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Abstract. Web-Services based Service-Oriented Architectures (SOAs)
become ever more important. The Web Services Reliable Messaging (WSRM)
standard provides a reliable messaging layer to these systems. In this
work we present parameters for acyclic continuous phase-type (ACPH)
approximations for message transmission times in a WSRM implemen-
tation confronted with several different levels of IP packet loss. These
parameters illustrate how large data sets may be represented by just a
few parameters. The ACPH approximations presented here can be used
for the stochastic modelling of SOA systems. We demonstrate application
of the models using an M/PH/1 queue.

1 Introduction

Web-Services-based Service-Oriented Architectures (SOAs) play an increasing
role in private and commercial activities on the Internet. These systems require
reliable transmissions of SOAP messages over possibly unreliable links.

The Web Services Reliable Messaging (WSRM) standard provides an inter-
face for reliable message transmissions [BIMT05]. From the application’s point
of view, a WSRM implementation guarantees several properties (i.e. INORDER,
EXACTLY-ONCE) for message transmissions.

WSRM ensures message transmission by retransmitting messages for which
no acknowledgement arrives within a certain timeout. The timeout after which
the message transmission task is restarted strongly influences the timing char-
acteristics of the WSRM as perceived by the application. In previous work we
studied the effect of different restart strategies [RvMW06], and the adaptivity
of restart strategies in the WSRM area [RW08b].

In this work we provide phase-type approximations for the effective transmis-
sion times encountered in a WSRM implementation where messages are trans-
mitted over a link with IP packet loss. We consider three scenarios with different
loss levels and derive acyclic continuous phase-type (ACPH) approximations for
the transmission time distribution. We present three different approximations
for each data set: First, we use a simple ACPH(2) model fitted by matching the
first three moments [TH02]. The second model is a Hyper-Erlang distribution
(HErD), fitted using the G-FIT tool [TBT06,PT07]. Third, we approximate the
trace distributions with general ACPH distributions using the PhFit tool [HT02].

We provide several contributions. First, we show how a large data set can be
represented in just a few model parameters and can hence be stored in a very
efficient and compact way. Second, we provide a model of a lossy communication
network using WSRM that can be inserted into a larger model of e.g. a web
services scenario. We present a simple M/PH/1 queue as an example of how to
use our fitted models. In that sense, we provide benchmarks to evaluate web
services performance and reliability. Third, we compare different models as well
as different fitting tools on a large data set of measurements in an intricate
scenario. The shape of the empirical distribution is unlike any known probability
distribution, therefore a compromise between well matching the heavy tail, that



is still based on extremely few observations and a good fit of the bulk of the
data must be found.

The remainder of this paper is structured as follows: The next section briefly
introduces the basic formalisms employed throughout the paper. Section 3 presents
the experiments. In Section 4 we discuss important properties of the data sets
and present the ACPH models. We evaluate our approximations in Section 5.
The paper concludes with an application of the models in an M/PH/1 queue.

2 Acyclic Phase-Type Distributions (ACPH)

Phase-type distributions represent the time to absorption in a Markov chain with
one absorbing state. Acyclic Phase-type distributions (APH) form an important
subclass of PH distributions. In this paper we focus on continuous phase-type
distributions.

An ACPH model with N transient states is described by the tuple (Q, α),
where

α = (α1, α2, . . . , αN )

is the vector of initial probabilities, and Q is the transition matrix for the tran-
sient states. The underlying CTMC for this model is [Hav98]:

Q̂ :=

[

Q q
0 0

]

,

where the column vector q can be easily derived from Q: q = −Q1. The proba-
bility density function (PDF) and the cumulative density function (CDF) of an
ACPH distribution are given by, respectively [HT02],

f(x) = αeQxq

F (x) = 1 − αeQx1.

The ith non-central moment of an ACPH can be computed as [TH02]

E[Xi] = i!α(−Q)−i1.

In this work we present ACPH approximations of WSRM message transmission
times. We consider models from the general ACPH class and models from two
subclasses, viz. second-order ACPH models (ACPH(2)) and Hyper-Erlang dis-
tributions (HErD). The next two paragraphs discuss properties of these special
cases.

Second-order ACPH. ACPH(2) models consist of only two transient states, i.e.

α = (α, 1 − α)

Q =

[

−λ1 λ1

0 −λ2

]

.

ACPH(2) models are attractive due to their low number of states, which allows
for efficient models. Furthermore, using moment-matching [TH02], parameters
for these models can often be obtained directly from the first three moments.

However, precise matching of the first three moments with ACPH(2) is lim-
ited by tight bounds on the second and third moment of the data. For data sets
whose moments are outside of these bounds, one must either employ a higher-
order ACPH or settle on a model that only approximates the second and/or
third moment [TH02].

Hyper-Erlang Distributions. Hyper-Erlang distributions (HErDs) consist of a
mixture of M Erlang distributions with parameters (λr, kr), r = 1, . . . ,M . The



transition matrix for the underlying CTMC has the following general structure
(r = 1, . . . ,M):
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Accordingly, the vector of initial probabilities is

α = (α1, 0, . . . , 0, α2, 0, . . . , 0, αM , 0, . . . , 0).

Hyper-Erlang distributions allow us to approximate the distribution of the data
more closely than is possible with moment matching using second-order acyclic
PH distributions. Moreover, any ACPH can be approximated by a HErD of
sufficiently high order, although this may require a HErD with an infinite number
of states. On the other hand, typical HErD models have an order higher than two
and thus may become computationally expensive. However, HErD matching can
be performed more efficiently than general ACPH matching. See [TBT06,PT07]
for more detail on Hyper-Erlang distributions.

3 Experiments

Web Services Reliable Messaging provides reliable SOAP message transmissions
to Web Services by resending messages for which no acknowledgement has been
received before a timeout elapsed. Every message can thus be transmitted sev-
eral times. In particular, a retransmission may arrive earlier than the original
transmission. Our data sets present the time between the first attempt at send-
ing the message and the first time the message arrived at the destination. This
Effective Transmission Time (ETT) determines the effect of the WSRM on the
application [RvMW06,RW08b]. The current section describes the experiment
setup and measurement preparation procedures.

3.1 Experiment Setup

In our setup a Web Services client transmits one-way messages asynchronously to
a server, using WSRM. An enhanced version of Sandesha1/Axis1 [ASFb,ASFa]
provides the WSRM implementation for the experiments. The modifications
add support for asynchronous message transmissions (implemented similarly to
[ZVK04]) and improve Sandesha’s stability and performance.1 The operation en-
vironment consists of a 10 Mbit LAN connection, emulated on top of the physical
100 Mbit Ethernet, using the Linux traffic control facilities [Net]. Fault injection
occurs in the 10 Mbit connection on a dedicated host. We inject packet loss at
the IP layer.

In each experiment run the client transmits 20000 messages with a payload
of 256 bytes and a message interarrival time of 100 ms. Experiment runs that
take longer than one hour to complete are discarded. In order to avoid the effects
of software aging, client and server are restarted between runs.

1 The current branch of Sandesha development, Sandesha2/Axis2, supports asyn-
chronous invocations natively, but was not stable enough for the experiments. How-
ever, the basic operation of different WSRM implementations can be considered
comparable.



Packet loss model. IP Packet loss is generated according to a simplified continuous-
time Gilbert loss model with one loss-free and one lossy state. Gilbert loss
models generate sequences of alternating loss episodes and loss-free periods
of exponentially-distributed length, which capture characteristics of packet-loss
on Internet links quite well [ZPS00,ZDPS01,VMG06,SCK00,JS00]. We consider
three scenarios with different mean loss episode and loss-free period lengths,
presented in Tab. 1.

Table 1. Loss model scenarios.

S1 S2 S3

Loss episode length 0.05 s 1 s 1 s
Loss-free period length 120 s 30 s 8 s

WSRM restart algorithms. We provide results for three different algorithms to
compute the restart timeout: The Fixed Intervals algorithm uses a constant time-
out of 4 s. The well-known Jacobson/Karn algorithm adjusts the timeout based
on the mean and variance of round-trip time observations [KP91,KR01]. We set
the parameters for the Jacobson/Karn algorithm as follows: k = 4, α = 1/8, β =
1/4, and initial timeout RTOinitial = 4 s. Third, we use the QEST algorithm
presented in [vMW04], which observes the distribution of completion times and
computes a timeout that minimises the expected completion time. The parame-
ters for QEST are: Number of buckets H = 1000, maximum timeout tmax = 60 s
and initial timeout RTOinitial = 4 s.

In order to reduce load on the medium, both Jacobson/Karn and QEST
perform exponential backoff upon timeout, i.e. they double the restart timeout
for the next transmission.

3.2 Measurement Preparation

Measurements were obtained by off-line analysis of message send/receive events
recorded during the experiments.

Accuracy. Since measurements were computed from timestamps recorded on
two different machines, both system clocks needed to be synchronised. Sys-
tem clocks were synchronised using NTP. Clock synchronisation in the testbed
was assessed based on NTP log files. System clocks stayed within +/- 2 ms of
each other during the experiments, which we consider sufficiently accurate so
as to not necessitate the use of skew removal procedures such as presented in
e.g. [Pax97,MST98,KG06].

Artifacts. Many runs exhibited a transient increase of ETTs shortly after the
start of the experiment, whose root cause could not be identified. Since this phe-
nomenon affected experiments irrespective of the scenario or the restart strategy
used, we consider this an artifact introduced by the testbed itself. We only in-
clude message numbers 1000, . . . , 20000 in our data sets.

Furthermore, measurements for Fixed Intervals have minimum values of 8–
9 ms (median 9–13 ms), whereas the other measurements have minima of 12–
13 ms (median 10–18 ms). All experiments whose measurements have lower min-
ima were performed some time after the experiments with higher minima. The
decrease indicates a change in network characteristics in the time in between.
The nature and cause of this change is unknown. We consider this difference
negligible for the approximations presented in the next section.



4 Phase-type Approximations

We approximate the data using different classes of acyclic phase-type distribu-
tions. For each scenario/algorithm combination we aggregate observations from
four runs into one data set (76004 samples) for the approximation, and keep
one run (19001 samples) for cross-evaluation of the models. We employ the R
statistics package [R D06] in the statistical evaluation of the data.

4.1 Data Set Characteristics

Table 2 presents some statistical properties of the data sets. SiFI , SiJK and
SiQ denote data sets for Fixed Intervals, Jacobson/Karn and QEST algorithm,
respectively, obtained in the ith scenario. Note that all data sets exhibit a co-
efficient of variation (CoV) above one, which points at possible heavy-tailed
behaviour of the distribution underlying the data.

Table 2. Statistical properties of the data sets.

S1FI S2FI S3FI S1JK S2JK S3JK S1Q S2Q S3Q

Mean 17.24 21.32 22.44 124.71 106.51 104.60 386.29 334.91 313.76
Std. Dev. 59.54 46.57 26.98 542.27 441.05 426.03 995.20 903.30 955.51
Minimum 8 12 12 8 12 12 8 9 7
Median 11 16 18 11 17 17 11 11 11
95% quantile 19 24 27 213 179 449 3011 2404 1986
99% quantile 152 162 160 3014 2883 2674 4051 3031 3140
Maximum 3017 2226 562 6280 6562 9260 9900 12499 21056
CoV 11.91 4.79 1.45 18.91 17.15 16.59 6.64 7.23 9.27

Visual inspection of the empirical complementary cumulative density func-
tion (CCDF) for S1FI , S2FI and S3FI (Figures 1–3) reveals that the bulk of the
samples is small, with large values centered around 3 s and 6 s and few observa-
tions between the bulk and the extreme values. The ‘steps’ in the CCDF become
more pronounced with higher loss levels, e.g. in S3FI . The accumulation of ex-
treme values at 3 s and 6 s as well as the gaps in between are due to the way TCP
detects packet loss during the three-way handshake on connection setup: The
TCP starts with a fixed retransmission timeout (RTO) of 3 s, which is doubled
on every expiration [KR01]. This means that any SOAP message transmission
for which the TCP connection setup experiences packet loss will be delayed by
at least 3 s. Since the Fixed Intervals algorithm restarts the transmission only if
the message has not been acknowledged after 4 s, it will not resend messages for
which only one packet loss happened during connection setup. These message
will have effective transmission times between 3 and 4 s. Messages whose connec-
tion setup suffers from more than one packet loss are delayed by more than 4 s
and will thus be resent. If the retransmission does not experience packet loss, it
will succeed earlier than the first one. In this case, instead of a large ETT of 3 s
we observe a small ETT from the bulk of the distribution. On the other hand,
some retransmissions will also be delayed by packet loss. Since these messages
where restarted after at least 4 s and experience a minimum delay of 3 s, their
ETT is above 7 s. Then, the first transmission, which was delayed by only 6 s,
will finish earlier, which explains the accumulation of samples around 6 s.

Due to space constraints we omit the empirical CCDFs of the data sets from
the experiments with Jacobson/Karn and QEST. These differ from the observa-
tions for the Fixed Intervals algorithm in that they gather more samples in the
bulk. In particular, in the S1 data set, Jacobson/Karn has fewer observations
around 3 s, while for QEST the tail of the observations breaks down even below
1 s. With higher loss levels, however, both start to show peaks around 3 s and 6 s
similar to observations from Fixed Intervals. This can be explained by the way in
which these algorithms adjust the restart timeout: Message transmissions that



are not delayed by packet loss finish very fast. Based on obervations of these
low completion times, both algorithms compute low timeout values (with Ja-
cobson/Karn being more conservative), typically much lower than the 4 s of the
Fixed Intervals algorithm. These lower timeouts allow the algorithms to detect
(and restart) delayed transmissions early, which results in low completion times.
On the other hand, Jacobson/Karn and QEST perform exponential backoff when
the timeout elapses. With higher loss levels, it is likely that several timeouts
elapse successively. Then, the timeout grows quickly, eventually allowing even
very slow transmissions to finish without restart. When the first transmission
completes without restart, the timeout is recomputed from the observations, i.e.
then slow transmissions will be restarted again.

4.2 ACPH(2)-Approximation

Table 3 presents the ACPH(2) models obtained by moment-matching [TH02]
for the first three moments. Note that the third moment could not be matched
exactly by an ACPH(2) in data sets S2FI , S2JK and S3FI . In these cases we
approximate the third moment as suggested in [TH02].

Table 3. Parameters for the ACPH(2) models, obtained by moment matching.

S1FI S2FI S3FI S1JK S2JK S3JK S1Q S2Q S3Q

α1 2.05e-03 2.46e-03 9.07e-03 1.00e-01 1.10e-01 7.86e-02 2.62e-01 2.29e-01 5.70e-02
λ1 1.11e-03 1.66e-03 8.13e-03 8.06e-04 1.04e-03 9.13e-04 6.78e-04 7.05e-04 3.53e-04
λ2 6.49e-02 5.04e-02 4.69e-02 7.21e+01 8.36e+01 5.40e-02 1.91e+01 8.80e-02 6.57e-03

4.3 Hyper-Erlang Approximation

We employ the G-FIT tool [TBT06], which implements an EM-algorithm, for
fitting the parameters of a HErD to a data set. In order to improve the quality
of the fitting, we initialise the parameters λr and α using the logarithmic aggre-
gation method presented in [PT07]. We then fit the parameters using the EM
algorithm and the whole (i.e. non-aggregated) data set.

We found that using a Hyper-Erlang distribution with 15 branches and shape
parameters kr = r for the rth branch provided good approximation of the data.
Table 4 shows the parameters for the data set S2FI . Parameters for the other
data sets can be downloaded from [RW08a].

Table 4. HErD parameters for S2FI . The shape parameter kr of the rth Erlang branch
is kr = r.

r αr λr αr+1 λr+1 αr+2 λr+2 αr+3 λr+3

1 1.11e-09 2.20e-03 2.35e-05 4.77e-03 1.03e-04 3.631e-02 4.05e-03 9.47e-03
5 1.87e-03 9.22e-02 1.26e-03 7.10e-03 8.05e-14 2.71e-03 4.98e-03 3.36e-02
9 6.26e-03 8.430e-03 6.69e-03 6.92e-02 1.46e-02 7.70e-02 7.64e-03 4.47e-01

13 3.44e-02 4.48e-03 3.42e-02 1.14e+00 8.84e-01 1.24e+00

4.4 ACPH Parameters

To fit general ACPH distributions to the data we use the PhFit tool [HT02].
In order to reduce the time needed for fitting the data, we used logarithmic
aggregation [PT07] to reduce the size of the data sets before applying PhFit.
We compared approximations using the full data sets to those obtained using



the aggregated representation and found that the aggregation procedure had no
detrimental effect on the quality of the models.

We present here approxmiations with 30 phases in the body and no special
treatment for the tail, with an upper limit of body fitting at the 0.001 quantile.
It should be noted that one of the strengths of PhFit lies in fitting the body
and the tail of the data separately, which provides for better approximations.
However, with our data sets we were not able to obtain feasible parameters for
the tail fitting. For this reason, we expect our ACPH(30) models to not represent
the tail behaviour correctly. Table 5 presents the ACPH(30) model for the S2FI

data set. General ACPH(30) models for the other data sets may be downloaded
from [RW08a].

Table 5. General ACPH(30) parameters for S2FI .

i αi λi αi+1 λi+1 αi+2 λi+2 αi+3 λi+3

1 4.36e-02 1.38e-04 6.51e-03 1.82e-02 7.36e-04 2.28e-02 1.80e-02 6.43e-02
5 1.80e-04 6.56e-02 8.85e-06 6.94e-02 4.09e-05 7.10e-02 1.54e-03 8.28e-02
9 4.83e-04 9.55e-02 1.76e-05 1.16e-01 5.85e-07 1.44e-01 9.30e-05 1.55e-01

13 2.91e-03 1.93e-01 9.45e-05 1.94e-01 2.83e-06 1.98e-01 1.33e-05 2.91e-01
17 1.34e-05 3.89e-01 1.41e-05 5.60e-01 5.18e-06 5.82e-01 4.90e-02 8.03e-01
21 7.08e-01 8.14e-01 1.66e-01 8.14e-01 2.15e-03 8.15e-01 2.44e-04 8.15e-01
25 6.06e-05 8.15e-01 1.59e-05 8.15e-01 2.11e-06 8.15e-01 9.31e-06 8.15e-01
29 1.86e-05 8.15e-01 4.42e-06 8.15e-01

5 Evaluation

In the previous section we presented three models for each data set. In order to
facilitate appropriate application of the models, we will now evaluate the quality
of these approximations.

Visual inspection of the ACPH models for e.g. the Fixed Intervals data sets
(Figures 1–3) shows that the models approximate the CCDF of the data quite
differently. The ACPH(2) models tend to follow the general shape of the em-
pirical CCDF only roughly. In Figure 1 the CCDF of the ACPH(2) fluctuates
around the empirical CCDF, while in S2FI and S3FI the ACPH(2) overestimates
the portion of samples below 10 ms. In contrast, the more complex HErD and
the ACPH(30) models provide good approximations of the CCDF for all three
scenarios. Both follow the general shape of the CCDF closely.

Note that the ACPH(30) model underestimates the length of the tail in the
model for S1FI , and overestimates it in S2FI and S3FI . This behaviour may be
avoided by appending a special tail to the distribution. However, one cannot
easily derive the actual shape of the tail from the data. In fact, one may argue
that extreme values are rare events, and that thus the breakdown observed in
the data sets is simply an artifact of the limited observation period. On the
other hand, restart aims to reduce effective transmission times by replacing slow
transmissions with fast ones (cf. (4.1)), which makes an abrupt tail breakdown
appear likely.

While the similarity of the shape of the CCDFs offers some measure of the
goodness of the approximation, other quality measures may be of more interest in
particular applications. In [BT94,HT00], several quality measures were proposed.
Our quality measures are summarised in Tab. 5. Note that area distances have
been computed up to the maximum of the observations for each data set.

Figure 4 presents an overview of the relative error in the first three moments
(e1, . . . , e3), absolute PDF area distance (PDFAD) and absolute CDF area dis-
tance (CDFAD). The figure shows values for the measures for the nine models
we obtained using each approach, e.g. the first nine bars (dark grey) of every
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Fig. 1. Empirical CCDF and CCDFs of the approximations for S1FI .

Table 6. Quality measures employed in the evaluation.

Measure Definition

Rel. Err. in the first moment (c1 is the mean) e1 = |c1(F̂ )−c1(F )|
c1(F )

Rel. Err. in the second moment (c2 is the variance) e2 = |c2(F̂ )−c2(F )|
c2(F )

Rel. Err. in the third moment (c3 is the centered
third moment)

e3 = |c3(F̂ )−c3(F )|
c3(F )

Absolute PDF area distance PDFAD =
R ∞

0
|f̂(t) − f(t)|dt

Absolute CDF area distance CDFAD =
R ∞

0
|F̂ (t) − F (t)|dt

measure represent the quality of the ACPH(2) models for S1FI , S1JK , S1Q and
so on.

We note that the ACPH(2) models (dark grey) provide the best approxima-
tions of the first three moments. Only in in S2FI , S2JK and S3FI do we observe
a significant relative error in the third moment. Recall that for these data sets,
no precise matching of the third moment was possible, and thus this error is to
be expected. The Hyper-Erlang models match the first moment precisely, but
exhibit much larger relative errors in the second and third moments. Finally,
our ACPH(30) models have large relative errors in the first three moments. Ac-
cording to the area distance measures, all models approximate the data similarly
well.

Cross-Evaluation Recall that we used only four runs from each scenario for
fitting the models. Table 7 lists statistical properties of the fifth run for each
scenario and restart algorithm. We observe subtle differences between the data
sets used for the fitting procedure and the evaluation data sets, however, the
data sets obviously exhibit the same general characteristics.

Using these data sets, we can assess how well the models capture the typical
characteristics of the data. Figure 5 presents the goodness measures for this case.
As expected, the goodness of the fit decreases. In particular, the first moments
are not matched exactly by any of the models. However, the models still fit the
data quite well.
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Table 7. Statistical properties of the data sets used for cross-evaluation.

S1FI S2FI S3FI S1JK S2JK S3JK S1Q S2Q S3Q

Mean 19.38 20.32 19.22 120.68 117.10 105.37 403.33 275.83 260.86
Std. Dev. 63.41 49.96 22.86 538.25 466.86 399.14 1021.36 692.76 654.60
Minimum 9 12 12 9 12 12 8 9 9
Median 13 16 15 10 16 15 10 13 13
95% quantile 25 23 23 161 267 495 3009 1879 1803
99% quantile 149 160 162 3013 2551 2516 4059 3017 3013
Maximum 3017 2106 328 4465 3863 3366 9018 5467 6011
CoV 10.71 6.04 1.41 19.89 15.90 14.35 6.41 6.31 6.30

6 Application

To illustrate the potential use of the fitted models we set up a simple M/PH/1
queueing model [Hav98] using the ACPH models for the S2FI data set. The
phase-type distributed service process could represent transmission of SOAP
messages over the WSRM, while the stream of SOAP messages is modeled by
a Markovian arrival process. We are interested in the mean queue length versus
the utilisation of the system, from which the reader may easily compute other
standard measures in queueing systems such as response time, waiting time, etc.

The mean service time, that is the mean of the models fitted to our data,
equals E[S] = 124.71ms for both the ACPH(2) and the HErD model, and
E[S] = 341.85ms for the ACPH(30) model. Note that the ACPH(30) model
overestimates the mean service time.

We vary the arrival rate λ to obtain different values of the utilisation ρ of
the queue.

The M/PH/1 queueing system has the following matrix-geometric solution
[Hav98]

E[N ] = z1(I − R)−21, (1)

where I is the identity matrix. For the M/PH/1 queue the matrix R evaluates
to

R = λ(λI − λB̃ − Q)−1,

where the matrix B̃ is the cross-product of the unit vector 1 and the vector
of initial probabilities α, i.e. B̃ = 1.α. The steady-state boundary probability
vector can then be computed as (cf. [Hav98] Eqn. (8.37))

z1 = (1 − ρ)αR.
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Fig. 3. Empirical CCDF and CCDFs of the approximations for S3FI .

Similar in structure to a DTMC the steady-state probability vectors can be
computed as zi = z1.R

i−1, i = 1, 2, . . . .
Figure 6 shows the mean queue length of an M/PH/1 on a logscale where the

three curves differ in the service process represented by the three models we fit
to our data, the ACPH(2), the HErD and the ACPH(30) model. Interestingly,
both the ACPH(2) and the HErD service distributions not only have the same
mean value but also a fairly similar development of the mean queue length. When
looking at those two curves one may decide that there is not much gain in the
huge HErD model, as compared to the conveniently small two-state ACPH(2)
model. We will see that this conclusion is in most cases justified.

The caudal curve, shown in Figure 7, represents the tail behaviour of a
matrix-geometric queue [HvMD92]. The caudal curve is constructed using the
largest real eigenvalue of the matrix R versus the utilisation ρ of the queue.
In [HvMD92] Eqn. (17) defines the blocking probability in a matrix-geometric
queue, showing that if the caudal curve is above the bisector the queue length
distribution has a heavy tail, while if the caudal curve is below the bisector there
is little probability mass in the tail.

As were the expected queue lengths, also the caudal curves using the ACPH(2)
and the HErd service time distribution are very similar. More precisely, for low
load the ACPH(2) service time distribution has the heavier tail, while for high
load the curves cross and the HErD model leads to the heavier tail.

Since the ACPH(30) model overestimates the tail of the data set, the tail of
the queue length distribution is overestimated as well. Furthermore, the large
mean value of the ACPH(30) model can be traced back to the overestimated
tail.

One may summarise, that for low load the ACPH(2) model gives a conve-
niently small model that leads to reasonably good results. For high load one
might rather resort to the large HErd model, while the ACPH(30) model should
be applied with care.

7 Conclusion and Future Work

In this work we presented phase-type models for the distributions of the effective
message transmission times in a WSRM implementation under various levels of
packet loss. We evaluated the goodness of fit of these models and demonstrated
the use of ACPH models in an M/PH/1 queuing model. We conclude that the
convenient ACPH(2) class may be sufficient to model the observed transmission
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Fig. 4. Goodness measures for the ACPH(2) (dark grey), HErD (medium grey) and
ACPH(30) (light grey) models.

times, while there is little gain with large HErD models. Furthermore, general
ACPH(30) models perform rather poorly without special treatment for the tail
of the distributions.

In this paper we limited ourselves to ACPH distributions. According to
[BHT04], DPH models may be preferable for fitting distributions with abrupt
changes in the CDF. Since our data exhibits such changes, future work will in-
clude trying to fit DPH distributions with appropriate scale factors to these data
sets.
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