OPTIMIZATION OF A FUTURES PORTFOLIO UTILIZING NUMERICAL
MARKET PHASE-DETECTION
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Abstract. This paper presents an application of the recently developed method for simultaneous dimension
reduction and meta-stability analysis of high-dimensional time series in context of computational finance. Further
extensions are included to combine state-specific principal component analysis (PCA) and state-specific regressive
trend models to handle the high-dimensional, non-stationary data. The identification of market phases allows
to control the involved phase-specific risk for futures portfolios. The numerical optimization strategy for futures
portfolios based on the Tykhonov-type regularization is presented. The application of proposed strategies to online
detection of the market phases is exemplified first on the simulated data, then on historical futures prices for oil
and wheat between 2005-2008. Numerical tests demonstrate the comparison of the presented methods with existent
approaches.
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1. Introduction. In today’s financial industry, computational finance is used for a wide field
of applications. Throughout this paper, we will concentrate on the portfolio optimization problem,
where, for return maximization and risk minimization problems, the evolution of security returns
is estimated with a variety of different methods, in order to find an allocation that optimizes a
suitable performance criterion, while limiting the risk [26, 30]. For practical reasons, computational
methods have to address the following points:

1. High-dimensional Optimization: Financial data are high dimensional as thousands
of securities are available from different asset classes, (stocks, futures etc.), and data are
available often at high frequencies with non-equidistant time stepping (due to weekends,
market closures, holidays, ...). E.g. the Wilshire 5000 consists of 5000 stocks just from
U.S. companies. Taking stocks from all over the world and including derivatives like
different kinds of options and certificates, commodities, bonds and futures to this pool
of assets, one might end up with millions of possible investments, leading to all kinds of
numerical problems.

2. Time Series Analysis: Market dynamics are most likely not reflected by a stationary
process, but involve (hidden) market phases, as economic cycles, harvest cycles (for grain,
fruits and other kind of plants), yearly holidays and many more aspects influencing the
markets. This poses fundamental problems for estimation: To obtain sensible estimates
for mean returns even in stationary linear models, hundreds of years of data would be
needed. In shorter intervals, estimation risk becomes significant.

3. Sensitivity Analysis: Approaches should be robust with respect to model parameter
uncertainty. This is a challenge when estimating time-varying parameters.

Aspects (1,2) cause a high uncertainty of estimates whereas non-stationarity (2) (in observable
dimensions, at least) means that estimates should involve time-dependent functions, which could
not be estimated in a non-trivial way, even so, it is a well-known problem. I.e. in 1989 J.
Hamilton [12] suggested a numerical method for identification of piecewise linear functions, called
hidden market phases, assuming stationarity and Gaussianity of returns. While Gaussianity is
still a generally accepted assumption, many modern models, especially when build for practical
purpose, soften this by using, e.g. heavy tails [28]. Later this was extended to multidimensional
data using linear vector autoregressive (VAR) models [22]. Still, standard phase-identification
techniques based on filtering approach (like wavelets-based spectral methods, see [1]) have in
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general infeasible numerical complexity in high dimensions; other methods (e.g., Kalman-filter
[20], VAR [22], (G)ARCH [6, 2]) require stronger assumptions about the underlying dynamics
or the methods (as in [3]) are based on perfect observability of the Markov process, which can
not be taken for granted in reality. As demonstrated by the actual financial crises, non-robust
reliance on simplified assumptions and ignorance of model risk can (among other factors) lead to
misperception of risk and thus not less than to a total loss of the investment. Therefore, there is
need of a wider class of methods, that are computationally capable to deal with realistic amounts of
data, to monitor the evolution of risks and optimize the risk-return profile of investments. While
recent publications concentrate on robustness by using worst-case scenarios (e.g. [10, 7, 11]),
penalty functions (e.g. [34]) or simply assuming vanishing mean returns, this paper aims at
an estimation of non-stationary trends and volatilities directly from prices of futures contracts.
Futures markets constitute broad and liquid markets for several asset classes [5]. Leverage can be
quite large for futures, if the amplitude of futures price variations is measured relative to the size
of the margin requirement. But this also includes a high risk, the minimization of this risk is one
of the central points of the paper. We present the recently developed numerical framework work
for clustering and analysis of non-stationary data [14, 15, 13, 16] and explain it in the context of
computational finance. An extension of the framework utilizing linear regression is introduced,
allowing for simultaneous market phase identification, dimension reduction and estimation of the
phase-specific trends in financial context. The ability of the extended framework to identify change
points online is demonstrated, both on simulated and real market data. Finally, the numerical
optimization strategy for phase-specific futures portfolio selection is presented and exemplified on
a real 8-dimensional data set of futures data for wheat and oil.

This paper is organized as follows: In Section 2, the FEM-based clustering framework is
introduced and its extension towards financial data context is presented. In Section 3, we have a
short look at the definition of return and adapt this to futures markets, as the classical definition
does not fit in this context. The numerical futures portfolio optimization approach is presented.
Section 4 demonstrates the application of the proposed numerical framework to simulated and
real data, comparison to standard approaches (like the classical methods proposed by Markowitz
[26], the flexible GARCH(1,1) model [23] and the simple *-portfolio). In the end, a practical side
constraint is considered, the market neutrality.

2. Finding Market Phases. In the following, we will briefly described the clustering frame-
work first in general introduced in [14, 15, 13, 16]. Special emphasis will be given to the numerical
and interpretational aspects of the framework in context of high dimensional financial applications.

2.1. The Clustering Problem. Let S; : [0,7] — [0,00)% be the observed d-dimensional
series of assets prices. We look for K models characterized by K distinct sets of a priori unknown
model parameters 01, ..., 0k € €, where Q is the parameter space. Let g(S;,6;) : R x Q — [0, 00)
be some distance function of the observation S; and the set of parameters 6;. For the work
done throughout this paper, the 6; correspond to the changing market phases. Then the vector
Ty = (11(t),...,vk(t)), called the affiliation vector, gives the probability to be in the ith market
phase at time ¢t. For a given observation S; we want to solve the clustering problem

K
D 7it)g(S,0:) — mig, (2.1)
1=1 ’

for © = (64,...,0k). Moreover, as the v;(t) shall be probabilities, they are subject to the con-
strains

K
D ity =1, Vte[0,T] (2.2)
i=1

() >0, Vte[0,T],i=1,... K. (2.3)



As we do not want to solve this problem for a specific time ¢ only, but for the whole time interval
[0, T], we now introduce the averaged clustering functional L:

T K
L©.0)= [ 3 u(09(5:.6) — min (24)

)

subject to the constrains (2.2-2.3).1 As was demonstrated in [14, 15, 13, 16] there are practical
difficulties in solving problem (2.4) numerically as:
1. the problem is infinite dimensional since 7;(t) is an element of some (not yet specified)
function space.
2. the problem is ll-posed since the number of unknowns can be higher then the number of
known parameters.
3. g is, in general, non-convex and thus only locally optimal solutions might be found.
Problems 1 and 2 are addressed within section (2.2 and 2.3), how to evade problem 3 is shown in
section (2.4).

2.2. Persistent Market Phases. As was shown in [14, 15, 13, 16], one of the possibilities
to overcome the above mentioned problem is to impose some additional assumptions on I'. As we
look for hidden market phases, we might assume the process switching between phases is slow:
When the market switches to a new state, it will stay there for some time. This leads to a new
constraint on I':

T
/ @) dt <45, i=1,..., K\~ € (0,00). (2.5)
0

While this reduces the transitions between different states, it is hard to handle this inside the
optimization, thus we expand our problem to the reqularized form as suggested by Tikhonov for
linear least-square problems [31]:

K T
FOn=LO0)+Y" [ (@) (26)
i=170

As was shown in [14], € can be used to control the persistents of the cluster states, thus preventing
a short-term switch into another market phase.

2.3. Finite Elements and discretization. Discretization is, from a data point of view,
not really an additional assumption as market data, even if given intraday, is ticked data, thus it
is discrete by nature. Continuity of the data is a modeling idealization. Additionally, this limits
the function space from which T is chosen, addressing problem 1 and 2. Thus let 7 be a countable
set of finite intervals on [0, T7:

T:{0:t17t2,...,tN:T}, ti<ti+1Vi:1,...,N—1. (27)
Then we can choose a finite element basis {vy(t),...,vn(¢t)} with
’Ul(t) 7’5 0 fort e (tl,tg),v1(t) =0 fort € (tl,tg) (28)
’Uk(t) #0forte (tkfl,thrl),Uk(t) :Ofortg(tk,l,thrl), k=2,....,N—1 (2.9)
UN(t) # 0 for t € (thl,tN),'UN(t) =0 for ¢ ¢ (thlatN) (21 )

LTf the ©; are known or fixed to some value, the minimization problem (2.4) can be solved analytically w.r.t.
T.

1, 4= argming(St, ©;
Vi(t):{ 0 Bming(n 00
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This allows us to write ~; as

Z Uk+5N (2.11)

where §V = max{6",i =1,..., K} is the discretization error. Now equation (2.6) could be written
as

LF@.1) = > A /T”k )9(St, 0 dt+522/ (Z%aﬂ% ) dt+0@")  (2.12)

i=1 k=1

Using the local support of vy, we can define
to tN
a(0;) = < [ uoaseodr,.... [ uxg(s.0 dt) , (213)
t1 tN—1

. ( ) tydt [ vi(t)va(t) dt 0 .
H= ft vy (t)ve(t) dt ftt; v3(t) dt ftt; va(t)us(t)dt ... | (2.14)
0 . : :

and

to create the discrete clustering problem, see for example [14]

K
L*(,T) = Z; (a(6)™5s + 247 HA:) — min. (2.15)
=
Please note, that up to now, all assumptions made are solely data-concerned and we did not make
any probabilistic assumptions on the distribution of the data.

2.4. The distance function. When working with financial data, one might end up with
thousands of assets, as, for example, the Wilshire 5000 index consists of 5.000 stocks. With
respect to this high dimensionality, one has to think about an easy way to handle these data. The
popular idea is to use the principle component analysis (short: PCA, see [32, 19]), where only a
linear low-dimensional manifold of the data space is used to represent the original. The drawback
here is the linearity of the manifold, as a globally optimal linear subspace might not exist. Thus
let T; € R for i = 1,..., K and n < d with T/ T; =Id be the projection matrices, and =, € R¢
be some time series deduced from S, then we can define the distance function by

9(@,0;) = ||(we — i) = T (e — p)l|3, 05 = (1 7). (2.16)

This distance function measures the reduction error resulting from the projection of the d-dimensional
data on the n-dimensional linear manifold i. z; could be the returns and 7; could be interpreted
as the direction of maximal volatility of x, while y; describes the mean behavior [17]. We can now
try to get better results by using the time-dependent function pu;(t) instead of a constant one, e.g.
approximating pu;(t) with some regression model as in [15]. Therefore let p;(t) be some basis of
the functional space (e.g. monomials), then the distance function changes to

g(x1,0;) = || (we — Zm% T (2 — Zum NG 0= (i 1), T),  (2.17)
Jj=1

where w is the order of the trend. In fact, we can see Z‘;:l uggoj (t) as the smoothed trend so this
analysis can be interpreted as a de-trending. Additionally we can estimate the covariance matrix
of a clustered set (x;) of the time series for some ¢ by

T

7 1 L i
3 :mz—%(t) xt—j;/%%@j(t) xt—;ﬂi‘%’j(t) (2.18)



Please note: The combination of PCA, trend estimation and clustering is not just a direct chain-
ing of both algorithms. The estimation of trends and covariance matrices is embedded in the
minimization problem (2.15).

2.5. Calculating the parameters. Given the analyzed time series x; and a cluster affili-
ation T, we can now compute the cluster parameters ] and T;. Therefore we have to solve for
each i = 1,..., K the problem

o(0:)" Fi + €*4 HA;— min, (2.19)
& a(0;)T4; — n%in. (2.20)

Using the definition of o and g we get

N tos
Z’sz/ || Ty — Z:U’z(p] TT .’Et Z,U/Z@] )||2 dt — inljr} (2_21)
k=1

tr—1 j=1

with tg = t; and ty41 = tn. First order conditions of optimality imply that partial derivatives
w.r.t. g} and T; vanish, hence for  we obtain

0= Z%/Hl (T @u(t) = @) (20 = TT wy) dt

th—1

_ZMZ% /m T @u(t) — ()T (05 (t) — TiT (1)) dt (2.22)
j=1 =

tr—1

holds and an analogous equation is obtained for T;. The latter yields that T; consists of the
eigenvectors corresponding to the n largest eigenvalues of the empirical covariance matrix of the
values associated to state i. Now the problem (2.15) could be solved by subspace iteration, thus
starting with some arbitrary I'g, we solve iteratively solve

O, = argmojnzg(@,rk) (2.23)

and
Iy = arg rr}ﬂin ﬁ(@k, I) (2.24)
for K =0,1,.... Although this algorithm is not guaranteed to converge to the global optimum,

at least a local minimum will be found. By performing this algorithm several times with different
starting values I'g, we can approximate the global optimal parameters.

3. Adapting portfolio optimization theory to futures. The usual definition of returns
R, = % can not be naively applied to futures data, as the price for a contract is not S;.
Instead, no price is charged for entering a futures contract, but an initial amount is paid into the
margin account that will hold the accrued gains and losses. So given an initial margin of I € R?
and a portfolio 7 in proportion of wealth, we define returns for futures over the period t to t + At
as

Stiat — St
) I

In contrast to portfolio optimization approaches for the stocks market, it is an important feature
of futures that long and short positions can be held equally well. But since the initial margin is
depending only on the absolute contract size, our portfolio constraints will change, the absolute
weights of the components should sum up to one

R, = sgn(m (component-wise). (3.1)

d
Im(t) =1, Vtelo,T). (3.2)
2



Given suitable estimates X, o for covariances and means of returns, the portfolio problem is posed
as

al'%r — min, with ||7|; =1, 77p > C, (3.3)

for a chosen target mean return C'. Since this is not yet (as in classical mean variance optimization)
a quadratic minimization problem with linear (or quadratic) constrains, we use a splitting into long
positions and short positions, similar to the idea explained in [9] in context of image processing,
to get an extended parameter set

e e (e A (3.4)
and apply a penalty term. We define the extended problem by
(s 0 L \). . T > .
7 <E+>\ ( I, 0 )) - min, with 7 4 > C, ;m =1,7;, >0Vi (3.5)

with the regularization parameter . Please note that for sufficiently large A, the part

0 I
~T d A long T __short
A ( L, 0 > 7= 2\(wone) et (3.6)
and the condition 7; > 0V: guarantee, that for each asset the position is either long or short, but
not both at the same time. Simultaneously, the remainder of the extended problem is just

7ATT§7AT _ (ﬂ_long _ ﬂ_short)Tzﬂ_long _ (,R_long _ ,n_short)TEﬂ_short =¥, (37)

and

ﬂT'ﬁ— — [LT']TIOHg _ MT,R_short — /U/T'/T. (3.8)

4. Numerical examples. Throughout the first part of this section, we will make use of

the simulated time series. These time series have a length of 1000 with a change point at time
tc = 500. All of the data points are distributed independently according to A(0, ) where

I, t <500
S(1) = o (1) [ R ] a(t), alt) = cgs((p)) —sir(l(;))) oo o @)
sin(p)  cos(p

As one can see, after the change point at t¢, the covariance matrix is just rotated by some p.

4.1. Covariance for small samples. As known from the literature, for small sample sizes,
the maximum likelihood estimator %Zi’;tl z;zl is not robust enough, e.g. [29, 4]. This will
lead to numerical biassing when it comes to portfolio optimization [27, 24, 25]. We will use the
Tyler-M-Estimator (e.g. [33, 8]) instead, that is defined by

k T
spody o (4.2)
k = xT(Ek)_lxt

Although the solution $F to equation (4.2) is only unique up to a multiplicative constant, this is
not a problem for the clustering method (2.15) as neither the result of the minimization nor the
eigenvectors (for PCA) are dependent on this constant. For figure (4.1), the 100 first points of 100
time series were used (using the distribution stated above) and for every time step t € 2,...,100
the maximum likelihood estimator and the Tyler-M-Estimator were calculated. Then the largest
singular value of the difference (f) — X)) was used as a distance measure and the average and
standard-deviation were calculated and plotted. As one can see from this example, the standard-
deviation of the Tyler-M-Estimator is much smaller then the one for the maximum likelihood
estimator (also both converge to the same point).
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FIGURE 4.1. Robustness of the MLE and TME for short normally distributed time series. Parameters as in
equation (4.1).
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FIGURE 4.3. Number of detected change points depending on €2 for half of the (artificial) data and the complete
data set. Parameters as in (4.1), K =2,p = 90°.

4.2. Number of Clusters. In realistic applications, the optimal number of meta-stable
clusters is usually a priori unknown. Nevertheless, one can find out the number of statistically
distinguishable clusters (see [14]). Therefore we start the clustering process with a rather high
number of clusters, estimate the cluster parameters and get the error bounds of for these param-
eters by bootstrapping of the elements of the cluster. If the parameter sets of different clusters
overlap, the statistical difference between those clusters is not high enough thus the number of
clusters should be reduced and the process should be started over again [21]. Using this technique
for different € leads to a figure like (4.2). The decrease in the number of cluster is due to the fact
that for the increasing ¢ the algorithm favors meta-stable clusters and merges the rapidly mixing
ones together. Thus, while increasing e, similar clusters will get merged into one. The plateau
results from the high difference between the last two remaining clusters. For a real data set we
will observe similar behavior when we look for the number of clusters.

4.3. Detecting a change point. Another important problem is to find the actual position
of the change points. The number of detected change points depends on ¢ as one can see in figure
(4.3). Although, a high number of change points usually indicates some rapidly mixing clusters
that could be united to a meta-stable cluster (e.g. using half the data in figure (4.3)). Decreasing
the number of clusters and increasing ¢ might help to solve this problem. On the other hand, a
high value for ¢ will lead to a longer delay between occurrence and online detection of the change
point, this can be seen in figure (4.4). The same problem appears, when the rotation angel becomes
to small, see figure (4.5).

4.4. Looking at real data. For the calculations done in this paper, we used the futures
prices of the years 2005-2008 for wheat and oil futures (four time to maturity each, quarterly for
wheat and monthly for oil, daily closings), as reported at
http://www.kcbt.com/historical_data.asp (Kansas City Board of Trade) and
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(4.1), K =2, p=90°.

http://tonto.eia.doe.gov/dnav/pet/pet_pri_fut_sl_d.htm (U.S. Department of Energy).
For both commodities the four futures with the lowest time to maturity were taken into account.
Applying the introduced clustering algorithm to these data gives the result shown in figure (4.6).
Implied by this picture, an optimal number of meta-stable clusters to use should be two. Than
the cluster allocation for the whole time series, see figure (4.7), produces a kind of seasonal cycle
that could be due to the harvest cycle of the wheat. The phases differ in the following points:

e The phase shown in figure (4.7), thus phase 1, is characterized by lesser overall trend in
the price than phase 2.

e The general direction of the maximum volatility (described by the projection operator
T; from equation (2.15)) in both phases is similar, the first eigenvectors of the covari-
ance matrices are nearly equal, the second eigenvectors span an angle of approximately 5
degrees.

e In phase 1, the optimal portfolio consists of a long position in the wheat futures with
longest maturity and short positions in all other wheat futures. Approximately 20% of
the wealth are invested in wheat, while the remainder is invested in oil, with a short
position in the oil futures with the all but one shortest maturity. In phase 2, the wheat
futures with longest and shortest maturity are sold short, with approximately 22% in
wheat futures. And for the oil futures, only one long position exists, bought is the one
with the all but one longest maturity.

4.5. Comparing portfolios. When looking at the interest rate for U.S. treasury bonds, an
investment in January 2005 would have given a yearly interest rate of approx 3.4%. Thus after four
years we have a gain of 14.31% (thats a daily rate of 1.415 bps). We use this rate as a target rate C'
(as in equation (3.5)). As stated earlier, we compare our algorithm with the Markowitz approach,
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FIGURE 4.5. Relative error in detection time of the single change point depending on p. Parameters as in
(4.1), K =22 =1.

the FlexM algorithm from [23] and a simple 7%’—portfolio, where half the assets are bought, the

other half sold. For the cluster-based approach, the basis ¢ with polynomials up to order two was
taken. The clustering was done with respect to p and 7. The FlexM algorithm provided by the
authors of [23] was used utilizing the parameter demean, thus the estimation and subtraction of
the mean from the data prior to the portfolio optimization is done by the FlexM-function. The %—
portfolio was build by buying for % of the wealth the long maturity futures of each commodity and
selling the remainder equally over the short-time futures. Additionally, the Markowitz approach
was used by estimating mean and covariance from the whole time series up to the actual point.
All algorithm were only supplied with information avaible at time ¢, so no future knowledge is
included. In each case, the portfolio was recalculated and/or re-balanced every 10 business days
starting with day 10 of the time series. As one can see in figure (4.8), all algorithms fall short of
the target 14.31% mean return. While L-portfolio is doing better (in terms of return-rate) than

the other algorithms, this comes with a higher risk, as one can see in figure (4.9). We define the
‘intrinsic risk estimate’ for portfolio returns from ¢ to ¢ + At by

Rt =1/ ’/TtTCOV (Rt)’/Tt, (43)

where the empirical returns R, are given by equation (3.1), the Cov (R;) is an estimate for the
covariance matrix of the data (based upon data only up to t), which is given by:

e a linear combination of the empirical cluster covariance matrices given by equation (2.18)
for the cluster-based algorithm, thus

K
Cov (Rr) = > (0)x! (4.4)
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FIGURE 4.6. Number of distinguishable clusters depending on €2, Data set: Prices of oil and wheat futures
2005-2008

e the GARCH(1,1) estimate for the FlexM algorithm (see [23]),

e the standard sample covariance matrix for the Markowitz approach and the %-Portfolio
Although those intrinsic risks shown in figure (4.9) are estimates of the instantaneous variance of
the portfolio returns, they are not directly comparable, as the measures differ from each other and
the underlying assumptions are different, so in figure (4.10) risk is meant in the sense of standard
deviation of the daily returns of the portfolios from the empirical mean, still the cluster-based
approach produces the strategy with the lowest risk. And even if we use the deviation from the
target mean return C'

tr—1
1

t=t,
as a risk measure, see results in figure (4.11), the cluster-based approach reaches the best result.
The similarity of this risk measure and the standard deviation is easy to see: If the variance minimal
portfolio does not satisfy the condition #L, i > C, i.e. the target mean return is not reached, due
to the convexity of the problem the solution of (3.5 will satisfy #7 i = C. This guarantees, that
for sufficiently large C' the expected mean is C' and thus equation (4.5) would give the standard
deviation. The advantage of equation (4.5) over the empirical standard deviation is the fact that
the deviation from the target mean return does not depend on the empirical expectation of the
portfolio returns. Indeed: As stated in table (4.1), the empirical standard deviation of the portfolio
returns and the empircial deviation from the target mean return are quite near to each other. The
cluster-based approach reaches 69.85% of the performance of the %—portfolio7 while it only takes

40.33% of the risk (in sense of empirical standard deviation). Thereby rate of return is the total
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Cluster allocation, Prices of oil and wheat futures 2005-2008
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FIGURE 4.7. Cluster allocation for time series of futures. K = 2,2 = 1, Data set: Prices of oil and wheat
futures 2005-2008.

return minus one and average intrinsic is defined by

-
eI

t=t

(4.6)

For different target returns the results are similar, also the cluster-based portfolio is less sensible
to the target return rate (see figures (4.12,4.13)).

Algorithm rate of return | averaged intrinsic | standard deviation | deviation from tar-
Risk of returns get mean return
cluster-based 4.01% 1.4164 1073 2.4613 103 2.4619 10~3
FlexM —0.55% 7.5113 1073 7.8968 1073 7.8935 1073
Markowitz 0.30% 1.5180 1073 3.9324 1073 3.9325 1073
%-Portfolio 5.74% 3.7022 1073 6.1033 1073 6.1003 103
TABLE 4.1

Rate of return and different risk measures

4.6. Adaption for market neutral investment. A common relevant strategy of portfolio
managers is so-called market neutral investment. The aim is to bet only from views on relative
changes between asset prices, but remain in neutral w.r.t. overall market moves. This is done by
an additional constraint to ensure that the accrued notional of contracts within each class u (here
wheat and oil) is equal to zero.

Zm:(}, \V/U,

i€ly

(4.7)



Total return evolution of portfolios
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FIGURE 4.8. Value evolution of different portfolio-optimization algorithms.
. Risk (intrinsic) evolution of portfolios
10 Ll L] L] L]
~ -
1077
o -
% 107 V
£
£
% 10° |
x M
108} —— Cluster-based}
— FlexM
—— Markowitz
10 —— 1/n—Portfolio
10 : : : L
0 200 400 600 800 1000

Time

FIGURE 4.9. Intrinsic risk (see equation 4.3) evolution of different portfolio-optimization algorithms.
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Risk (standard deviation) evolution of portfolios
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FIGURE 4.10. Risk (empirical standard deviation) evolution of different portfolio-optimization algorithms.
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FIGURE 4.11. Risk (deviation from target mean return) evolution of different portfolio-optimization algorithms.
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Total return of cluster-based and FlexM portfolio
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FIGURE 4.12. Total return depending on the yearly target return rate C in (3.5).

where [, is an index-set combining all assets for each selected class of futures within which market-
neutrality is requested. For the extended problem, this transforms to

> (i — Figa) =0, Vu. (4.8)

i€l

Thus the market neutral version of the problem is

2d
7T (§+/\ ( ]1(1 ]15 )> T ﬁggd, with #74 > C, Zw =1, 7 >0Vi, Z(w — fipad) =0
=1 iel,
(4.9)
The additional constraint was used for all algorithms (except the %—Portfolio). As before, the
realized return for each algorithm falls short of the mean target return, see figure (4.14), but the
presented cluster-based method produces the result with the least risk, see figure (4.16), and, for
this data, even the best return rate, next to the %-Portfolio where no risk-minimization is done.

5. Conclusion. We adapted and expanded a method for simultaneous clustering, dimension
reduction and meta-stability analysis of high-dimensional time series to financial data. A main
advantage of the method (compared to standard HMM/GMM-methods of phase identification
[12, 22]) is that no a priory probabilistic assumptions about the hidden and observed market
processes are necessary in context of the presented method. Furthermore, section 4 indicates that
the method is suitable for finding a low-dimensional representation of the data and estimating
mean and variance while detecting market phases, delivering information that can be further used
for portfolio optimization. The presented framework allows to make use of fast and numerically
robust FEM-solvers (developed for numerical solution of partial differential equations) in a new
context of computational time series analysis.
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-3 Risk (standard deviation) of different portfolios
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FIGURE 4.13. Risk (empirical standard deviation) depending on the yearly target return rate C in (3.5).

The general feasibility of identification of market phases was demonstrated and it was shown,
that an expansion of classical portfolio theory utilizing market phase detection can be used to
further decrease the intrinsic risk. Additionally, the behavior of the change point detection when
applied online to a data stream was demonstrated to be robust enough to qualify for practical
purposes. As a standard stationary risk measure, also the standard deviation of portfolio returns
was used to compare different portfolio optimization strategies on real financial data. It was
demonstrated that application of the presented numerical scheme based on the identification of
market phases can decrease the risk of resulting portfolios in terms of this risk measure. Strictly
speaking, the standard deviation of portfolio returns is not an equitably risk measure, as it implies
the stationarity of the underlying data. If we assume the underlying market process to be non-
stationary (as it is done in context of the presented numerical approach), the evaluation and
comparison of risks should be done in a measure that reflects this. Numerical studies of robust
portfolio optimization methods and empirical quantification of risk by methods that do not rely
on stationarity assumptions, are a matter of future research.

Having demonstrated the applicability of the presented computational scheme to a realistic
financial data example, a more extensive online data study is clearly needed for validation. Also,
transaction costs should be included and different risk measures should be taken into account. In
contrast to climatological [13, 15, 16, 17] or biophysical applications [18], repeating phases seem
to be seldom in financial time series, an additional time weighting (e.g. exponential decay) should
be further investigated.

Acknowledgments. The work was supported by the DFG reseach center Matheon “Math-
ematics for key technologies” in Berlin.
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Risk (standard deviation) evolution of marketneutral portfolios
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FIGURE 4.16. Risk (empirical standard deviation) evolution of different market neutral portfolio-optimization
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