Structure and Constructions of 3-Connected Graphs

Jens M. Schmidt
Overview

- Construction Sequences

- Certifying 3-Vertex- and Edge-Connectivity

- Some Open Problems
Def. An edge is **contractible** if contracting it generates a 3-connected graph.
Def. An edge is **contractible** if contracting it generates a 3-connected graph.

Thm (Tutte '61). Every 3-connected graph with $n > 4$ contains a **contractible** edge.
Def. An edge is **contractible** if contracting it generates a 3-connected graph.

Thm (Tutte '61). Every 3-connected graph with \(n > 4 \) contains a contractible edge.

Thm (Elmasry, Mehlhorn, S. '10). Every DFS-tree of a 3-connected graph with \(n > 4 \) contains a contractible edge.
Def. An edge is **contractible** if contracting it generates a 3-connected graph.
Def. An edge is **contractible** if contracting it generates a 3-connected graph.
Def. An edge is **contractible** if contracting it generates a 3-connected graph.
Contractible Edges

Def. An edge is *contractible* if contracting it generates a 3-connected graph.
Contractible Edges

Def. An edge is **contractible** if contracting it generates a 3-connected graph.

Corollary (of Tutte '61).
A graph is 3-connected $\iff \exists$ a sequence of contractions from G to a K_4-multigraph on contractible edges xy with $|N(x)| \geq 3$ and $|N(y)| \geq 3$.
K₄-Subdivisions

Thm (Isbell). Every 3-connected graph contains a subdivision of $K₄$.
Thm (Isbell). Every 3-connected graph contains a subdivision of K_4.
Thm (Isbell). Every 3-connected graph contains a subdivision of K_4.

K$_4$-Subdivisions

links of the K$_4$-subdivision
BG-Paths

David W. Barnette
Branko Grünbaum

\[S \cap P = \{x,y\} \]

forbidden

forbidden
Thm (Corollary of Barnette & Grünbaum ’69).

A graph G is 3-connected \iff
$\delta(G) \geq 3$ and there is a sequence of BG-paths from a K_4-subdivision in G to G
Thm (Corollary of Barnette & Grünbaum '69).
A graph G is 3-connected $\iff \delta(G) \geq 3$ and there is a sequence of BG-paths from a K_4-subdivision in G to G

Thm (S., STACS '10).
A graph G is 3-connected $\iff \delta(G) \geq 3$ and there is a sequence of BG-paths from each K_4-subdivision in G to G
Construction Sequences

Thm (Corollary of Barnette & Grünbaum '69).
A graph G is 3-connected $\iff \delta(G) \geq 3$ and there is a sequence of BG-paths from a K_4-subdivision in G to G

Thm (S., STACS '10).
A graph G is 3-connected $\iff \delta(G) \geq 3$ and there is a sequence of BG-paths from each K_4-subdivision in G to G

True even for subdivisions of any 3-connected graph in G!
Construction Sequences

Thm (Corollary of Barnette & Grünbaum '69).
A graph G is 3-connected \iff
$\delta(G) \geq 3$ and there is a sequence of BG-paths from a K_4-subdivision in G to G

Thm (S., STACS '10).
A graph G is 3-connected \iff
$\delta(G) \geq 3$ and there is a sequence of BG-paths from each K_4-subdivision in G to G

This allows for a computational greedy approach: We compute a K_4-subdivision and add iteratively BG-paths!
A K_4-subdivision can be found easily using a DFS-tree.

Thm (S. '11). A BG-path sequence of a 3-connected graph can be computed in $O(m)$ time.
A K_4-subdivision can be found easily using a DFS-tree.

Thm (S. '11). A BG-path sequence of a 3-connected graph can be computed in $O(m)$ time.

Thm (S. '10). Any BG-path sequence can be transformed to Tutte's sequence of contractions in $O(m)$.
Overview

- Construction Sequences

- Certifying 3-Vertex- and Edge-Connectivity

- Some Open Problems
Certifying 3-Connectivity

not 3-connected

3-connected?
Certifying 3-Connectivity

A certifying algorithm is an algorithm that gives an easy-to-verify certificate of correctness along with its output. (Mehlhorn, Näher, et al. '98 -'10, see also Blum & Kannan '89)
A certifying algorithm is an algorithm that gives an easy-to-verify certificate of correctness along with its output. (Mehlhorn, Näher, et al. '98 -'10, see also Blum & Kannan '89)

History of certifying algorithms for 3-connectivity:

- Straight-forward $O(n^2m^2)$ algorithm
- $O(n^3)$ by applying a preprocessing of Nagamochi&Ibaraki
- 2006 – Albroscheit & Rote: $O(n^2)$, mixed certificates
- 2010 – Mehlhorn, Schweitzer: $O(n^2)$, computes Tutte's sequence
- 2010 – S.: $O(n^2)$, computes Tutte's and the BG-path sequence
- 2010 – Elmasry, Mehlhorn, S.: $O(n+m)$ for Hamiltonian graphs
Certifying 3-Connectivity

A **certifying algorithm** is an algorithm that gives an **easy-to-verify** certificate of correctness along with its output. (Mehlhorn, Näher, et al. '98 -'10, see also Blum & Kannan '89)

History of certifying algorithms for 3-connectivity:

- Straight-forward $O(n*m^2)$ algorithm
- $O(n^3)$ by applying a preprocessing of Nagamochi&Ibaraki
- 2006 – Albroscheit & Rote: $O(n^2)$, mixed certificates
- 2010 – Mehlhorn, Schweitzer: $O(n^2)$, computes Tutte's sequence
- 2010 – S.: $O(n^2)$, computes Tutte's and the BG-path sequence
- 2010 – Elmasry, Mehlhorn, S.: $O(n+m)$ for Hamiltonian graphs

Thm (S. '10). A BG-path sequence can be **easily** verified in time $O(m)$.
Certifying 3-Connectivity

A certifying algorithm is an algorithm that gives an easy-to-verify certificate of correctness along with its output. (Mehlhorn, Näher, et al. '98 -'10, see also Blum & Kannan '89)

History of certifying algorithms for 3-connectivity:

- Straight-forward $O(n^2 m^2)$ algorithm
- $O(n^3)$ by applying a preprocessing of Nagamochi&Ibaraki
- 2006 – Albroscheit & Rote: $O(n^2)$, mixed certificates
- 2010 – Mehlhorn, Schweitzer: $O(n^2)$, computes Tutte's sequence
- 2010 – S.: $O(n^2)$, computes Tutte's and the BG-path sequence
- 2010 – Elmasry, Mehlhorn, S.: $O(n+m)$ for Hamiltonian graphs

Thm (S. '10). A BG-path sequence can be easily verified in time $O(m)$.

- 2011 – S.: $O(n+m)$ for general graphs, using BG-paths
- also: 3-edge-connectivity
Overview

- Construction Sequences
- Certifying 3-Vertex- and Edge-Connectivity
- Some Open Problems
Some Open Problems

- Implementation is simple. Performance in practice? Implementations of Rote and of Neumann.
- Can the algorithm be extended to compute SPQR-trees?
- Is the construction sequence approach strong enough for higher connectivity?
BG-Paths

K_4-subdivision in G
BG-Paths

K_4-subdivision in G
BG-Paths

K_4-subdivision in G
BG-Paths

K_4-subdivision in G
BG-Paths

K₄-subdivision in G
BG-Paths

K_4-subdivision in G
Certifying 3-Connectivity

A certifying algorithm is an algorithm that gives an easy-to-verify certificate of correctness along with its output. (Mehlhorn, Näher, et al. '98 -'10, see also Blum & Kannan '89)

- **Major goal** for program verification on complicated algorithms
- **Assure** correctness on every instance
- **Surprisingly few results** to certify 3-connectivity although sophisticated linear-time recognition algorithms are known for over 35 years (Hopcroft & Tarjan '73, Vo '83)
Motivation

=> new *linear-time* recognition algorithm for *3-connectivity*.

Thm (Galil & Italiano ’91). *k-edge-connectivity* is *linear-time* reducible to *k-connectivity* in linear time.

Corollary. There is a *linear-time* certifying algorithm for *3-edge-connectivity*.
Thm (S. '10). A BG-path sequence can be easily verified in time $O(m)$.

=> new linear-time recognition algorithm for 3-connectivity.

Thm (Galil & Italiano '91). k-edge-connectivity is linear-time reducible to k-connectivity in linear time.

Corollary. There is a linear-time certifying algorithm for 3-edge-connectivity.