained from explaining the more

intricate convergence patterns.

The key observation is that if the number of restarts increases, the dominant term when

minimising (4) involves only the first moment. Therefore the restart times that minimise the first

moment are a good strategy for higher moments as well (provided K is large, and not considering

the first and last few restart times). To make this more precise, assume that k → ∞, k ≤ K, in

which case, apart from pathological cases, it must be that sk → ∞. This allows us to approximate

expression (4) by the first two terms of its sum:

lim
k→∞

E[(T
k̄

+ sk)N ] ≈ sN

k
+ NsN−1

k
E[T

k̄
]. (6)

Since sN

k
and NsN−1

K
are constants, finding the restart times that minimise (4) is approximately

equal to finding the restart times that minimise the first moment E[Tk̄]. Based on this, we introduce

three limiting cases, namely at the right boundary (τk|K for k → ∞, and k̄ ↓ 1), middle or ‘bulk’

(τk|K for k → ∞ and k̄ → ∞), and left boundary (τk|K for k ↓ 1 and k̄ → ∞). Figure 3 illustrates

the main results.



Right boundary approximation. For k → ∞ and k̄ = 1 the first-moment approximation of

τk|K corresponds to finding the restart time that minimises E[T1] (only one restart allowed). Figure

3 shows the right approximation and we see that for K = 30 it is reasonable but not exceptionally

close to the actual optimal restart (given by the dot). We can extend the approximations to value

k̄ = 2, 3, . . . , which results in restart times identical to those shown in Figure 2 (the curve for the

first moment).

Bulk approximation τ∞. At the ‘bulk,’ or the middle of the pack, we get a limiting result

if both k and k̄ go to infinity. The approximation using (6) results in optimising E[T∞], i.e., in

restart times equal to τ∞. In Figure 3, the bulk approximation τ∞ is indeed close to the optimal

restart times. This also explains why we chose τ∞ during initialisation in Algorithm 1: it is close

to optimal for the bulk of restarts.

Left boundary approximation. At the left boundary, we can not simply apply the approx-

imation suggested by equation (6), because k does not tend to infinity. However, we can obtain

an approximation for τk|K with k ↓ 1 and k̄ → ∞, by assuming that the completion time T is

distributed as T∞ with restart interval τ∞. This approximation is remarkably close, as seen from

Figure 3. In fact, other experiments indicate that the left boundary approximation is very close

irrespective of the value of K. This implies that if we allow an infinite number of restarts, we can

use the left boundary approximation to determine early restarts, until it is close enough to the

bulk approximation (which we would use from then on).

In conclusion, we find for the first moment of completion time that the optimal restart strategy

is a constant restart time for all restarts, provided we allow an infinite number of restarts. If only a

finite number of K restarts is allowed, we can optimise these using the backward algorithm, which

terminates in K steps. When we consider higher moments, a constant restart time is typically

not optimal, not even if we allow infinitely many restarts. Instead, we need the backward/forward

iterative algorithm to compute optimal restart times for the finite case, and use the bulk and left

boundary approximation for the case with infinitely many restarts.
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6 Computational Effort

In Figure 4 we plot the time used for three different methods: Algorithm 1 (backward), minimising

expression (2), and minimising expression (3). In all cases we applied default minimisation algo-

rithms in Mathematica to carry out the respective optimisation steps. Algorithm 1 outperforms

the other approaches. For the first moment, the speed up is an order of magnitude (about a factor

20), which finds its explanation in assured convergence in K steps of the backward algorithm.

For the higher moments, the speed up is about a factor 3 or 4. Apparently, the arguments put

forward in Section 3 hold correct. We note that we tuned our Mathematica program to the best

of our abilities, memorising in-between results so that the recursion in (3) and repetitive compu-

tation in (2) are handled as efficient as possible. We also set the convergence criterion identical for

all three experiments, (based on convergence of E[T N

K
]). Hence, although we do not have access

to the ‘internals’ of Mathematica’s optimisation algorithm, we are reasonably confident that the

comparison of the three approaches is fair.

Figure 5 compares three versions of Algorithm 1: backward, forward and alternating. These

three exhibit similar performance. For our example, the forward algorithm turns out to require
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one pass less through all restart times than the other two algorithms, and hence it takes less CPU

time.4

Typically, we require not more than 5 passes through the K restart times, irrespective of the

value of K. Studying the complexity of our Mathematica implementation, it turns out that running

the optimisation routine is the computationally most expensive part: at step k, optimisation of τk|K

takes an order of magnitude more time than the computation that updates E[T N

k̄
]. Algorithm 1

uses backward and/or forward traversal through the K restart times to compute E[T N

k̄
] efficiently,

but following the above reasoning, it may be more important to decrease the number of calls to

the optimisation routine. Algorithm 1 may therefore be further improved by choosing the order

in which to optimise restart times based on criteria such as steepest descent. This requires more

experimentation.

4 Note that because of the workings of the Mathematica optimisation algorithm, the comparison in Figure

4 had to be based on convergence of E[T N

K ] as stopping criterion, while we were able to base the results

for the backward/forward algorithm in Figure 5 on convergence of restart times, a stricter criterion.

This explains the higher CPU usage for the backward algorithm in Figure 5 compared to Figure 4.



7 Conclusion

This paper presents an algorithm that determines restart times that minimise higher moments

of completion time. This problem is particularly complicated because, contrary to minimisation

of the first moment solved in [5], optimal restart times for higher moments depend not only on

succeeding restarts, but also on preceding restarts. As a consequence, we resorted to an iterative

algorithm. We compared our algorithm with ‘naive’ off-the-shelf approaches, and showed that our

algorithm is up to an order of magnitude faster. We also studied restart times under limiting

conditions, and derived from this fast approximations of optimal restart times.
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