
Experimental Analysis of the Correlation of

HTTP GET Invocations

Philipp Reinecke1, Aad P. A. van Moorsel2, and Katinka Wolter1

1 Humboldt-Universität zu Berlin
Institut für Informatik

Berlin, Germany
{preineck,wolter}@informatik.hu-berlin.de

2 University of Newcastle upon Tyne
School of Computing Science

Newcastle upon Tyne, United Kingdom
aad.vanmoorsel@ncl.ac.uk

Abstract. In this paper we experimentally investigate if optimal retry
times can be determined based on models that assume independence
of successive tries. We do this using data obtained for HTTP GET.
This data provides application-perceived timing characteristics for the
various phases of web page download, including response times for TCP
connection set-ups and individual object downloads. The data consists
of pairs of consecutive downloads for over one thousand randomly chosen
URLs. Our analysis shows that correlation exists for normally completed
invocations, but is remarkably low for relatively slow downloads. This
implies that for typical situations in which retries are applied, models
relying on the independence assumption are appropriate.

1 Introduction

When a computing job or task does not complete in a reasonable time, it makes
common sense to retry it. Examples are plentiful: clicking the browser refresh
button, retry of TCP connection attempts at expiration of the retransmission
timer, reboot of machines if jobs do not complete (‘rejuvenation’), preemptive
restarting of a randomised algorithm using a different seed, etc.

In concrete terms, a retry makes sense if a new try takes less time to complete
than the ongoing attempt would have taken. If we assume that the completion
times of consecutive tries are independent and identically distributed and that
no time penalty is incurred when issuing a retry, it can be shown that retries
improve the overall mean completion time when the completion time distribution
is of a particular type, most notably heavy-tailed, bi-modal or log-normal [9].
Since we know from existing experimental work (e.g., [5]) that Internet response
times fit such distributions, Internet applications potentially respond positively
to retries.



However, the above reasoning assumes independent identically distributed
tries, an assumption that may not necessarily hold. Hence, models that deter-
mine optimal retry times based on the independence assumption [2, 4, 5, 9] may
not necessarily be appropriate either. To analyse if and to what extend the inde-
pendence assumption holds for Internet applications, we conducted experiments
and collected data for consecutive HTTP GET invocations. This paper reports
on the analyses of the correlation characteristics of this data. To the best of
our knowledge such data capturing and analysis has not been done before (com-
pare for instance the surveyed experimental work in [3]). In earlier work [6],
we analysed HTTP GET invocations, but did not possess the detailed data for
subsequent requests to the same URL we use in this paper.1

Our experiments capture data for many consecutive downloads from indi-
vidual URLs, always executed in pairs. This allows us to investigate correlation
between consecutive attempts as well as to determine the distribution of comple-
tion time. We collected data for various phases of the download of a web page,
distinguishing TCP connection set-up, time until the first data has been received,
intermediate ‘stalling’ times and the overall download time of an object. We are
interested in these detailed metrics because they potentially provide clues on
when to initiate a retry. We only obtained data for metrics that are visible at
the application level, since we are interested in investigating retries that could
be introduced in an Internet application such as a browser or a software agent.

We gained the following insights from the analysis in this paper. On the
one hand, if we consider all samples, the correlation between subsequent tries is
surprisingly low, irrespective of the considered phase in a web page download.
On the other hand, if we only consider attempts that complete ‘fast’ (that is,
within a small deviation of the average), the correlation is considerable. We
conclude from this that the independence assumption is reasonable for model-
based optimisation of retry times, provided one limits retries to times at which

completions can be considered slower than normal. Clearly, this corresponds to
the case in which one would want to consider retries to begin with. We also study
the correlation between different phases of the same download, and conclude that
these typically exhibit very low correlation. This makes it difficult to make use of
knowledge of earlier phases of the download to predict the remaining download
time (as has been utilised in [7] for retries of database queries).

We now first describe our experiment set-up and its underlying system model,
as well as the metrics we observed. We present the collected data in Sect. 3,
followed by the statistical analysis.

1 The data used in [6] contains completion times for TCP connection set-up, images,
objects and complete web pages for three experiments using 56,000 randomly selected
URLs. However, it lacks data for subsequent tries over long periods of time. We have
made available on the web [1] both the data set used in [6] and the one used in this
paper.



Connection
Setup Req.

Connection
Setup Resp.

Time To
Start (TTS)

Stalling
Time

Connection Setup
Time (CST)

Object Download Time (ODT)

���
���
���

���
���
���

����������
����������
����������

����������
����������
����������

Data

t

Fig. 1. Metrics and measurement points during the download task.

2 Experiment Design and Execution

Figure 1 depicts response times of HTTP GET invocations as an application
perceives it. The figure shows the various phases during the download of a sin-
gle object (such as a page or an image) and denotes the metrics used in our
experiments.

We call the overall time spent downloading the Object Download Time
(ODT), which is comprised of:

– Connection Set-up Time (CST): the time for the TCP connection set-up
– Time To Start (TTS): the time between sending the GET request and re-

ceiving the first data
– the time consumed by actual data transfer (we do not collect this time

explicitly)
– Longest Stalling Time (LST): the length of possible stalling periods during

the download, of which we record the longest

These metrics allow us to assess the performance of a download in three distinct
phases:

Connection Set-up Time: In TCP, connection set-up is accomplished by a
three-way-handshake and error handling procedures involving the Retrans-
mission Timeout (RTO) timer. From the application’s point of view, this
task corresponds to calling a connect() function, and waiting for this call
to return the connection. The application has no means to infer the state
of the connection set-up, and thus the performance of this whole process is
described by a single metric, namely its length.

Time To Start: The client proceeds by sending its request over the connec-
tion. The network transports the request data to the server, which generates
an answer and sends it back to the client. At the transport layer, the connec-
tion’s receive and send windows are adjusted to accommodate for network
characteristics (‘slow start’). At the application level a new server instance
may have to be started on the server, and content has to be prepared and
sent out. As with connection set-up, the intricacies of this phase remain
hidden from the client application, since it cannot observe whether its re-
quest actually reached the server, was processed, nor whether a reply was



sent back. Instead, it encounters a period of inactivity between sending the
request and receiving the first chunk of data.

Longest Stalling Time: During the download, various factors (e.g., network
or server congestion) may lead to periods of temporary stalling. In these peri-
ods, no new data is available to the application when it polls the socket (done
at 20ms intervals, see below). We always track the longest such interval. If
there was no stalling period, LST will be zero.

Object Download Time: Together, CST, TTS, LST, other stalling intervals,
and the length of periods in which data arrives add up to the Object Down-
load Time. That is, ODT is the time it takes from initiating the download
until the object is available to the application.

2.1 Experiments

To conduct our experiments we implemented a Java client that repeatedly down-
loads web pages from a set of hosts and measures the above-mentioned perfor-
mance indicators. The client issues GET / HTTP/1.0 requests to a web server,
and the ODT metric then corresponds to the time it takes to download the web
server’s root document (e.g., index.html) without any images or other objects
that might otherwise be included.

To obtain a sample, the client chooses a URL at random. We randomise the
order in which we visit servers to decrease the likelihood of introducing sub-
stantial dependencies between ordered requests to different machines. The Java
client then downloads the host’s root document twice in a row, with a 20ms
pause in between. The pairs of samples thus obtained allow us to study corre-
lation between subsequent requests. All our samples have a 20ms granularity,
because the client polls a TCP socket for new data at 20ms intervals.

The initial list of URLs was determined in two passes. First, to create a
reasonably random set of live URLs, we fed words from a large word list into
the Google search engine and extracted the links (the first 100) from the results.
In earlier experiments we used all of the resulting 56,000 URLs. In the current
experiment, we reduced the list by randomly drawing 2000 entries for detailed
investigation. As failing hosts may stall the experiments, any URL that produces
fatal errors or exceeded certain time thresholds (24 s for CST, 60 s for TTS, and
1200 s for ODT) was automatically removed from the list. Due to this mechanism,
our list shrank, and the data presented in the next section stems therefore from
725 unique URLs, each yielding a large number of samples (at least 1000).

The experiments were run on two Linux PCs connected to the Internet us-
ing 768kbit ADSL dial-up with the same ISP. On the first, a 2.0 GHz PC, the
experiment ran for 22 days, on the second, a 1.6 GHz PC, we collected samples
for 10 days. The experiments faced three interruptions (interrupted dial-up con-
nection, etc.), and we accounted for these interruptions in our analysis in such
a way that they did not influence the results.



Table 1. Overview of data set characteristics for the 725 URLs analysed. All times
are given in milliseconds.

CST1 CST2 TTS1 TTS2 LST1 LST2 ODT1 ODT2

First data set (22.09.2004, 6:44 – 14.10.2004, 15:48; 816397 samples)

mean 178.9 180.4 311.2 295.6 62.9 62.3 721.7 704.7

median 160 160 180 180 0 0 440 440

std. deviation 301.9 229.6 1663.5 1627.9 404.9 427.5 1918.6 2280.8

CoV 1.687 1.273 5.345 5.507 6.437 6.862 2.658 3.236

minimum 0 20 40 0 0 0 0 40

maximum 23700 24000 58440 60020 197480 309000 317700 1201880

Second data set (07.10.2004, 11:36 – 17.10.2004, 20:04; 212805 samples)

mean 174.6 173.4 293.9 279.0 63.7 62.4 1382.4 1347.2

median 160 160 180 180 0 0 840 840

std. deviation 320.3 250.4 1576.6 1545.0 264.3 201.9 3547.126 6242.9

CoV 1.834 1.444 5.364 5.537 4.15 3.235 2.566 4.634

minimum 20 20 20 0 0 0 320 340

maximum 21440 24000 57880 60020 57420 26760 274940 2420360

3 Results

Table 1 gives an overview of the results for the metrics defined in Sect. 2. The
first and second trial are denoted by subscripts 1 and 2, respectively. Note that
for Time To Start and Object Download Time the second attempt is typically
faster than the first. Most likely the second request benefits from work already
done for the previous one, e.g., the server might re-use the server instance that
handled the first attempt and could also serve cached data. However, this effect
is not very large, and close to negligible if we consider the median (at 20 ms
granularity).

It is worth mentioning that all sampled metrics have a coefficient of variation
(CoV, which is defined as the standard deviation divided by the expectation of
the considered metric) greater than one, indicating high variability. This holds
especially true for TTS and the Longest Stalling Time. The high variability
of TTS can most likely be explained by the dependence of TTS on network
conditions, the server, the client’s operating system state, etc. The high CoV
value for LST may be explained by the fact that it is a maximum value and is
therefore rather unpredictable.

In interpreting our results it is important to understand the working of TCP’s
retry mechanism. During connection set-up, TCP initiates a retry when the RTO
times out. RTO first expires after 3000ms and doubles after every expiration,
i.e., RTO expires and TCP re-attempts to set up a connection 3, 9, 21, 45 and



CST < 3000ms

CST in ms

F
re

qu
en

cy

0 500 1500 2500

0e
+

00
4e

+
05

8e
+

05

500ms < CST < 3000ms

CST in ms

F
re

qu
en

cy

500 1000 2000 3000

0
50

0
15

00
25

00

Fig. 2. Histograms for all CST < 3000 from both sets.

93 seconds after the initial attempt. The consequence of this mechanism on the
download time can be observed very well in Fig. 3, as we explain in Sect. 3.1.

We note that in our experiments about 0.3 percent of all TCP connection
set-up attempts experienced one or more RTO expiries, i.e., CST > 3000 ms (this
is not directly visible in the table). In earlier experiments [6] we found that the
IP-level failure percentage for TCP connection set-up is close to 0.6 percent. The
difference can probably be explained by our method of selecting URLs, which
tends to favour less failure-prone hosts.

Figure 2 illustrates the distribution of CSTs for attempts without RTO expi-
ration, with the right side graph zooming in on the left. The histogram in Fig. 2
suggests that for non-failed connection set-ups, CSTs for random URLs have
quite a high variance and frequently exhibit a relatively long completion time.
This may be interesting in its own right, but also bodes well for issuing restarts,
as was also found in [5, 8]. The question remains, however, whether consecutive
connection set-up times are independent, an issue we will study now.

3.1 Correlation

Various models that are used to determine the optimal retry time rely on the
assumption that subsequent tries exhibit independent and identically distributed
(iid) completion times. If the iid assumption is true, then correlation will be
zero. In other words, if correlation is high, we conclude that the independence
assumption is not valid. Therefore we now analyse the correlation characteristics
of our data. The analysis presented here is based solely on data from the first data
set, but we found that both sets lead to similar conclusions regarding correlation.

A first visual indication of the degree to which consecutive downloads are
correlated is given by the scatter plots in Fig. 3 and Fig. 4, for the CST and ODT



 0

 2000

 4000

 6000

 8000

 10000

 0  2000  4000  6000  8000  10000

C
S

T
2 

in
 m

s

CST1 in ms

Fig. 3. Scatter plot for CST1 and CST2. TCP’s RTO values are clearly visible in the
clusters in the off-diagonals around 3000ms and 9000ms on each axis.

metric, respectively. Scatter plots of consecutive attempts show the correlation
between the first and second attempt by plotting the duration of the former
against that of the latter. For points close to the diagonal the first and the second
download experienced roughly equal completion times, and therefore indicate
strong correlation. Points far off the diagonal signal low correlation. Data points
below the diagonal of the scatter plot could have benefitted from a retry, since
the second attempt would have taken less time than the first. Points above the
diagonal would not have benefitted from a retry.

Figure 3 depicts connection set-up times. The importance of TCP’s RTO
timeout values shows quite clearly through clusters of samples just above 3000ms
and 9000ms near both axes. Since these two clusters are far from the diagonal,
they indicate low correlation between consecutive connection set-ups. However,
note that these clusters (indicating low correlation) correspond to cases in which
one of the two connection set-up attempts experienced failures on the IP level.
In cases where both connection set-ups succeed without an RTO expiry (that is,
both CST1 and CST2 are below 3000ms), the samples more strongly gravitate
towards the diagonal, indicating substantial correlation.

The clusters caused by the RTO time out values are still faintly visible in the
scatter plot for ODT1 and ODT2 (Fig. 4). However, this picture is much more
diffuse, as could already have been expected based on the coefficient of variation



 0

 2000

 4000

 6000

 8000

 10000

 0  2000  4000  6000  8000  10000

O
D

T
2 

in
 m

s

ODT1 in ms

Fig. 4. Scatter plot for ODT1 and ODT2.

values in (Tab. 1) (the ODT coefficient of variation is double that for CST).
Together, these two observations suggest that, while delays introduced by the
RTO mechanism may have a strong influence on the ODT, the additional factors
affecting this metric can change the pattern of observed ODTs considerably.

Although they provide a strong visual insight into the amount of correlation,
the scatter plots do not objectively quantify the degree to which observations are
actually correlated for a given set of URLs. To this end, we study the distribution
of correlation coefficients per URL, as shown in the histograms in Fig. 5 until
Fig. 7. That is, we split the data set by URLs and for every URL treat the
(thousand or more) observations for each metric M from the first and the second
attempt as resulting from two random variables M1 and M2. We then compute
Cor(M1, M2) for each URL and display the distribution of Cor(M1, M2) over all
URLs. Figure 5, for instance, shows that if we consider CST, close to 300 URLs
have correlation in the range between 0.0 and 0.1.

In our discussion of the scatter plots, we already touched upon the difference
in correlation of ‘failed’ attempts (i.e., failed on the IP level) and ‘fast’ attempts.
This issue can be studied quantitatively by comparing the left and right hand
bar chart in Fig. 5. The left hand side, where we consider all attempts, shows low
correlation, whereas the right hand side indicates high correlation if we consider
only pairs that were successful (CST below 3000ms) in both tries. This indicates
that the independence assumption is only valid in the ‘failed’ case, not for the



CST

cor(CST1, CST2)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

20
0

CST < 3000ms

cor(CST1, CST2)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Fig. 5. Histograms of correlation coefficients for (CST1, CST2).

ODT

cor(ODT1, ODT2)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

ODT (CST < 3000ms)

cor(ODT1, ODT2)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

60
10

0

Fig. 6. Histograms of correlation coefficients for (ODT1, ODT2).

common situation of normally succeeding attempts. So, even though successful
completion times may be distributed according to a distribution that is amenable
to retries (log-normal, heavy-tail), this does not imply that retries do indeed pay
off because the independence assumption is probably invalid. However, when one
considers higher retry times, retries at those times are not highly correlated, and
models based on the independence assumption are likely to be valid.

This difference between correlation for ‘failed’ and successful attempts can
also be observed for ODTs in Fig. 6, although here there remains a larger portion
of URLs with low correlation. The latter may find its explanation in the low



TTS

cor(TTS1, TTS2)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

LST

cor(LST1, LST2)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

30
50

Fig. 7. Histograms of correlation coefficients for (TTS1, TTS2) and (LST1, LST2).

All CST1

cor(CST1, TTS1)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

15
0

25
0

CST1 < 3000ms

cor(CST1, TTS1)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

20
0

Fig. 8. Histogram of correlation coefficients for (CST1, TTS1).

correlation for TTS and LST, as seen in Fig. 7. The time-to-start values of the
first and the second attempt seem often, but not always, uncorrelated, as can be
seen in Fig. 7 on the left, while the longest stalling time often is long (or short)
again upon the second try, if it was long (or short) before, as can be seen in
Fig. 7 on the right.

Cross-Measure Correlation A final point of interest is the correlation be-
tween various phases of the download. If correlation exists, samples for one met-



 0

 2000

 4000

 6000

 8000

 10000

 0  2000  4000  6000  8000  10000

T
T

S
1 

in
 m

s

CST1 in ms

Fig. 9. Scatter plot for CST1 and TTS1, zoomed in.

ric M may be used to predict the completion time of a subsequent metric M ′

within the same download (along the lines of [7]).
Figure 8 is just one example for the likelihood of such correlation, namely

that between connection set-up time and time to start. It shows that correlation
is relatively low, and similar behaviour exists between the other phases. This
makes it difficult to exploit possible inter-phase dependence for computing retry
times. Figure 9 illustrates the fact further. In this scatter plot we observe that
there is no obvious relation between CST and TTS; TTS may take on any value
when the connection set-up was very fast, and vice versa. The cluster for values of
TTS close to zero at CST values of 3000ms and at 9000ms signify that retries of
connection set-ups do not make large TTS more likely. The diagonal, indicating
positive correlation, is pronounced only for small values of both metrics, and,
in particular, for CST< 3000. This latter observation indicates that inter-phase
dependencies may be exploitable only in the absence of packet loss.

4 Conclusions

In this paper we have analysed empirical data sampled using HTTP GET. We
have investigated correlation patterns in the data and found high correlation
when using data from connections that were successfully set up straight away,



i.e., with Connection Set-up Times of less than 3000ms. For these, not only
the corresponding Connection Set-up Times are correlated, but also the Object
Download Times. However, when considering data from connections that ‘failed’
(i.e., Connection Set-up Time greater than 3000ms), we found very little correla-
tion. The consequence of our finding is that models that rely on the independence
of successive tries will not likely be useful to determine retry times for fast tries
(even if their distribution is amenable to retries). However, models based on the
independence assumption are appropriate when one wants to determine optimal
retry times for slower or ‘failed’ attempts. Since retries are most relevant in this
latter situation, this validates the use of optimisation models that rely on the
independence assumption.

References

1. The data discussed in this paper is available from the web site
http://homepages.cs.ncl.ac.uk/aad.vanmoorsel/data.

2. H. Alt, L. Guibas, K. Mehlhorn, R. Karp and A. Wigderson, “A Method for Ob-
taining Randomized Algorithms with Small Tail Probabilities,” Algorithmica, Vol.
16, Nr. 4/5, pp. 543–547, 1996.

3. F. Donelson Smith, F. Hernandez Campos, K. Jeffay and D. Ott “What TCP/IP
Protocol Headers Can tell Us About The Web,” SIGMETRICS, pp. 245–256, 2001.

4. M. Luby, A. Sinclair and D. Zuckerman, “Optimal Speedup of Las Vegas Algo-
rithms,” Israel Symposium on Theory of Computing Systems, pp. 128–133, 1993.

5. S. M. Maurer and B. A. Huberman, “Restart strategies and Internet congestion,”
in Journal of Economic Dynamics and Control, vol. 25, pp. 641–654, 2001.

6. P. Reinecke, A. van Moorsel and K. Wolter, “A Measurement Study of the In-
terplay between Application Level Restart and Transport Protocol,” in Springer

Verlag Lecture Notes in Computer Science 3335, International Service Availabil-

ity Symposium: Revised Selected Papers, M. Malek, M. Reitenspiess and J. Kaiser
(Eds.), pp. 86–100, 2005.

7. Y. Ruan, E. Horvitz and H. Kautz, “Restart Policies with Dependence among
Runs: A Dynamic Programming Approach,” in Proceedings of the Eight Interna-

tional Conference on Principles and Practice of Constraint Programming, Ithaca,
NY, 2002.

8. M. Schroeder and L. Boro, “Does the Restart Method Work? Preliminary Results
on Efficiency Improvements for Interactions of Web-Agents,” in Proceedings of the

Workshop on Infrastructure for Agents, MAS, and Scalable MAS at the Conference

Autonomous Agents 2001, T. Wagner and O. Rana (Eds.), Springer Verlag, 2001.
9. A. van Moorsel and K. Wolter, “Analysis and Algorithms for Restart,” Proceed-

ings of International Conference on Quantitative Evaluation of Systems, Twente,
Netherlands, pp. 195–204, 2004.


