Estimating Vaccine Coverage by Using Computer Algebra

Doris Altmann Klaus Altmann

Abstract

The approach of N. Gay for estimating the coverage of a multivalent vaccine from antibody prevalence data in certain age cohorts is complemented by using computer aided elimination theory of variables. Hereby, Gay’s usage of numerical approximation can be replaced by exact formulas which are surprisingly nice, too.

Keywords: Multivalent vaccine, coverage rate, antibody prevalence, hyperdeterminants.

1 Introduction

(1.1) Monitoring of vaccine preventable diseases is an important public health issue. But in different European countries like Germany there is a lack of surveillance systems, and vaccine coverage is not monitored systematically. Sometimes antibody prevalence data from special serological studies are available, e.g. from the European Sero-Epidemiological Network (ESEN). Nigel Gay used those data to estimate, via a maximum likelihood approach and a numerical approximation, the age-specific coverage of a multivalent vaccine, cf. [Ga].

More detailed, Gay’s approach for estimating the coverage of MMR (measles, mumps, rubella) multivalent vaccination in a fixed age cohort works as follows: The rates \(p(\pm, \pm, \pm) \) of being seropositive with each of the three diseases depend, via a polynomial system \(F \), on the MMR coverage \(v \), the exposure factors \(e_i \), and the rates \(s_i \) of seroconversion; the index \(i = 1,2,3 \) stands for measles, mumps and rubella, respectively. On the other hand, it is the \(p(\pm, \pm, \pm) \) which can be obtained from the available data. Hence, a maximum likelihood approach provides estimations of \(v, e_i, \) and \(s_i \).

Gay’s method requires numerical methods of finding values \(v, e_i, s_i \) that minimize the distance between \(F_{\pm, \pm, \pm}(v, e_i, s_i) \) and the measured \(p(\pm, \pm, \pm) \). The present paper replaces this part by providing exact formulas describing the inverse of the polynomial map \(F : \mathbb{R}^v \rightarrow \mathbb{R}^s \). Note that the image of \(F \) is contained in the hyperplane \(\sum p(\pm, \pm, \pm) = 1 \), i.e. it is 7-dimensional like the source space of \(F \).

The final result providing our estimation of \(v, e_i, s_i \) may be found in Theorem (3.2). An example is provided in section 4.

(1.2) We make the same three assumptions used by Gay [Ga]:

1) Vaccinated children who do not seroconvert as a result of vaccination have the same probability of being seropositive as an unvaccinated child of the same age (i.e., \(e_i \)).

2) In a single individual, seroconversion to each vaccine component is independent.
(3) Risk of exposure to infection is homogeneous within each age cohort and infection with each disease is independent.

However, we eliminate another assumption which is silently made in [Ga] in that we do not assume that the seroconversion \(s_i \) for the \(i \)-th disease is independent of age.

2 The MMR system

(2.1) First, let us recall from [Ga] the involved variables and their mutual relationship. Fixing one of the age cohorts, we denote by

- \(v \) the proportion of children who have received the multivalent vaccine ("MMR coverage"),
- \(e_i \) the rate measuring the exposure to natural infection with disease \(i \) ("exposure factor"),
- \(s_i \) the proportion of children previously with no detectable antibody to disease \(i \) who acquire detectable antibody to disease \(i \) when vaccinated ("seroconversion").

The rate \(q_i \) measuring the presence of antibodies to disease \(i \) under the condition of being vaccinated may be easily expressed as

\[
q_i = e_i + (1 - e_i) s_i \quad \text{with } i = 1, 2, 3.
\]

From these data it is possible to obtain information about the expected antibody prevalence in general. It is encoded in the 8 variables \(p(\pm, \pm, \pm) \) with "+" at the \(i \)-th place standing for the presence and "-" for the absence of antibodies to the \(i \)-th disease. Likewise, we may think about the sign triples as numbers between 0 (meaning "- - -") and 7 (meaning "+++"); this allows the shorter description \(p(\pm, \pm, \pm) = p(k) = p_k \). The equations are

\[
egin{align*}
p_7 &= p(+,+,+) = & v & q_1 q_2 q_3 + (1 - v) e_1 e_2 e_3 \\
p_6 &= p(+,+,-) = & v & q_1 q_2 (1 - q_3) + (1 - v) e_1 e_2 (1 - e_3) \\
p_5 &= p(+,-,+)= & v & q_1 (1 - q_2) q_3 + (1 - v) e_1 (1 - e_2) e_3 \\
p_4 &= p(+,-,-)= & v & q_1 q_2 (1 - q_3) + (1 - v) e_1 (1 - e_2) (1 - e_3) \\
p_3 &= p(-,+,+) = & v & (1 - q_1) q_2 q_3 + (1 - v) (1 - e_1) e_2 e_3 \\
p_2 &= p(-,+,-)= & v & (1 - q_1) q_2 (1 - q_3) + (1 - v) (1 - e_1) e_2 (1 - e_3) \\
p_1 &= p(-,-,+)= & v & (1 - q_1) (1 - q_2) q_3 + (1 - v) (1 - e_1) (1 - e_2) e_3 \\
p_0 &= p(-,-,-)= & v & (1 - q_1) (1 - q_2) (1 - q_3) + (1 - v) (1 - e_1) (1 - e_2) (1 - e_3).
\]

Remark: In [Ga], the variables \(v, e_i, q_i \), and \(p_k \) carry a second index pointing to the special age cohort; \(s_i \) does not because of Gay's assumption mentioned at the end of (1.2).

(2.2) The previous expressions express the variables \(p_k \) in terms of \(v, e_i, q_i \) or, since \(s_i = (q_i - e_i)/(1 - e_i) \), in terms of \(v, e_i, s_i \). Our goal is to describe the inverse dependencies, and we proceed in two steps:

First, using elimination theory, we produce in (2.3) and (2.4) for each of the variables \(v, e_i, q_i \) a separate equation with coefficients in the polynomial ring \(\mathcal{Q}[p_0, \ldots, p_7] \). The surprising fact will be that all these equations are quadratic ones. Then, as a second step, we will check in (2.5) which of the 2^7 combinations actually provide a solution to our system. The results of these investigations are gathered in Theorem (2.5).
Before we start this program, we would like to introduce an easy technical trick in which we replace the variables \(p_k \) by symbolic fractions \(a_k/n \). By doing so, it changes the above equations in the obvious way. For instance, the first one becomes

\[
a_v = a(+,+,+) = n v q_1 q_2 q_3 + n (1-v) e_1 e_2 e_3.
\]

Since this manipulation increases both the degree and the number of variables, it seemingly complicates the problem. However, using computer algebra systems, this improving of the rate of homogeneity leads to a substantial decrease of computational time. Moreover, another advantage of our approach is that \(\sum_{k=0}^{7} p_k = 1 \) translates into \(\sum_{k=0}^{7} a_k = n \). In particular, when finally applying our formulas, we may directly substitute the number of observed probands in each category for the corresponding variables \(a_k \). The number \(n \) equals the size of the cohort.

(2.3) Let us start with eliminating \(n, e_i, q_i \) to obtain an equation for the variable \(v \) which is, by the way, of major interest. We work with the computer algebra system SINGULAR developed at the University Kaiserslautern, [GPS].

Let \(R \) be a polynomial ring of characteristic zero with 16 variables \(a_k, n, v, e_i, q_i \). For the monomial order we have to choose a global one, e.g. dp(16). Transforming the 8 equations into an ideal \(I \subset R \), the command "eliminate(1, n*e(1)*e(2)*e(3)*q(1)*q(2)*q(3))" produces a quadratic equation

\[
c_1(a_0, \ldots, a_7) v^2 - c_1(a_0, \ldots, a_7) v + c_0(a_0, \ldots, a_7) = 0
\]

with huge polynomials \(c_1, c_0 \) of degree 6 in the variables \(a_0, \ldots, a_7 \).
We may also use SINGULAR for the factorization of polynomials. Applied to the coefficient \(c_1 \) as well as to the discriminant of our quadratic polynomial, this yields nice results. With

\[
f_1 := n = \left((a_0 + a_3 + a_5 + a_6) + (a_7 + a_4 + a_2 + a_1) \right)
\]

\[
f_3 := \left((a_0 + a_3 + a_5 + a_6) - (a_7 + a_4 + a_2 + a_1) \right) \left(a_0 a_7 + a_3 a_4 + a_5 a_2 + a_6 a_1 \right)
- 2 \left(a_0 a_7 (a_0 - a_7) + a_3 a_4 (a_3 - a_4) + a_5 a_2 (a_5 - a_2) + a_6 a_1 (a_6 - a_1) \right)
+ 2 \left(a_0 a_3 a_5 a_6 + a_0 a_2 a_5 a_6 + a_3 a_4 a_2 a_6 + a_6 a_3 a_4 a_2 \right)
\]

\[
f_4 := \left(a_0^2 a_7^2 + a_3^2 a_4^2 + a_5^2 a_2^2 + a_6^2 a_1^2 \right) + 4 \left(a_0 a_3 a_5 a_6 + a_7 a_4 a_2 a_1 \right)
- 2 \left(a_0 a_7 a_3 a_4 + a_0 a_7 a_5 a_2 + a_0 a_7 a_6 a_1 + a_3 a_4 a_2 a_6 + a_3 a_4 a_6 a_1 + a_3 a_2 a_6 a_1 \right),
\]

we obtain

\[
c_1 = f_1^2 f_4 \quad \text{and} \quad c_1 - 4 c_0 = f_3^2.
\]

In particular, the two solutions for \(v \) are

\[
v_{1,2} = \frac{1}{2} \left(1 \pm \sqrt{\frac{c_1 - 4 c_0}{c_1}} \right) = \frac{1}{2} \left(1 \pm \frac{f_3(a_0, \ldots, a_7)}{f_1(a_0, \ldots, a_7) \sqrt{f_4(a_0, \ldots, a_7)}} \right).
\]

Remarks:

(1) Note that whenever \(v \) solves the equation, then so does \((1-v) \). This symmetry may easily be seen in the original 8 equations by switching the variables \(e_i \) and \(q_i \).

(2) The formulas for \(f_1, f_3, \) and \(f_4 \) become very natural if we recall that \(a_0, a_3, a_5, a_6 \) correspond to \(a(-,-,-), a(-,+,-), a(+,-,-), a(+,+,-) \), respectively. These variables are those which have an even number of plus signs.
This fact may be illustrated by imaging the variables \(a(\pm, \pm, \pm)\) as sitting in the corners of a cube. Then, \(a_0, a_3, a_5, a_6\) correspond to the vertices of one of the two inscribed regular tetrahedra. The remaining \(a_7, a_4, a_2, a_1\) are contained in the opposite corners, respectively.

\[
\begin{align*}
a_0 &= a(-, -, -) \\
a_3 &= a(-, +, +) \\
(-, -, +) & \quad a(+, -, +) = a_5 \\
(-, +, -) & \quad a(+, +, -) = a_6 \\
(+) &= a(+, +, +) \\
\end{align*}
\]

(3) It has been observed by Duco van Straten that \(f_4\) equals the hyperdeterminant of the three-dimensional matrix \(A_{\cdots}\), formed by the variables \(a(\pm, \pm, \pm)\), cf. Proposition 14.1.7. in [GKZ]. Moreover, \(f_3\) is a linear combination of the derivatives of \(f_4\) which follows the usual pattern,

\[
2f_3 = \left(\frac{\partial f_4}{\partial a_0} + \frac{\partial f_4}{\partial a_3} + \frac{\partial f_4}{\partial a_5} \right) - \left(\frac{\partial f_4}{\partial a_7} + \frac{\partial f_4}{\partial a_4} + \frac{\partial f_4}{\partial a_2} \right).
\]

Finally, we would like to note that the coefficient \(c_0\) itself does split into a product of three quadrics:

\[
c_0 = f_{21} f_{22} f_{23} \quad \text{with} \quad f_{21} := (a_0 + a_1)(a_7 + a_3) - (a_1 + a_0)(a_6 + a_2), \\
f_{22} := (a_0 + a_2)(a_7 + a_5) - (a_1 + a_0)(a_3 + a_1), \\
f_{23} := (a_0 + a_1)(a_7 + a_6) - (a_1 + a_0)(a_3 + a_4).
\]

(2.4) Now, we focus on the remaining six variables \(e_i\) and \(s_i\). Following the above recipe, we obtain again quadratic equations for each of them, but with much smaller coefficients. They are no longer of degree 6, but quadratic themselves.

Notation: With \(A_{\cdots}\) being the three-dimensional matrix formed by the variables \(a(\pm, \pm, \pm)\), we derive the following ordinary \((2 \times 2)\) matrices from it:

- \(A_{\pm}(1) := A_{\pm\cdots}\) denotes the layer consisting of the entries \(a(+, *, *)\), i.e., the right hand face of the cube depicted above; the remaining (left) one forms the matrix \(A_{\mp}(1) := A_{\mp\cdots}\). Similarly, we may define \(A_{\pm}(2) := A_{*\pm\cdots}\) and \(A_{\mp}(3) := A_{\cdots*\pm}\).

- Considering the sum of the layers, we obtain \(A_{\Sigma}(i) := A_{\pm}(i) + A_{\mp}(i)\) for \(i = 1, 2, 3\).

Using this new terminology, we may recover the quadratic \(c_0\)-factors \(f_{2i}\) from the end of (2.3) as

\[
f_{2i} = \det A_{\Sigma}(i) \quad \text{with} \quad i = 1, 2, 3.
\]

Fixing a disease index \(i\), the elimination done by *SINGULAR* tells us that \(e_i\) and \(q_i\) both obey the same quadratic equation. It is

\[
\left(\det A_{\Sigma}(i) \right) x^2 - \left(\det A_{\Sigma}(i) + \det A_{\pm}(i) - \det A_{\mp}(i) \right) x + \left(\det A_{\pm}(i) \right) = 0.
\]
The discriminant is the hyperdeterminant \(\det A = f_4 \) again. Hence, the solutions for \(e_i \) and \(q_i \) are

\[
\begin{bmatrix} (e_{i,1,2} \text{ and } (q_{i,1,2}) \end{bmatrix} = \frac{1}{2} \left(1 + \frac{\det A_+ (i) - \det A_- (i) \pm \sqrt{\det A}}{\det A_+ (i)} \right) = \frac{1}{2} \left(1 + \frac{g_{2i}}{f_{2i}} \right)
\]

with \(g_{2i} \) being the quadratic polynomials

\[
g_{2i} := \det A_+ (i) - \det A_- (i) = \begin{cases} -a_0a_3 + a_1a_2 + a_4a_7 - a_5a_6 & (\text{for } i = 1) \\ -a_0a_5 + a_1a_4 + a_2a_7 - a_3a_6 & (\text{for } i = 2) \\ -a_0a_6 + a_1a_7 + a_2a_4 - a_3a_5 & (\text{for } i = 3). \end{cases}
\]

(2.5) Assuming the generic case of \(f_1 \neq 0 \), \(\det A_{**} \neq 0 \), and \(\det A_{**} (i) \neq 0 \) for each \(i = 1, 2, 3 \), we have narrowed the number of possible values for each of the variables \(v, e_i, \) and \(q_i \) down to two. It remains to check which of the \(2^7 \) combinations survive to provide an actual solution of the original system (2.1).

This can easily be done by considering the sum of those equations out of the original system that correspond to a certain face of the cube depicted in (2.3). For instance, adding up the equations for \(a_7, a_6, a_5, \) and \(a_4 \) provides

\[
a_7 + a_6 + a_5 + a_4 = f_1 v q_1 + f_1 (1 - v) e_1.
\]

All variables have been eliminated except \(v, q_1, \) and \(e_1 \). This allows us to show that the \(e_i \)’s must not equal the \(q_i \)’s. (Assuming \(e_1 = q_1 \), we would obtain \(a_7 + a_6 + a_5 + a_4 = f_1 e_1 \). However, substituting this value of \(e_1 \) into the quadratic equation of (2.4) yields

\[
f_1^2 \left(f_{21} e_1^2 - (f_{21} + g_{21}) e_1 + \det A_+ (1) \right) = -f_{22} f_{23},
\]

which is generally different from zero.)

Now, by Remark (2.3)(1), we may assume that, w.l.o.g., \(v = (f_1 \sqrt{f_4} + f_3) / (2 f_1 \sqrt{f_4}) \). Hence, with \(e_1 = (f_{21} + g_{21} + \sqrt{f_4}) / (2 f_{21}) \) and \(q_1 = (f_{21} + g_{21} \pm \sqrt{f_4}) / (2 f_{21}) \), the above equation multiplied with \(4 f_{21} \sqrt{f_4} \) becomes

\[
4 f_{21} \sqrt{f_4} \left(\sum_{k=4}^{7} a_k \right) = (f_1 \sqrt{f_4} + f_3) \left(f_{21} + g_{21} \pm \sqrt{f_4} \right) + (f_1 \sqrt{f_4} - f_3) \left(f_{21} + g_{21} \mp \sqrt{f_4} \right)
\]

\[= 2 f_1 \sqrt{f_4} f_{21} \left(f_{21} + g_{21} \right) \pm 2 f_3 \sqrt{f_4}.
\]

In particular, since \(2 f_{21} \left(\sum_{k=4}^{7} a_k \right) = f_1 (f_{21} + g_{21}) + f_3 \), only the signs on top survive in the formulas of \(e_1 \) and \(q_1 \).

Finally, one may use SINGULAR again for checking that these values, together with the similar ones for the remaining variables, indeed yield a solution of the original system. This means that we have shown the following

Theorem: If \(f_1, f_4, f_{24} \neq 0 \) for \(i = 1, 2, 3 \), then the polynomial system of (2.1), with the adaption \(p_k = a_k / n \) made in (2.2), has exactly two solutions. They are

\[
v = \frac{f_1 \sqrt{f_4} \pm f_3}{2 f_1 \sqrt{f_4}}, \quad e_i = \frac{f_{2i} + g_{2i} \mp \sqrt{f_4}}{2 f_{2i}}, \quad q_i = \frac{f_{2i} + g_{2i} \mp \sqrt{f_4}}{2 f_{2i}} \quad (i = 1, 2, 3).
\]

If some of the above polynomials \(f_i \) do vanish, then the system (2.1) might have infinitely many solutions or no solution at all.

(2.6) It is not such a surprise that we have got, in the generic case, finitely many solutions and, moreover, that SINGULAR was able to find them. However, we have not expected to obtain
such handsome formulas as being shown in the previous theorem.
The system of (2.1) has a geometrical meaning. Looking at projective spaces, it encodes \(p \in \mathbb{P}^7 \) as a point on the secant connecting the points \(q_i, \xi \in (\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1) \) after using the Segre embedding of algebraic geometry. The variable \(v \) specifies the exact location of \(p \) on that secant. On the other hand, the hyperdeterminant of a \((2 \times 2 \times 2)\)-matrix is nothing else than the equation of the variety being dual to \((\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1) \rightarrow \mathbb{P}^7\), cf. [GKZ]. While this looks very attempting, one should realize that both products \((\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1)\) are not contained in one common \(\mathbb{P}^7\), but in two different ones which are mutually dual.

We have no clue yet, why these nice formulas appear. Calculations with different, but still comparable systems did show some but not all of the features of the MMR system.

3 The MMR coverage

(3.1) If we apply the previous theory to our statistical problem of estimating the MMR coverage, then \(a_k \) stands for the number of persons of a prefixed age group observed to have antibody status \(k \) \((k = 0, \ldots , 7)\). Thus, \(f_1 \) is the size of the cohort, and this number is automatically positive. On the other hand, we would like to interpret the solutions \(v, e_i, q_i, \) and \(s_i \) of the MMR system as estimations of the probabilities described in (2.1). In particular, they should be real numbers and, moreover, be contained in the interval \([0, 1]\).

While in [Ga] the latter is forced by the numerical program used to solve the system, our solutions may not have these properties. However, this should not be considered problematic, but a feature of our method. If some solutions fall out of the range making sense, this just means that the quality of the input data \(a_k \) was not sufficient for this particular variable. In particular, the theorem below indicates that those data being problematic for \(e_i \) or \(s_i \) may still be useful for estimating \(v \). This special behavior of the MMR system has a geometric reason. Looking at the above interpretation via \((\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1)\)-secants in \(\mathbb{P}^7\), one sees immediately that \(v \) behaves more stable under noise than the other six variables which pin the secant down.

(3.2) In the following, we will formulate the conditions the input data have to fulfill for yielding appropriate results. Moreover, we will see that, in the statistical context, only one of the two solutions mentioned in Theorem (2.5) survives.

Theorem: (1) Let \(a_k \) be the observed number of people in a fixed age group with antibody status \(k \). If

\[
f_1(a) > 0 \quad \text{and} \quad f_{2i}(a) > 0 \quad (i = 1, 2, 3),
\]

then the MMR system yields a unique, feasible MMR coverage

\[
v = \frac{f_1 \sqrt{f_4} + f_3}{2f_1 \sqrt{f_4}}.
\]

(2) Moreover, if \(f_{2i}(a) \geq \sqrt{f_4(a)} + |g_{2i}(a)| \quad (i = 1, 2, 3), \) then the solutions

\[
e_i = \frac{f_{2i} + g_{2i} - \sqrt{f_4}}{2f_{2i}}, \quad s_i = \frac{2 \sqrt{f_4}}{f_{2i} - g_{2i} + \sqrt{f_4}} \quad (i = 1, 2, 3)
\]

are feasible, too.

Proof: Positivity of \(f_4 \) means that the solutions described in Theorem (2.5) are real. Assuming this, we have

\[
v \in [0, 1] \iff f_1 \sqrt{f_4} \pm f_3 \geq 0 \iff f_1^2 f_4 \geq f_3^2.
\]
On the other hand, we have seen in (2.3) that

\[f_1^2 f_4 = c_1 = (c_1 - 4c_0) + 4c_0 = f_2^2 + 4f_{21}f_{22}f_{23}. \]

Hence, the condition \(\varrho \in [0,1] \) is equivalent to \(f_{21}f_{22}f_{23} > 0 \).

Since \(s_i = (q_i - e_i)/(1 - e_i) \), we know that

\[e_i, s_i \in [0,1] \quad \iff \quad 0 \leq e_i \leq q_i \leq 1. \]

From Theorem (2.5) we obtain, depending on the choice of the solution, that \(q_i - e_i = \sqrt{f_{2i}}/f_{2i} \) for \(i = 1,2,3 \) or that \(q_i - e_i = -\sqrt{f_{4}}/f_{4} \) for \(i = 1,2,3 \). Anyway, for \(q_i \geq e_i \), the polynomials \(f_{21}, f_{22}, f_{23} \) must have the same sign. Together with \(f_{21}f_{22}f_{23} > 0 \) obtained above, this means that \(f_{21}, f_{22}, f_{23} > 0 \). In particular, looking at Theorem (2.5), only the solution with the sign of \(\varrho \) survives.

Finally, it is easy to see that the conditions \(e_i \geq 0 \) and \(q_i \leq 1 \) translate into \(f_{2i} \geq \sqrt{f_{4}} - g_{2i} \) and \(f_{2i} \geq f_{4} + g_{2i} \), respectively. \(\square \)

4 Data

(4.1) To illustrate our results, we have chosen some data of some country of the ESEN Project, [Ga]. These data have not yet been finalized as they might be changed according to a new standardization between the European countries. For that reason, the use of these data here is for illustrative purposes only.

The input, i.e., the sampled variables \(a_k \), may be found in the table (4.2). The first table compares our estimation of \(v, e_1, e_2, \) and \(e_3 \) by age groups (AG) with that obtained by Gay in [Ga]; the variables pointing to his values carry a tilde.

<table>
<thead>
<tr>
<th>AG</th>
<th>(\bar{v})</th>
<th>(\bar{v}')</th>
<th>(\bar{e}_1)</th>
<th>(e_1)</th>
<th>(\bar{e}_2)</th>
<th>(e_2)</th>
<th>(\bar{e}_3)</th>
<th>(e_3)</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.227</td>
<td>0.227</td>
<td>0.003</td>
<td>0.005</td>
<td>0.019</td>
<td>0.019</td>
<td>0.014</td>
<td>0.011</td>
<td>0.950</td>
<td>0.861</td>
<td>0.974</td>
</tr>
<tr>
<td>2</td>
<td>0.642</td>
<td>0.642</td>
<td>0.122</td>
<td>0.144</td>
<td>0.020</td>
<td>0.017</td>
<td>0.009</td>
<td>0.009</td>
<td>0.976</td>
<td>0.878</td>
<td>0.922</td>
</tr>
<tr>
<td>3</td>
<td>0.715</td>
<td>0.710</td>
<td>0.122</td>
<td>0.112</td>
<td>0.041</td>
<td>0.046</td>
<td>0.009</td>
<td>0.008</td>
<td>1.002</td>
<td>0.912</td>
<td>0.930</td>
</tr>
<tr>
<td>4</td>
<td>0.837</td>
<td>0.824</td>
<td>0.251</td>
<td>0.279</td>
<td>0.041</td>
<td>0.054</td>
<td>0.106</td>
<td>0.219</td>
<td>1.003</td>
<td>0.886</td>
<td>0.922</td>
</tr>
<tr>
<td>5</td>
<td>0.859</td>
<td>0.863</td>
<td>0.292</td>
<td>0.252</td>
<td>0.241</td>
<td>0.227</td>
<td>0.106</td>
<td>0.000</td>
<td>1.000</td>
<td>0.886</td>
<td>0.921</td>
</tr>
<tr>
<td>6</td>
<td>0.794</td>
<td>0.889</td>
<td>0.621</td>
<td>0.427</td>
<td>0.324</td>
<td>0.094</td>
<td>0.106</td>
<td>-0.037</td>
<td>0.961</td>
<td>0.855</td>
<td>0.830</td>
</tr>
<tr>
<td>7</td>
<td>0.645</td>
<td>0.847</td>
<td>0.756</td>
<td>0.550</td>
<td>0.502</td>
<td>0.006</td>
<td>0.256</td>
<td>0.258</td>
<td>0.949</td>
<td>0.938</td>
<td>0.678</td>
</tr>
<tr>
<td>8</td>
<td>0.662</td>
<td>0.764</td>
<td>0.764</td>
<td>0.652</td>
<td>0.502</td>
<td>0.285</td>
<td>0.411</td>
<td>0.356</td>
<td>0.969</td>
<td>0.877</td>
<td>0.798</td>
</tr>
<tr>
<td>9</td>
<td>0.576</td>
<td>0.900</td>
<td>0.764</td>
<td>0.588</td>
<td>0.665</td>
<td>0.279</td>
<td>0.481</td>
<td>-0.007</td>
<td>0.833</td>
<td>0.857</td>
<td>0.838</td>
</tr>
<tr>
<td>10</td>
<td>0.478</td>
<td>0.940</td>
<td>0.906</td>
<td>0.667</td>
<td>0.734</td>
<td>0.049</td>
<td>0.631</td>
<td>0.450</td>
<td>0.906</td>
<td>0.892</td>
<td>0.660</td>
</tr>
</tbody>
</table>

The main difference between Gay’s and our results can be found in the values of \(v, e_1, e_2, \) and \(e_3 \) in the higher age groups.

Moreover, while Gay has assumed age independent seroconversion rates, our solutions \(s_1, s_2, s_3 \) do vary with age; the most striking example is the rubella seroconversion \(s_3 \). The comparison of Gay’s values with the means (weighted over age-group sample size) of our solutions for \(s_1, s_2, s_3 \) is as follows:

\[
\text{Seroconversion by N. Gay: } 0.989 \quad 0.880 \quad 0.910 \\
\text{Means of our } s_1, s_2, s_3: \quad 0.955 \quad 0.884 \quad 0.847
\]
(4.2) We can use the equations of (2.1) to re-calculate the expected antibody prevalence out of the solutions obtained for v, e_i, s_i. In other words, for each antibody status (\pm, \pm, \pm) we are looking for the number of people that should have been observed to yield the desired result.

Because we used an exact method, it is no surprise that our solutions give exactly back the input data; they fill the a_k-columns in the following table. On the other hand, using Gay's solutions, we obtain different values which are contained in the \tilde{a}_k-columns:

<table>
<thead>
<tr>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.58</td>
<td>156</td>
<td>2.3</td>
<td>3.1</td>
<td>0.5</td>
<td>1.0</td>
<td>5.0</td>
<td>3.7</td>
</tr>
<tr>
<td>49.1</td>
<td>48</td>
<td>5.0</td>
<td>1.1</td>
<td>1.0</td>
<td>7.9</td>
<td>12.7</td>
<td>8.2</td>
</tr>
<tr>
<td>40.8</td>
<td>42</td>
<td>4.2</td>
<td>1.8</td>
<td>1.2</td>
<td>6.9</td>
<td>14.6</td>
<td>9.8</td>
</tr>
<tr>
<td>20.1</td>
<td>18</td>
<td>2.5</td>
<td>1.0</td>
<td>1.2</td>
<td>8.2</td>
<td>17.7</td>
<td>11.6</td>
</tr>
<tr>
<td>14.6</td>
<td>17</td>
<td>1.8</td>
<td>4.7</td>
<td>1.8</td>
<td>7.3</td>
<td>16.1</td>
<td>15.3</td>
</tr>
<tr>
<td>10.2</td>
<td>13</td>
<td>1.3</td>
<td>5.0</td>
<td>1.2</td>
<td>17.9</td>
<td>14.8</td>
<td>20.7</td>
</tr>
<tr>
<td>6.9</td>
<td>11</td>
<td>2.4</td>
<td>7.0</td>
<td>2.7</td>
<td>21.9</td>
<td>16.5</td>
<td>30.3</td>
</tr>
<tr>
<td>5.0</td>
<td>7</td>
<td>3.5</td>
<td>5.0</td>
<td>3.8</td>
<td>16.5</td>
<td>19.1</td>
<td>23.2</td>
</tr>
<tr>
<td>3.4</td>
<td>6</td>
<td>3.1</td>
<td>6.7</td>
<td>6.5</td>
<td>11.1</td>
<td>14.4</td>
<td>26.7</td>
</tr>
<tr>
<td>0.9</td>
<td>2</td>
<td>1.5</td>
<td>2.4</td>
<td>4.2</td>
<td>8.5</td>
<td>17.1</td>
<td>26.1</td>
</tr>
</tbody>
</table>

(4.3) In the following, we will discuss some of the properties of our solutions.

(1) One should not so much worry about negative rates or rates above 1 as they appear among the e_i or s_i. While the values are still very close to the allowed range, it indicates that the input data for these age groups do not meet the second set of assumptions in Theorem (3.2). Nevertheless, the basic first set is fulfilled, i.e. the solutions for v work fine.

(2) Our major concern is caused by the exposure factors e_2 and e_3. They seem to be very small in the higher age groups and, additionally, they do not increase with age. For the latter, however, we may use the same explanation as Gay did for the decline of his v in older cohorts in that the data arise from different cohorts in each age group.

(3) As already mentioned before, we did not ad hoc assume that the seroconversions s_i are age independent. However, as a result of our calculations, we obtained values for mumps and measles that did not greatly vary - and the averages are quite close to Gay's values. On the other hand, the seroconversion factor for rubella shows an unusual behavior in the higher age groups and we would be interested in an explanation for it.

Roughly speaking, the main difference between Gay's and our approach can be put in the following terms: While Gay plugs in biological relevant restrictions first and proceeds his calculations afterwards, we do it the other way around. More detailed:

Gay: He considers 10 age groups at once, yielding a system with 70 equations in 70 variables. Moreover, he creates additional restrictions by

- assuming that the seroconversion s_i is age independent (meaning to lose 27 variables),
- and by forcing the exposure factors e_i to increase with age (meaning to introduce additional inequalities).

For the remaining system, Gay uses a numerical approach to find values for v (age), e_i (age), and s_i to fit into the system as best as possible. Exact solutions are of course out of range.

Altman: We consider each age group separately; this yields a system of 7 equations in 7 variables for each group, allowing exact solutions with easy formulas.
The fact that the above problem (2) does not occur in Gay’s solutions is no surprise at all. It was part of his method to force all these properties which are, however, biologically plausible. An advantage of Gay’s method is that, if one accepts that seroconversion is age independent, imperfect data in single age groups might be corrected by the better ones. The main advantage of our approach is that we obtain explicit formulas for v, e_i, and s_i. This makes it possible to recognize how the input variables influence the result. Moreover, the fact that v behaves more stable than the remaining variables is reflected in Theorem (3.2). One needs only the weaker first set of assumptions to obtain an appropriate result for the MMR coverage v.

Acknowledgement: We would like to thank Duco van Straten for the useful discussions concerning the exciting mathematical pattern hidden in the MMR problem and its solution. Moreover, we are grateful to Nigel Gay for sending us his manuscript including the data of the ESEN (European Seroepidemiological Network) Project.

References

Doris Altmann
Robert Koch Institut
Stresemannstr. 90-102
D-10963 Berlin, Germany
e-mail: altmann@rki.de

Klaus Altmann
Institut für Reine Mathematik
Humboldt-Universität zu Berlin
Ziegelstr. 13A
D-10099 Berlin, Germany
e-mail: altmann@mathematik.hu-berlin.de