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A method for clustering of multidimensional non-stationary meteorological time series is presented.
The approach is based on optimization of the regularized averaged clustering functional describing
the quality of data representation in terms of K regression models and a metastable hidden process
switching between them. Proposed numerical clustering algorithm is based on application of the
finite element method (FEM) to the problem of non-stationary time series analysis. The main
advantage of the presented algorithm compared to Hidden Markov Models (HMM) and to finite
mixture models is that no a priori assumptions about the probability model for the hidden and
observed processes (e. g., Markovianity or stationarity) are necessary for the proposed method.
Another attractive numerical feature of the discussed algorithm is the possibility to choose the
optimal number of metastable clusters and a natural opportunity to control the fuzziness of the
resulting decomposition a posteriory, based on the statistical distinguishability of the resulting
persistent cluster states. The resulting FEM-K-Trends algorithm is compared with some standard
fuzzy clustering methods on toy model examples and on analysis of multidimensional historical
temperature data locally in Europe and on the global temperature data set.
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Introduction

In the meteorology and climate research, recent years have seen a dramatic explosion in the amount and
precision of raw data that is available in the form of time series. Due to the development of computational
and measuring facilities in geo-sciences (e.g. reanalysis techniques in meteorology) large amounts of
measured and simulated information from all kinds of processes have been accumulated. Many of this
processes are characterized by the presence of transitions between different local phases or regimes. Such
phases can be found in meteorology [1, 2, 3, 4, 5, 6, 7, 8, 9] and climatology [10, 11, 12].If knowledge
about such systems is present only in the form of observation or measurement data, the challenging
problem of identifying those persistent (or metastable) regimes together with the construction of reduced
dynamical models of system dynamics becomes a problem of time series analysis and pattern recognition
in high dimensions. The choice of the appropriate data analysis strategies (implying a set of method-
specific assumptions on the analyzed data) plays a crucial role in correct interpretation of the available
time series. The most popular methods for identification of multiple regimes in high-dimensional time
series are: clustering methods (like K-means or fuzzy-c-means) [13], methods based on hidden Markov
models (HMMs) [14, 15, 16, 17], finite mixture models [18, 19], and neuronal networks [20].

All of the above methods share two basic problems: (i) number of clusters or phases present in
the data is a priori unknown [21], and (ii) each of the analysis methods implies some mathematical
assumptions about the analyzed data. More specifically, most of the commonly used clustering methods
imply the (local) stationarity of the analyzed data. This can lead to problems with identification of
the optimal cluster partitioning in the case of the data with a time trend, i. e., it can happen by
application of standard K-means and fuzzy-c-means algorithms to the analysis of historical temperature
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data. Presented paper aims at investigation of this problem, introduction of the methods of non-
stationary data clustering in context of geophysical processes and comparison of different clustering
approaches in context of historical temperature analysis.

A short overview of the most frequently used clustering methods is given, with a special emphasis on
structural properties and implicit mathematical assumptions intrinsic for each of the methods. Fuzzy
Clustering based on Regression Models (FCRM) algorithm for non-stationary data clustering is shortly
explained [22].The key part of the presented paper describes an extension of the standard K-means
method in context of the finite element method (FEM)-based clustering methods to allow for analysis
of non-stationary data. More specifically: we assume that the centers of the respective clusters evolve
in time according to a linear combination of some predefined time-dependent basis functions with some
(unknown) cluster-specific coefficients. Rewriting the problem in terms of the regularized averaged
clustering functional allows us to apply the FEM-framework for simultaneous clustering of the data
and identification of historical trends for each of the clusters. The main advantages of the presented
method compared to the HMM-based methods are: (i) there is no need to assume the Markovianity of
the hidden process switching between the clusters, (ii) no explicit probabilistic model (like multivariate
Gaussian in HMM-Gauss and HMM-PCA) for the observed data in the hidden states is needed, (iii)
introduction of the regularization parameter allows to controls the metastability of the resulting cluster
decomposition and helps to identify the number of persistent clusters.

We explain how the quality of the reduced representation of the data can be acquired, how it can
help to estimate the number of the metastable states and what kind of additional information about
the analyzed process can be gained. The proposed framework is illustrated on some toy model systems,
on analysis of historical 700 hPA geopotential height air temperature from the ERA 40 reanalysis data
between 1958-2002 in Europe and worldwide.

1 Geometrical Clustering: K-Means, Fuzzy-c-Means and FCRM methods

1.1 Cluster distance functional and K-Means clustering

Let xt : [0, T ] → Ψ ⊂ Rn be the observed n-dimensional time series. We look for K clusters characterized
by K distinct sets of a priori unknown cluster parameters

θ1, . . . , θK ∈ Ω ⊂ Rd, (1)

(where d is the dimension of a cluster parameter space) for the description of the observed time series.
Let

g (xt, θi) : Ψ × Ω → [0,∞) , (2)

be a functional describing the distance from the observation xt to the cluster i. For a given cluster
distance functional (2), under data clustering we will understand the problem of a function Γ(t) =
(γ1(t), . . . , γK(t)) called the cluster affiliation (or the cluster weights) together with cluster parameters
Θ = (θ1, . . . , θK) which minimize the averaged clustering functional1

L(Θ,Γ) =

K
∑

i=1

∫ T

0

γi(t)g (xt, θi) dt → min
Γ(t),Θ

, (3)

1 Note that in context of many time series analysis methods, the model distance functional (2) is not the only quantity
needed to formulate the numerical scheme. For example, in Bayesian framework (e. g., in the methods like Gaussian
mixture models(GMMs) or Hidden Markov Models (HMMs) [15, 18]), the a priory chosen functional form of the probability
density function for each of the clusters is also needed in each step of the numerical procedure. Therefore, in the following we
will draw a distinction between methods where the probabilistic assumptions should be implied a priory (like GMM/HMM)
and clustering methods that are based only on the notion of some (Euclidean, in many cases) model distance functional
g (xt, θi) (e. g., geometrical K-means clustering methods [23, 13]).
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subject to the constraints on Γ(t):

K
∑

i=1

γi(t) = 1, ∀t ∈ [0, T ] (4)

γi(t) ≥ 0, ∀t ∈ [0, T ] , i = 1, . . . ,K. (5)

One of the most popular clustering methods in multivariate data-analysis is the so-called K-means
algorithm [23, 13]. The affiliation to a certain cluster i is defined by the proximity of the observation
xt ∈ Ψ to the cluster center θi ∈ Ψ (note that in this special case n = d, cf. (1) ). In this case the
cluster distance functional (2) takes the form of the square of the simple Euclidean distance between
the points in n dimensions:

g (xt, θi) = ‖ xt − θi ‖
2 . (6)

If the analyzed data xt is available only at some discrete observation times tj , j = 1, . . . , n, functional
(3) gets the form

K
∑

i=1

n
∑

j=1

γi(tj) ‖ xtj
− θi ‖

2 → min
Γ(t),Θ

. (7)

K-means algorithm iteratively minimizes the functional (7) subject to constraints (4-5) assigning the

new cluster affiliations γ(l)(tj) and updating the cluster centers θ
(l)
i in iteration (l) according to the

following formulas

γ
(l)
i (tj) =

{

1 i = arg min ‖ xtj
− θ

(l−1)
i ‖2,

0 otherwise,
(8)

θ
(l)
i =

∑n

j=1 γ
(l)
i (tj)xtj

∑n

j=1 γ
(l)
i (tj)

. (9)

Iterations (8-9) are repeated until the change of the averaged clustering functional value does not exceed
a certain predefined threshold value.

1.2 Stationary data: Fuzzy c-Means Clustering

As it can be seen from (8), the assignment of observed data point xtj
to a certain cluster i is sharp, i. e.,

a single point can not be assigned simultaneously to different clusters. This can cause a problem in the
case of geometrically overlapping clusters. To fix this problem, a following modification of the averaged
clustering functional (7) was suggested [23]

K
∑

i=1

n
∑

j=1

γm
i (tj) ‖ xtj

− θi ‖
2 → min

Γ(t),Θ
, (10)

where m > 1 is a fixed exponent called the fuzzyfier [23, 24]. Analogously to the k-means, the fuzzy
c-means algorithm is an iterative procedure for minimization of (10)

γ
(l)
i (tj) =



























1

∑

K

p=1

(

‖xtj
−θ

(l−1)
i

‖2

‖xtj
−θ

(l−1)
p ‖2

)
1

m−1
if Ixtj

is empty,

∑

r∈Ixtj

γ
(l)
r (tj) = 1 if Ixtj

is not empty, i ∈ Ixtj
,

0 if Ixtj
is not empty, i 6∈ Ixtj

,

(11)

θ
(l)
i =

∑n

j=1 γ
(l)
i (tj)xtj

∑n

j=1 γ
(l)
i (tj)

. (12)
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where Ixtj
= {p ∈ {1, . . . ,K}| ‖ xtj

− θ
(l−1)
p ‖2= 0} [13]. Note that the middle part of the assignment

(12) means that the assignment is not unique and any assignment where
∑

r∈Ixtj

γ
(l)
r (tj) = 1 can be

used in this case. As it follows from (11), for any fixed fuzzifier m, cluster affiliations γ
(l)
i (tj) get values

between 0 and 1, for m → ∞ γ
(l)
i(tj)

→ 1
K

. This feature allows clustering of overlapping data. However,

the results are very much dependent on the choice of the fuzzifier m and there is no mathematically
founded strategy of choosing this parameter dependent on the properties of the analyzed data. Moreover
it is not a priori clear how many clusters are there in the data and which value should K take. Another
problem is that the data is assumed being (locally) stationary, i.e., that the conditional expectation
values θi calculated for the respective clusters i are assumed to be time independent. As we will see
later, this can result in misinterpreting of the clustering results, if the data has a temporal trend.

1.3 Non-stationary data: Fuzzy Clustering based on Regression Models (FCRM)

To overcome the aforementioned stationarity restriction, R. Hathaway and J. Bezdek suggested the
fuzzy c-regression models (FCRM) (also known in the literature as switching regression models) [22].
They suggested to describe each cluster-specific temporal trend as a certain (linear) regression model
of a certain fixed order R given by some predefined basis functions φk (t) , k = 0, . . . ,R (e. g, time
monomials tk) and some a priori unknown regression coefficients θik (lower index i denotes the number
of the respective cluster). FCRM clustering algorithm yields simultaneous estimates of the regression
parameters θik, k = 0, . . . ,R together with a fuzzy partitioning of the data based on the minimization
of the modified form of the averaged clustering functional (10)

K
∑

i=1

n
∑

j=1

γm
i (tj) ‖ xtj

−

R
∑

k=0

θikφk (tj) ‖
2 → min

Γ(t),c
. (13)

Comparison of (13) and (10) makes clear that the time-independent cluster centers θi in context of fuzzy
c-means clustering are replaced by time-dependent functions

θi (t) =

R
∑

k=0

θikφk (tj) , (14)

i. e., the cluster centers are assumed to be moving and the overall dynamics not assumed to be stationary.
The overall algorithmic procedure can be efficiently implemented in context of Expectation-Maximization
(EM) algorithms, if certain statistical assumptions about the underlying observation probability distri-
bution can be made [25]. Analogously to fuzzy c-means clustering algorithm, the FCRM-algorithm is

an iterative procedure with the same re-estimation formula for cluster weights (11) (except that θ
(l)
i has

a form of (14)). However, it is not always clear whether the probabilistic assumptions (like Gaussian-
ity of the regression residuals or their statistical independence [25]) are fulfilled for the analyzed data.
Moreover, similar to the fuzzy c-means algorithm, there is no practical and universal recipe for choosing
the number of clusters K and fuzzifier m.

2 Regularized Averaged Clustering Functional: FEM-K-Trends algorithm

As it was emphasized above, the arbitrariness of parameter choice (especially for the number of clusters
K and fuzzifier m) can make the application of the described clustering methods more problematic, espe-
cially in the case of the strongly overlapping data clusters. In the following, an extension of the recently
proposed algorithm based on application of finite elements method (FEM) towards non-stationary data
will be presented [26]. Dynamical approach to control the cluster-fuzzyness and the number of clusters
will be introduced.

This is a preliminary version. Do not circulate!



On clustering of non-stationary meteorological time series5 5

2.1 Regularized Averaged Clustering Functional for Non-stationary Data

Let us consider the clustering of non-stationary multidimensional data xt ∈ Rd as a minimization
problem (3) subject to constraints (4-5). The corresponding cluster distance functional (2) has the
regression form as in the case above

g (xt, θi) = ‖ xt −

R
∑

k=0

θik ⊙ φk (t) ‖2, (15)

where θik ∈ Rd is a vector of regression coefficients, φk (t) ∈ Rd is a vector of time-dependent regression
functions and ⊙ denotes a component-by-component product of 2 vectors. As it was demonstrated in
[26], instead of the introduction of an artificial fuzzifier-parameter (as in case of c-means clustering and
FCRM) and direct time discretization of (3), one incorporates some additional information into the
optimization. One of the possibilities is to impose some smoothness assumptions in space of functions
Γ (·) ) and then apply a finite Galerkin time-discretization of this infinite-dimensional Hilbert space.
For example, one can impose the weak differentiability of functions γi, i. e.:

|γi|H1(0,T ) = ‖ ∂tγi (·) ‖L2(0,T )=

∫ T

0

(∂tγi (t))
2
dt ≤ Ci

ǫ < +∞, i = 1, . . . ,K. (16)

For a given observation time series, the above constraint limits the total number of transitions between
the clusters and is connected to the metastability of the hidden process Γ(t) [26].

2.2 Finite Element Approach: FEM-K-Trends algorithm

To derive the algorithmic procedure for minimization of (3) subject to constraints (4), (5) and (16), one
of the possibilities is to apply the Lagrange-formalism and incorporate the constraint (16) directly into
the minimized functional with the help of the Lagrange-multiplier ǫ2

Lǫ(Θ,Γ, ǫ2) = L(Θ,Γ) + ǫ2
K
∑

i=1

∫ T

0

(∂tγi (t))
2
dt → min

Γ,Θ
. (17)

Let {0 = t1, t2, . . . , tN−1, tN = T} be a finite subdivision of the time interval [0, T ] with uniform time
interval ∆t. We can define a set of continuous functions {v1(t), v2(t), . . . , vN (t)} called hat functions or
linear finite elements [27]

vk(t) =



















t−tk

∆t
2 ≤ k ≤ N − 1, t ∈ [tk−1, tk] ,

tk+1−t

∆t
2 ≤ k ≤ N − 1, t ∈ [tk, tk+1] ,

t2−t
∆t

k = 1, t ∈ [t1, t2]
t−tN−1

∆t
k = N, t ∈ [tN−1, tN ] .

(18)

Assuming that γi ∈ H1 (0, T ) we can write

γi = γ̃i + δN

=

N
∑

k=1

γ̃ikvk + δN , (19)

where γ̃ik =
∫ T

0
γi (t) vk (t) dt and δN is some discretization error. Inserting (19) into functional (17)

and constraints (4,5) we get

L̃ǫ =

K
∑

i=1

[

a(θi)
Tγ̃i + ǫ2γ̃T

i Hγ̃i

]

→ min
γ̃i,Θ

, (20)

K
∑

i=1

γ̃ik = 1, ∀k = 1, . . . , N, (21)

γ̃ik ≥ 0, ∀k = 1, . . . , N, i = 1, . . . ,K, (22)
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where γ̃i = (γ̃11, . . . , γ̃iN ) is the vector of discretized affiliations to cluster i,

a(θi) =

(

∫ t2

t1

v1(t)g(xt, θi)dt, . . . ,

∫ tN

tN−1

vN (t)g(xt, θi)dt

)

, (23)

is a vector of discretized model distances and H is the symmetric tridiagonal stiffness-matrix of the
linear finite element set with 2/∆t on the main diagonal, −1/∆t on both secondary diagonals and zero
elsewhere. The only difference to the derivation presented in [26] is the time-dependence of the cluster
distance functional (15).

If ǫ2 = 0, then the above minimization problem (20-22), can be solved analytically wrt. γ̃
(l)
i for a

fixed set of cluster model parameters Θ(l) (where l again denotes the index of current iteration) resulting
in

γ
(l)
i (tj) =

{

1 i = arg min
∫ tj+1

tj
vj(s) ‖ xs −

∑R
k=0 θ

(l)
ik ⊙ φk (s) ‖2 ds,

0 otherwise,
(24)

If ǫ2 > 0, for a fixed set of cluster model parameters Θ(l) the minimization problem (20-22), reduces
to a sparse quadratic optimization problem with linear constraints which can be solved by standard
tools of sparse quadratic programming (sQP) with computational cost scaling as O (N log (N)) [28, 29].
Therefore, from a computational point of view, the presented approach is more expensive (for ǫ2 > 0)
then the traditional fuzzy c-means and FCRM algorithms (which both scale as O (N)). However, as
will be demonstrated by numerical examples, this drawback is compensated by nice properties of the
presented method wrt. the choice of K and good performance in analysis of strongly overlapping
data-clusters.

In addition, the minimization problem (20 -22) wrt. the parameters Θ for a fixed set of discretized
cluster affiliations γ̃i is equivalent to the unconstrained minimization problem

K
∑

i=1

a(θi)
Tγ̃

(l)
i → min

Θ
. (25)

Since g (xt, θi) has a form of (15), this is a linear regression problem and can be solved explicitly using
the least squares method.

Therefore, the clustering FEM-K-trends algorithm can be implemented as the following iterative
numerical scheme:

FEM-K-Trends Algorithm.
Setting of optimization parameters and generation of initial values:

· Set the number of clusters K, regularization factor ǫ2, finite discretization
of the time interval [0, T ], and the optimization tolerance TOL

· Set the iteration counter l = 1

· Choose random initial γ̃
(1)
i , i = 1, . . . ,K satisfying (21-22)

· Calculate Θ(1) = arg min
Θ

L̃ǫ
(

Θ, γ̃
(1)
i

)

solving the linear regression problem (25)

Optimization loop:
do

· Compute γ̃(l+1) = arg min
γ̃

L̃ǫ
(

Θ(l), γ̃
)

satisfying (21-22) applying QP (if ǫ2 > 0)

or applying (24) (if ǫ2 = 0)

· Calculate Θ(l+1) = arg min
Θ

L̃ǫ
(

Θ, γ̃
(l+1)
i

)

solving the linear regression problem (25)

· l := l + 1

while
∣

∣

∣
L̃ǫ
(

Θ(l), γ̃
(l)
i

)

− L̃ǫ
(

Θ(l−1), γ̃
(l−1)
i

)∣

∣

∣
≥ TOL.

Major advantage of the presented algorithm compared to HMM-based strategies [17, 30, 31] and to
finite mixture models [18, 19] is that no a priori assumptions about the probability model for hidden
and observed processes are necessary in the context of the FEM-K-Trends algorithm.
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3 Postprocessing of results

The quality of the clustering is very much dependent on the original data, especially on the length of
the available time series. The shorter the observation sequence is, the bigger the uncertainty of the
resulting estimates. The same is true, if the number K of the hidden states is increasing for the fixed
length of the observed time series: the bigger K is, the higher will be the uncertainty for each of the
resulting clusters. Therefore, in order to be able to statistically distinguish between different hidden
states, we need to get some notion of the FEM-K-trends robustness. This can be achieved through
the postprocessing of the clustering results and analysis of the transition process and regression models
estimated for the clusters. If there exist two states with overlapping confidence intervals for each of the
respective model parameters, then those are statistically indistinguishable, K should be reduced and
the optimization repeated. In other words, confidence intervals implicitly give a natural upper bound
for the number of possible clusters. However, in many atmospherical applications, the question about
the optimal number of clusters is highly non-trivial and is very difficult to answer without incorporation
of some additional information [21].

As was demonstrated in [26], there is a connection between the regularization factor ǫ2 and metasta-
bility of the resulting data decomposition. As it will be shown later in numerical examples, for fixed K
the number of transitions between the identified clusters will decrease with growing ǫ2. This means that
respective mean exit times for the identified clusters get longer and the corresponding cluster decompo-
sitions become more and more metastable. Careful inspection of the transition process Γ (t) identified
for different values of ǫ2 can help to find out the optimal number K of metastable cluster states.

Another possibility to estimate the optimal number of clusters can be used, if the identified transition
process Γ (t) is shown to be Markovian for given K, ǫ2. Markovianity can be verified applying some
standard tests, e. g., one can check the generator structure of the hidden process, see [32]. In such a
case the hidden transition matrix can be calculated and its spectrum can be examined for a presence
of the spectral gap. If the spectral gap is present, then the number of the dominant eigenvalues (i. e.,
eigenvalues between the spectral gap and 1.0) gives the number of the metastable clusters in the system
[33, 34].

Positive verification of the hidden process’ Markovianity has an additional advantage: it allows to
construct a reduced dynamical model of the analyzed process and to estimate some dynamical charac-
teristics of the analyzed process, e. g., one can calculate relative statistical weights, mean exit times and
mean first passage times for the identified clusters [35, 31]. Reduced Markovian description can also be
helpful in construction of the operative weather predictions based on historical observation data.

Analysing the resulting regression coefficients for the identified clusters can help to reveal the temporal
trends and the degree of non-stationarity of the analyzed data. Moreover, standard tools of regression
analysis can be used to estimate the statistical significance of the identified trends, to calculate the
confidence intervals of the identified parameters and to define the optimal regression order parameter R
for each of the clusters [36].

4 Illustrative model examples

In the following we will illustrate the proposed strategy for clustering of non-stationary data with time
trend and identification of metastable states on three examples: (a.) a model system build of two
three-dimensional linear regressions and a predefined metastable process switching between them, (b.)
a model system build of three three-dimensional linear regressions and a fixed transition process with
two rapidly mixing states and two metastable states (c.) a set of historical averaged daily temperatures
between 1958 and 2002 on a 31 × 18 spatial grid covering Europe and part of the north Atlantic.

Example (a.) represents a toy model aiming to illustrate the proposed framework on a simple and
understandable system. The effects induced by the regularization parameter are explained and a com-
parison with the standard FCRM-algorithm for analysis of non-stationary data is performed.

In the next example (b.) we demonstrate two approaches to identifying the optimal number K of
metastable clusters: (i) the one based on the estimation of the number of statistically distinguishable
clusters, (ii) the other based on the a posteriory Markov assumtion for the hidden process Γ (t).
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Finally, in example (c.) the application of the FEM-K-trends–algorithm is demonstrated on metastable
clustering of historical temperature data, first on the local European, then on the global worldwide time
series data. Two examples of a posteriory post-processing of the clustering results is presented: (i) con-
struction of the reduced non-stationary Markovian model for the European data and (ii) Fourier-analysis
for the global data.
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Fig. 1 Upper panel: metastable transition process switching between two linear regressions (26). The other 3
panels demonstrate resulting three-dimensional time series for σ = 1.0 (solid). Dashed lines indicate the linear
trends characteristic for both clusters in respective dimensions.

Fig. 2 Identified transition path between the clusters 1 and 2 as a function of time (color denotes the affiliation
to a corresponding cluster): (left panel) calculated for different values of fuzzifier m with FCRM-algorithm
(K = 2, optimization repeated 100 times with randomly generated initial values), and (right panel) for different
values of regularization factor ǫ2 (FEM-K-Trends-algorithm with K = 2, optimization repeated 100 times with
randomly generated initial values). The analyzed time series is in both cases the same, generated with model
(26) with transition process from the upper panel of Fig. 1 and noise amplitude σ = 7. Dashed lines denote the
moments when the original transition process from Fig. 1 was switching between the clusters.

4.1 Two hidden states

As the first application example for the proposed framework we consider a time series x (t) ∈ R3

generated as an output of two switching linear regressive models with Gaussian noise:
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Fig. 3 Comparison of the mean cluster assignment errors computed for 100 independent trajectories of model
(26) with transition process from Fig. 1 for different values of the noise amplitude σ with the help of: FCRM-
algorithm for m = 1 (K = 2, circles), FCRM-algorithm for m = 2 (K = 2, triangles) and FEM-K-trends-
algorithm for ǫ2 = 200 (K = 2, crosses). Error bars indicate the confidence intervals for estimated mean errors.

xj (t) = θi(t)j(t − t̄j) + σN (0, 1) , i = 1, 2, j = 1, 2, 3

θ1 =
(

0.01 −0.01 0.01
)

, θ2 =
(

−0.01 0.01 −0.01
)

t̄ =
(

0 300 600
)

(26)

In the following numerical studies we will use the fixed transition process i (t) that is shown in the upper
panel of Fig. 1. The other panels of the Fig. 1 demonstrate a three-dimensional time series with 600
elements generated by the model (26) for the chosen i (t) and noise intensity σ = 1.0.

The left panel of Fig. 2 shows the influence of the fuzzifier m on results of the FCRM-clustering.
It demonstrates that the choice of the parameter has no significant impact on the clustering quality,
it rather gets worse for increasing m and the identified clusters getting ”blurred”. The right panel of
Fig. 2 illustrates the influence of a regularization factor ǫ2 on assignment of data to respective clusters
for FEM-K-trends algorithm. In contrast to FCRM-clustering, the regularization factor has a strong
influence on the FEM-K-trends-clustering results. Increasing ǫ2 results in a coarse graining of the
identified affiliation functions, i. e., only ”long living” structures in γ ”survive” with increasing ǫ2. It
means that the regularization factor ǫ2 has a direct connection to a dynamical behavior of the analyzed
time series, i. e., it allows to control the metastability of underlying transition process.

Next, we compare the FEM-K-trends-method with FCRM-clustering algorithm wrt. the sensitivity
to noise σ. Fig. 3 reveals that application of the FEM-K-trends-methods results in much more reliable
cluster identification in the case of a noisy data. Fig. 3 also demonstrates that the introduction of
the fuzzifier m > 1 in context of FCRM-method results in the worsening of cluster identification for
well–separated clusters with relatively low noise intensity.

4.2 Three hidden states

In order to demonstrate the performance of the presented framework wrt. the identification of metastable
cluster sets, we extend the previous example by adding a new linear regression cluster state and change
the transition process in a way presented in Fig. 4. The hidden process switches frequently between
the first and the second states and from time to time goes into the third state, i. e., the third state
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Fig. 4 Upper panel: transition process with two metastable substates and two rapidly mixing states switching
between three linear regressions (27). Other 3 panels demonstrate resulting three-dimensional time series for
σ = 1.0 (solid). Dashed lines indicate the linear trends characteristic for the clusters in respective dimensions.

Fig. 5 Cluster affiliation functions γ1(t), γ2(t) and γ3(t) (color indicates the value of the function between 0
and 1). The calculation is performed with the FEM-K-Trends-algorithm for different values of regularization
factor ǫ2 ( with K = 3, optimization repeated 100 times with randomly generated initial values). The analyzed
time series is generated with model (27) with the transition process from the upper panel of Fig. 1 and noise
amplitude σ = 7.

is metastable, as well as the combination of the first and the second states together builds the second
metastable cluster set.

xj (t) = θi(t)j(t − t̄j) + σN (0, 1) , j = 1, 2, 3

θ1 =
(

0.0 0.0 0.0
)

θ2 =
(

0.01 −0.01 0.01
)

, θ3 =
(

−0.01 0.01 −0.01
)

t̄ =
(

0.0 300 600
)

(27)
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Fig. 6 Maximal number of statistically distinguishable cluster states for different values of ǫ2 as calculated for
the time series from Fig. 4.
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Fig. 7 Results of the optimal linear regression fit (θ0 + θ1t) for the whole length of the analyzed temperature
time series.
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Fig. 8 Comparison of two criteria for the choice of K: Explained Cluster Variance (ECV) criterion (28) (left
panel), and Markovian spectral gap criterion (right panel, dotted lines indicate the confidence intervals of the
calculated Markov generator eigenvalues).

As it was already mentioned above, there are two basic possibilities to estimate the number of metastable
sets in the analyzed data and thereby to choose the optimal K: (i) spectral analysis of the Markov
transition matrix and (ii) variation of the regularization parameter ǫ2 and careful comparison of the
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Fig. 9 Comparison of transition pathes calculated with K-means algorithm for K = 3 (dashed) and FEM-K-

trends algorithm for K = 3,R = 1, ǫ2 = 0 (solid).

respective cluster affiliations γi(t), i = 1, . . . ,K. In the following, both approaches will be exemplified
for the time series from Fig. 4.

(i) If the transition process resulting from an application of the clustering algorithm (with K chosen
a priori high enough) was found to be Markovian, one can investigate a spectrum of the correspondent
transition matrix for a presence of the spectral gap that can help to identify the number of metastable
Markovian sets in the data [33, 34]. Applying the FEM-K-trends algorithm with K = 4 and ǫ2 = 0 we
get the hidden transition process that can be shown to be Markovian [32]. Calculating a spectrum of
the correspondent transition matrix we get the following eigenvalues (1.0, 0.99, 0.57, 0.49). The spectral
gap indicates the presence of two essential eigenvalues, 1.0 and 0.99, therefore the existence of K = 2
metastable sets is shown.

(ii) Alternatively, if the Markovianity of the transition process is not fulfilled, one can choose some
a priori value for K and repeat the FEM-K-trends clustering with increasing values of ǫ2. For the time
series from Fig. 4, respective results are summarized in Fig. 5 for K = 3. Whereas the cluster affiliation
γ1(t) indicates a sharp separation of two states (only taking values near 0 and 1 almost independently
of the regularization factor ǫ2), cluster affiliations γ2(t) and γ3(t) approach the value 0.5 very fast with
growing ǫ2. This means that both states become statistically indistinguishable and the number of cluster
states K should be decreased. Analysis of the same data with K = 2 results in a sharp separation of
two metastable states (almost independently of ǫ2). As in the case (i) before, this feature indicates
K = 2 as an optimal number of metastable sets in the data. Results of the consequent application of
the described procedure for different values of ǫ2 are summarized in the left panel of Fig. 12.

4.3 Analysis of Historical Temperature Data in Europe (1959-2002)

Description of the data Using the method presented in the previous sections, we analyze daily
mean values of the 700 hPa air temperature field from the ERA 40 reanalysis data [40]12. We consider
a region with the coordinates: 27.5° W – 47.5° E and 32.5° N – 75.0° N , which includes Europe and
a part of the Eastern North Atlantic. The resolution of the data is 2.5° which implies a grid with 31
points in the zonal and 18 in the meridional direction. For the analysis we have considered temperature
values only for the period 1959 till 2002, thus we end with a 558-dimensional time series of 16314 days.

In order to remove the seasonal trend we apply a standard procedure, where from each value in the
time series we subtract a mean build over all values corresponding to the same day and month e.g., from
the data on 01.01.1959 we subtract the mean value over all days which are first of January and so on.

12 The author thanks the Potsdam Institute for Climate Impact Research (PIK) for the possibility to use the ERA
40 data.
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Fig. 10 Mean temperature deviation patterns ∆T (t) at the beginning (left column) and at the end of the
analyzed period (right column). Patterns are calculated from the optimal linear regression fit (∆T (t) = θi0 +
θi1t, i = 1, 2, 3 (coloring in ◦C) for each of the cluster states identified by the K-means algorithm for K = 3.

In the following we will demonstrate the application of different clustering strategies to this time series
of deviations from the mean temperatures and will compare the resulting mean temperature deviation
patterns wrt. their long-term behavior.

Discussion of the results We start the data analysis calculating the optimal linear regression fit
(R = 1) for the whole length of the analyzed time series. The correspondent expected mean temperature
change during the whole observation period Ndays = 16314 can then be calculated as θ1Ndays, where
θ1 ∈ R558 is a vector of the first-order part coefficients for the analyzed data on the respective grid. As
it can be seen from the right panel of the Fig. 7, mean overall temperature changes do not exceed 1.0◦C.

Next, we cluster the data with FEM-K-trends(for K = 6,R = 1, ǫ2 = 0). In order to avoid the
problem of trapping in local optima of the functional (20), we repeat the clustering procedure 100
times with different randomly initialized cluster parameters and keep the clustering results with the
lowest value of the functional (20). Fig. 8 illustrates the comparison of two alternative criteria used to
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Fig. 11 Mean temperature deviation patterns ∆T (t) at the beginning (left column) and at the end of the
analyzed period (right column). Patterns are calculated from the optimal linear regression fit (∆T (t) = θi0 +
θi1t, i = 1, 2, 3 (coloring in ◦C) for each of the cluster states identified by the FEM-K-trends clustering for
K = 3,R = 1, ǫ2 = 0. Confidence intervals for the estimated parameters do not exceed 0.4◦C for θi0 and 0.2◦C
for θi1.

determine the number of clusters K in the data. First we apply the Explained Cluster Variance (ECV)
criterion, defined as

ECV (K) = 1 −

∑

K

i=1

∑n

j=1 γm
i (tj) ‖ xtj

− µi ‖
2

∑n

j=1 ‖ xtj
− E (xt) ‖2

,

E (xt) =
1

n

n
∑

j=1

xtj
, µi =

n
∑

j=1

γm
i (tj)xtj

/

n
∑

j=1

γm
i (tj) (28)

where µi are the geometrical cluster centers. As it is demonstrated on the left panel of Fig. 8, the
value of ECV (K) increases uniformly with K and implicates no obvious choice of K. The right panel
of Fig. 8 shows the eigenvalues of the Markov-generator estimated from the transition process resulting
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Fig. 12 Left panel: Maximal number of statistically distinguishable cluster states for different values of ǫ2 as
calculated for the European temperature time series with FEM-K-trends algorithm. Right panel (Markovianity
test): generator eigenvalues estimated for different time lags are shown together with their confidence intervals
(e. g.,time lag τ = 2 means that only every second element of the transition path is taken for the estimation).
Dashed lines show the mean estimates obtained for all of the shown time lags.
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Fig. 13 Time dependence of the transition Markov process P : elements of the transition matrix P are calculated
with the help of a local Gaussian kernel smoothing algorithm [37, 38] (width of the Gaussian moving window is
taken to be 7 years) from the FEM-K-trends transition process (see Fig. 9). Dotted lines denote the confidence
intervals calculated with the bootstrap-algorithm [39].

from FEM-K-trends(for K = 6,R = 1, ǫ2 = 0). The presence of the spectral gap indicates existence of
3 metastable sets in the analyzed data.

Applying of the FEM-K-trends procedure (for K = 6,R = 1, ǫ2 = 0, clustering repeated 100 times
with different randomly chosen initial cluster parameter values) results in the identification of the
transition process shown in Fig. 9 (solid line). Besides of some similarity, the identified path is quite
different from the transition calculated with K-means-algorithm. This difference becomes more obvious
if we compare the a posteriory trends calculated for the K-means clusters as it was done in [41] (see
Fig. 10) and the values resulting from the FEM-K-trends clustering (see Fig. 11). Confidence intervals
for the regression coefficients were calculated using the standard bootstrap algorithm in both cases
[39] (respective mean error of mean temperature change θi1Ndays was estimated to be ± 0.4 ◦C). As
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Fig. 14 Time dependence of the instantaneous Markovian statistical weights (30). Metastable state 1 cor-
responds to the negative temperature anomaly over Scandinavia (upper row of Fig. 9), state 2 stands for the
positive temperature anomaly over northern Atlantic (middle row of Fig. 9) and state 3 denotes the positive tem-
perature anomaly over Scandinavia (lower row of Fig. 9). Dotted lines denote the confidence intervals calculated
with the bootstrap-algorithm [39].
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Fig. 15 The ERA 40 temperature series with eliminated seasonal component on one of the grid points (left
panel) and its Fourier spectrum (right panel).

it can be seen from comparison of the left and the right columns of Fig. 10, in the case of the K-
Means clustering, the overall change of the mean temperature deviation pattern ∆(t) is small and is
comparable with the size of the respective confidence interval. This means that the identified trends
are hardly distinguishable from stationary regimes with no trend. It demonstrates the influence of the
implicit mathematical assumption beyond the applied clustering method: data is supposed to be locally
stationary in each of the regimes for K-Means algorithm. Fig. 11 on the other hand illustrates that
application of the FEM-K-Trends strategy (where the data is assumed having temporal trend a priory)
results in much more significant changes of mean temperature deviation patterns for the cluster states,
with different statistically significant temporal trends. Fig. 11 also demonstrates that temporal trends
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Fig. 16 Maximal number of statistically distinguishable cluster states for different values of ǫ2 as calculated
for the worldwide temperature time series with FEM-K-trends algorithm.
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Fig. 17 Cluster affiliation for the global temperature data as identified with FEM-K-trends algorithm (K =

2, ǫ2 = 400).

identified for the analyzed data in 558–dimensional vector space of temperature deviations ∆T (t) can be
interpreted as spatial shifts of the mean patterns over the European continent. For example, the positive
temperature anomaly over northern Scandinavia characteristic for the third cluster state at the beginning
of the analyzed period (left panel in the last row of the Fig. 11) is moving southwards and finally has
a maximum over southern Finnland and the European part of northern Russia, simultaneously an
additional negative anomaly is originating over the northern part of Atlantic at the end of the analyzed
period (right panel in the last row of the Fig. 11).

Finally, we analyze the process of transitions between the identified cluster states and try to find
an appropriate dynamical description for it. As it was mentioned above, the major advantage of the
presented FEM-K-trends approach compared to the HMM-based strategies [17, 30, 30] is its indepen-
dence on assumptions about the type of the probability model. Therefore one does not have to assume
a priori that the transition process is an output of the time-homogenous Markov chain. In context of
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Fig. 18 Fourier spectra of the hidden process Γ (t) from Fig. 17 (left panel) and of the time-dependent statistical
weights (see upper panel of Fig. 19) of two cluster states obtained by a local Gaussian kernel smoothing algorithm
[37, 38] of the process Γ (t) (Gaussian window is taken to have the width of two years to filter out the seasonal
signal).
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Fig. 19 Upper panel: Time-dependent statistical weight (see upper panel of Fig. 19) of the cluster state 2
obtained by a local Gaussian kernel smoothing algorithm [37, 38] of the process Γ (t) from Fig. 17 (Gaussian
window is taken to have the width of two years to filter out the seasonal signal). Middle panel: The dominant
Fourier component of the above signal with 11.1 years/cycle periodicity. Lower panel: number of sunspots as
the function of time in the same time period (from http://solarscience.msfc.nasa.gov/SunspotCycle.html)

FEM-K-trends this assumption can be checked a posteriori and can help to construct reduced dynamical
Markovian models based on the observation data. We can apply standard methodology based on gen-
erator estimation [32] to check the Markov property for the transition process γ(t) (identified with the
FEM-K-Trends algorithm). As it is shown in the Fig.12, the eigenvalues of the underlying generator can
be assumed to be time-independent, therefore the process switching between 3 regression models can be
assumed to be Markovian (at least in homogenous approximation). To investigate a time-dependence
of the identified Markovian process switching between the linear regressive models from Fig. 11, we
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Fig. 20 Mean temperature deviation patterns ∆T (t) at the beginning (left column) and at the end of the
analyzed period (right column) for the global temperature data (1959-2008). Patterns are calculated from the
optimal linear regression fit (∆T (t) = θi0 + θi1t, i = 1, 2 (coloring in ◦C) for each of the cluster states identified
by the FEM-K-trends clustering for K = 2,R = 1, ǫ2 = 400. Confidence intervals for the estimated parameters
do not exceed 0.5◦C for θi0 and 0.3◦C for θi1.

apply the standard local Gaussian kernel smoothing algorithm [37, 38]. A moving Gaussian window

γ(t, t0) = 1
c
exp(− (t−t0)

2

σ2 ) (where c is the normalization constant) of 7 years width is defined, we slide
it along the time series of transition process Γ (t) and weight the observed transitions with the value of
the current Gaussian function. Then

Pij(t0) =

∑

t∈{tij}
γ(t, t0)

∑

t∈{ti}
γ(t, t0)

, (29)

where {ti} is the set of all time instances when the state i was visited and {tij} is the set of all time
instances when the transitions between the clusters i and j are observed.

The resulting transition probabilities as functions of time are shown in Fig. 13. It demonstrates
that the Markovian transition process is not time-homogenous and that there is a significant increase
of the probability to stay in the cluster 1 (describing the negative temperature anomaly over northern
Scandinavia) and increasing probabilities to make a transition to the cluster 3 (correspondent to the
positive temperature anomaly over Scandinavia).

In order to get another interpretation of the obtained results, instantaneous Markovian statistical
weights πi (t) , i = 1, 2, 3

π (t) P (t) = π (t) , π (t) = (π1 (t) , . . . , πm (t)) (30)

can be calculated. This quantities characterize the equilibrium probabilities to find the analyzed system
in one of the clusters in different moments of time. Fig. 14 shows that the probability of the cluster
state 1 decreases and probability of cluster state 3 increases, i. e. the negative temperature anomalies
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over Scandinavia became less probable, whereas the probability of the positive anomalies over the
Scandinavian region was increasing.

Together with the spatial shift of the respective anomaly positions in Fig. 11, this finding gives an
interesting insight into the character of the warming process in the northern Europe in last years.

4.4 Analysis of Global Temperature Data (1959-2002)

Description of the data Finally, we analyze the worldwide daily mean values of the 700 hPa air
temperature field from the ERA 40 reanalysis data [40]21. The analyzed time series are given for every
point on the 146× 82 grid covering the whole Earth surface. For the analysis, in the same way is it was
done in the above example of European data analysis, we have considered temperature values only for
the period 1959 till 2002, thus we end with a 11972-dimensional time series of 16314 days.

In order to remove the seasonal trend, we apply a standard seasonal trend elimination procedure
as described in above example. In the following we will demonstrate an application of the described
FEM-K-trends algorithm to analysis of this data, we will exemplify the estimation of optimal number
of persistent cluster states and postprocessing of the results by means of the Fourier-analysis.

Discussion of the results Before applying the FEM-K-trends procedure to the considered time
series, we can have a look at one of the time series at some arbitrarily chosen grid point. As it can
be seen from the Fig. 15, although the seasonal component was eliminated from the data, there is still
a strong 1-year/cycle period in the data, present mainly in the data variance. However, just looking
at the Fourier spectrum of one single data dimension makes not possible to say something about how
general this feature is for the whole 11972-dimensional data and what kind of other periods are present.

We apply the procedure described in Sec. 3 to determine the optimal number of statistically distin-
guishable metastable states in the analyzed time series. Fig. 16 demonstrates that for a very wide range
of regularization parameters ǫ2 there are basically only two distinguishable metastable clusters in the
data (parameter R was chosen to be 1, i. e., the linear regressive models for the cluster states were
considered). Careful inspection of the corresponding hidden process Γ(t) shown in Fig. 17 suggests that
both identified clusters have something to do with the seasonal states of the data, similar to the results
obtained with the stationary HMM-PCA-SDE procedure [17]. This suggestion is verified when looking
at the Fourier spectrum of the Γ (t) (see the left panel of Fig. 18). In contrast to the Fourier-spectrum
of the single one-dimensional grid point series from Fig. 15, the variable Γ (t) characterizes the global
dynamics of the whole 11972-dimensional data. It has two clearly pronounced Fourier components, the
one correspondent to the one-year period and the second correspondent to a period of approximately
11.1 years. Applying the local Gaussian kernel smoothing algorithm [37, 38] to Γ (t) (Gaussian window
is taken to have the width of two years to filter out the seasonal signal) (see the upper panel of Fig. 19)
reveals a signal with dominant 11.1 year period (see the right panel of Fig. 18). Comparison of this
dominant Fourier component (see the middle pannel of Fig. 19) with the time series of sun spots for the
same period reveals that the temporal behavior of this component coincides (up to a certain phase-shift)
with the 11-year solar activity cycle.

Finally, respective overall temperature deviation trends are considered, in the same manner as it was
done for the previous example (see Fig. 14). As can be seen from the Fig. 20, the first cluster states is
characterized by more pronounced positive temperature deviations in the northern hemisphere, whereas
the second state is characterized by more positive anomalies in the southern hemisphere. The identified
11972-dimensional trends shown in the Fig. 20 are spatially inhomogeneous and are mostly pronounced
in the polar regions, with the overall tendency to warming.

5 Conclusion

Short overview of the existing clustering methods was given, implicit mathematical assumptions imposed
on the data by different analysis methods were explained and compared. It was shown how big is the

21 The author thanks the Potsdam Institute for Climate Impact Research (PIK) for the possibility to use the ERA
40 data.
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impact of implicit method assumptions about the data (like local data stationarity in the case of the
widely used K-means algorithm) on the analysis results.

New numerical framework for clustering multidimensional meteorological time series was presented,
specially designed to identify the metastable (or persistent) cluster regimes in the multidimensional non-
stationary data driven by long term trends in the expectation values. Approach is based on minimization
of a specially constructed regularized averaged clustering functional.

Finite element discretization of the problem allowed us to suggest a numerical algorithm based on
the iterative minimization of this functional. We have compared the resulting
FEM-K-trends algorithm with standard clustering techniques and analyzed the connection between the
regularization factor, metastabilty and identification of optimal number of metastable states in the ana-
lyzed data. It was investigated, how the optimal number of the persistent atmospheric states and their
long-term variability can be obtained, applying the new methodology without assuming the stationarity
of the analyzed regimes.

As an application of the proposed method to analysis of historical temperature data, it has been
demonstrated how the problem of temperature trend identification can be solved simultaneously with
identification of persistent atmospherical states. Significant discrepancies between the temperature
trends identified for K-means and FEM-K-trends clusters were found.

Markovianity of the identified transition process for the European data was a posteriori verified and
3 metastable temperature clusters were identified. The same number of metastable cluster states was
identified with the help of the strategy based on the estimation of the maximal number of distinguishable
clusters, without a posteriory Markov-assumption. Resulting cluster regressions are compared with the
trends calculated from standard stationary K-means clustering and the discrepancies were discussed.

The identified persistent cluster states in both cases were investigated wrt. the long-term variability
of their relative statistical weights. It was demonstrated how the a posteriori post-processing of the
clustering results can be used to get an additional insight into the multidimensional non-stationary
data. In the case of the European temperature data, how the Markov assumption can be verified and
how the reduced non-homogenous Markov model can be constructed. In the case of the worldwide data
it was shown how the Fourier analysis can be used to extract some global periodicity patterns in the
data.

Presented methodology has a potential to become helpful for the analysis and assimilation of very
large data sets in different areas of geophysical research.
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