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1 Basic Definitions
Let X ={1,...,m} be a discrete state space and let X (¢) be a Markov chain, where ¢ may be
either discrete or continuous.

1.1 Time-Discrete Markov Chain

with propagator / transition matrix P € R™*™:

pij = 0Vi, j

Z Dij =0Vi

j=1l..m

Unless the system is inherently time-discrete, the meaning of p;; is that it represents the

transition probability of state ¢ to state j within time 7:

pi =PX(Et+7)=7|X()=1]

P has a single eigenvalue of 1 and otherwise eigenvalues in (—1,...,1). When u(t) € R™ is

a probability vector, P can be used to transport this probability vector:

p(t +n7) = p@) P (7).

If P is irreducible it has a stationary distribution given by

m=maP
The backward propagator is defined as:
~ Uy
bi; = #pji

7

If P is furthermore reversible it fulfills the detailed balance equation:



Dij = Pij Vi, ]

TiPij = TjPji Vi, J.

1.2 Time-continuous Markov Chain

with generator / rate matrix L € R™*"™:

li >0Vi#j
Li=—> liVi
i#]

l;; is the rate of change from 7 to j in infinitesimal time and has therefore no parameter
7. L has a single eigenvalue of 0 and otherwise negative eigenvalues. When u(t) € R™ is a

probability vector, L can be used to compute the change of this probability vector:

dp(t)

“at u(t)L

If L is irreducible it has a stationary distribution given by

0=mnL
The backward generator is defined as:
-
lij = w_zlji

If P is furthermore reversible it fulfills the detailed balance equation:

lij = 1;; Vi, j.
7Tilz'j = 7lejz' VZ,]

P and L are related via

P(7) = exp(TL).

Thus for every generator we can derive a unique transition matrix, but the inverse is not

always possible. The generator can be obtained wia following limit if it exists:

P(r)-1
L= tim 201

T—0t T

The generator corresponding to the time-discrete Markov process with 7 =1 is



Lo=P(r)—1

also known as pseudogenerator.

2 Ingredients

2.1 Hitting probabilites for Time-Discrete Markov Chains

Hitting time of A: HA: Q — {0,1,2,..} U {oo}:

H*(w) =inf{n > 0: X,(w) € A}

Hitting probability: The probability that starting from i we ever hit A is:

ht = Py(HA < o0).

7

The vector of hitting probabilities h4 = (h;4 : 1 € I) is the minimal non-negative solution

to the system of linear equations:

hit = 1forie A
hit = Zpijhfforz' ¢ A.
jel
(Minimality means that if z = (x; : ¢ € S) is another solution with z; > 0 for all ¢, then
x; > h; for all i.)

Proof:
First we show that h* satisfies the above equation.
1) If Xo =i € A, then HA =0, s0o h! = 1.
2) If Xg=1i¢ A, then H4 > 1, so by the Markov property:

P;(H* < 0o | X1 = j) = P;(H* < 00) = b

and

Next, we show that A4 are the minimal solution



1) Suppose that x = (z; : ¢ € I) is any solution to the equation. then hf‘ =uz; =1 for
i€ A
2) Suppose i ¢ A, then:

xT; = Zpijxj = Zpij + Zpijxj
jel jeA JgA

Substitute for x; to obtain:

T = Zpijxj = Zpij + Zpij (Z Pjk + ijkib"k)

jel jeA j2A keA k¢ A

= ]P’Z'(Xl € A) +Pi(X1 Qé A X5 € A) + Z Zpijpjka;k.
jEA kgA

By repeated substitution for x in the final term, we obtain after n steps:

T; = ]P)Z(XZ S A) + ...+ ]P’Z'(Xl Qé A, X1 Qé A X, € A) + Z Z Piji1Pirja-Pin—1jnLin-
jliﬁA jn¢A

Now if = is non-negative, so is the last term on the right, and the remaining terms sum to

P;(H* < n). So x; > P;(HA < n) for all n and then:

z; > lim Py(HA < n) = P;(H” < 00) = hy

n—oo

2.2 Hitting probabilites for time-continuous Markov Chains

Using

hit = 1fori e A
ht =Y pijhifori ¢ A,

jEI

with L = P — T yields

hi' = 1forie A

Jel,j#i

and thus



hit = 1forie A
lehj‘ = Ofor ¢ ¢ A.

jel
2.3 Time-discrete Committor Probabilities

The committor probability, qf pertaining to two sets A, B is the probability that starting in

state ¢, we will go to B next rather than to A:

¢ =P,(HP < HY).

In order to compute this, we define an A-absorbing process as

Dij Z¢A,]ES
Dij = 1 ieAi=j
0 iGA,i%j

and then compute the hitting probability to B. Since the process is absorbing in A only,
the hitting probability to B will reflect the probability to go to B next rather than to A.
Using the hitting probability equations:

q;r = 1lfori € B
q = Zpijquori ¢ B.

jel

with the absorbing process yields:

qf =0fori € A
q;" = lfori € B
q;" = Zpijq;-rfori ¢ {A, B}.
jel
The backward committor probability, g, pertaining to two sets A, B is the probability
that being in state i, we have been in A last rather than in B. In order to get the backward

committor, we use the backwards propagator p;; = %pﬁ, consider a B-absorbing process for

the reverse dynamics and compute the hitting probability for A:



qg; =lforic A
q; =0forie B
g7 = biq; fori ¢ {A,B}.

Jjel

for reversibility / detailed balance, p;; = Z—iji = p;j and thus:

qg; =lforic A
q; =0forie B
q = Zpijqj_fori ¢ {A, B}.

jel

it can be easily checked that:

g =1-gq"

satisfies this equation as it transforms it to the forward committor equation.

2.4 Time-continuous Committor Probabilities
. ly idA
lij =
0 1€eA

substituted into the Dirichlet problem:

qf = 1lfori € B

Zlijq;r = Ofor i ¢ B.
jel

yields

qf =0fori € A
qf = lfori € B
Zlijq;r = Ofori ¢ {A, B}.

jel

In order to get the backward committor, we define the backwards propagator [ij = %lji

and obtain:



qg; =lforic A
q; =0forie B
Ziijq; = Ofori ¢ {A, B}.

jel

for reversibility / detailed balance, l;; = %lﬂ and it can be easily checked that:
¢ =1-q"

3 Reactive Flux:

3.1 Probability weight of reactive trajectories:
mft = miq; ¢

with Zap =", mb = S mig; g < 1itis clear that we need to normalize:

AB _ =1 — +
mi” = Zypmid; 4 -

For detailed balance, we have:

mP = Z pmi(1— g )gf

7 i

to obtain the probability distribution of reaction trajectories, i.e. the probability to be at

state 7 and to be reactive.

3.2 Probability current of reactive trajectories:
AB mig; g i #
fij = . .
0 1=17
(for detailed balance, we have ¢; = 1—q27"). The probability current is the number of jumps
1 — j which lie on reactive A — B trajectories.

We have a number of nice properties:

1) Flux conservation (Kirchhoff’s 1st law)

(AP - £iP)=0 Vig {A B}

jes

Proof:



Z(f{?B - fﬁB) = miq; le’jq;-L —q Zﬂj%—lji

jes j#i j#i
=mq; Y lijq —mg” Y q;
j#i j#i

Due to the committor equations, we have Zj&{A,B} lijq;-L =0 and Zj¢{A,B} l~j,~qj_ =0 and
thus:

Z(fi?B — [17) = —mig; lugi + mig g = 0.
JjeSs

From q;" =1Vi € A and q; = 0Vi € B we see that

fiP=0vje A

fiP=0vieB

thus flux is not conserved at A and B, but throughout the network such that:

Yo fGP= Y 7P

i€A,j¢A j¢BiEB

Remarks:

+
ij
conductance provides an electric network theory with Ohm’s law and Kirchhoff’s laws being

- It is worth noting that by setting q;" as negative potential, as current and m;l;; as

valid.

- All TPT is valid when substituting p;; in [;;.

3.3 Effective current

is defined as

5 = max{ /5" — f;;%,0}

Y

and gives the net average number of reactive trajectories per time unit making a transition

from i to j on their way from A to B.

3.4 Total rate

The total number of reactive A — B trajectories per time unit is simply given by the effective

current flowing out of A and into B:



K= 3 fi7= > mlyar= > %= > mal

iEAjEA iEAjEA j¢Bi€B i€B,j¢B
If the system is ergodic, every trajectory must go back from B to A in order to be able to
transit to B again. Thus, K is also equal to the number of reactive B — A trajectories and

equal to the number of A — B — A cycles.

4 Pathways

- A reaction pathway w = (ig, 1, ..., i) from A to B is a simple pathway, such that

ig € A, i € B, iy...i, ¢ {A, B}.

- the capacity of a pathway w is the minimal effective current:

c¢(w) = min +
(w) = min {77}

- the bottleneck of a reaction pathway w is the edge with the minimal effective current:

(b1,b2) = arg (Zgl)igw{fg
- The best pathway is one that maximizes the minimal current. This is only necessarily
unique at the bottleneck. However, following algorithm is a rational way to find a unique best
pathway in graph G:
BestPath(G,A,B)
1. Determine bottleneck (b1, b2) in G

2. Decompose G into L and R, which are the parts of G left of b; and right of by

3 by if b € A
L wp, =
BestPath(L, A, {b1} else
by ifby € B
4. wgp =
BestPath(L,{b2}, B else

5. return (wr,wg)
In order to decompose the network into individual pathways, let w = BestPath(G, A, B)
and subtract that pathway from the network:

(fif) = fif — clw)if (i,§) € w
( +

e
) = fielse.

It directly follows from the flux conservation laws that in the new pathways we still have

flux conservation and

K' =K — c(w).



We will have K’ = 0 when all A — B pathways have been subtracted and the decomposi-
tion is finished. This results in a set of A — B pathways whose statistical contribution to the

A — B is given by the capacity of each, c(w).

Literature

1. J. Norris: “Markov Chains”. Cambride University Press.

Parts available from: http://www.statslab.cam.ac.uk/~james/Markov/

2. Ph. Metzner, Ch. Schiitte, and E. Vanden-Eijnden: “Transition Path Theory for Markov
Jump Processes”. Mult. Mod. Sim. (2007)

10



