
Transition Path TheoryFrank Noé (noe�math.fu-berlin.de)January 30, 20091 Basi De�nitionsLet X = {1, ...,m} be a disrete state spae and let X(t) be a Markov hain, where t may beeither disrete or ontinuous.1.1 Time-Disrete Markov Chainwith propagator / transition matrix P ∈ R
m×m:
pij ≥ 0 ∀i, j

∑

j=1...m

pij = 0 ∀iUnless the system is inherently time-disrete, the meaning of pij is that it represents thetransition probability of state i to state j within time τ :
pij = P[X(t + τ) = j | X(t) = i]

P has a single eigenvalue of 1 and otherwise eigenvalues in (−1, ..., 1). When µ(t) ∈ R
m isa probability vetor, P an be used to transport this probability vetor:

µ(t + nτ) = µ(t)Pn(τ).If P is irreduible it has a stationary distribution given by
π = πPThe bakward propagator is de�ned as:

p̃ij =
πj

πi
pjiIf P is furthermore reversible it ful�lls the detailed balane equation:
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p̃ij = pij ∀i, j

πipij = πjpji ∀i, j.1.2 Time-ontinuous Markov Chainwith generator / rate matrix L ∈ R
m×m:

lij ≥ 0 ∀i 6= j

lii = −
∑

i6=j

lij ∀i

lij is the rate of hange from i to j in in�nitesimal time and has therefore no parameter
τ . L has a single eigenvalue of 0 and otherwise negative eigenvalues. When µ(t) ∈ R

m is aprobability vetor, L an be used to ompute the hange of this probability vetor:
dµ(t)

dt
= µ(t)LIf L is irreduible it has a stationary distribution given by

0 = πLThe bakward generator is de�ned as:
l̃ij =

πj

πi
ljiIf P is furthermore reversible it ful�lls the detailed balane equation:

l̃ij = lij ∀i, j.

πilij = πjlji ∀i, j.

P and L are related via
P (τ) = exp(τL).Thus for every generator we an derive a unique transition matrix, but the inverse is notalways possible. The generator an be obtained via following limit if it exists:

L = lim
τ→0+

P (τ) − I

τThe generator orresponding to the time-disrete Markov proess with τ = 1 is2



L0 = P (τ) − Ialso known as pseudogenerator.2 Ingredients2.1 Hitting probabilites for Time-Disrete Markov ChainsHitting time of A: HA : Ω → {0, 1, 2, ...} ∪ {∞}:
HA(ω) = inf{n ≥ 0 : Xn(ω) ∈ A}Hitting probability: The probability that starting from i we ever hit A is:

hA
i = Pi(H

A < ∞).The vetor of hitting probabilities hA = (hA
i : i ∈ I) is the minimal non-negative solutionto the system of linear equations:

hA
i = 1for i ∈ A

hA
i =

∑

j∈I

pijh
A
j for i /∈ A.(Minimality means that if x = (xi : i ∈ S) is another solution with xi ≥ 0 for all i, then

xi ≥ hi for all i.)Proof:First we show that hA satis�es the above equation.1) If X0 = i ∈ A, then HA = 0, so hA
i = 1.2) If X0 = i /∈ A, then HA ≥ 1, so by the Markov property:

Pi(H
A < ∞ | X1 = j) = Pj(H

A < ∞) = hA
jand

hA
i = Pi(H

A < ∞)

=
∑

j∈I

Pi(H
A < ∞,Xi = j)

=
∑

j∈I

Pi(H
A < ∞ | Xi = j)Pi(X1 = j)

=
∑

j∈I

hA
j pij.Next, we show that hA are the minimal solution3



1) Suppose that x = (xi : i ∈ I) is any solution to the equation. then hA
i = xi = 1 for

i ∈ A.2) Suppose i /∈ A, then:
xi =

∑

j∈I

pijxj =
∑

j∈A

pij +
∑

j /∈A

pijxjSubstitute for xj to obtain:
xi =

∑

j∈I

pijxj =
∑

j∈A

pij +
∑

j /∈A

pij

(

∑

k∈A

pjk +
∑

k/∈A

pjkxk

)

= Pi(X1 ∈ A) + Pi(X1 /∈ A,X2 ∈ A) +
∑

j /∈A

∑

k/∈A

pijpjkxk.By repeated substitution for x in the �nal term, we obtain after n steps:
xi = Pi(Xi ∈ A) + ... + Pi(X1 /∈ A, ...,Xn−1 /∈ A,Xn ∈ A) +

∑

j1 /∈A

...
∑

jn /∈A

pij1pj1j2...pjn−1jn
xjn

.Now if x is non-negative, so is the last term on the right, and the remaining terms sum to
Pi(H

A < n). So xi ≥ Pi(H
A < n) for all n and then:

xi ≥ lim
n→∞

Pi(H
A < n) = Pi(H

A < ∞) = hi.2.2 Hitting probabilites for time-ontinuous Markov ChainsUsing
hA

i = 1for i ∈ A

hA
i =

∑

j∈I

pijh
A
j for i /∈ A.with L = P − I yields

hA
i = 1for i ∈ A

hA
i =

∑

j∈I,j 6=i

lijh
A
j + (lii + 1)hA

i for i /∈ A.and thus
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hA
i = 1for i ∈ A

∑

j∈I

lijh
A
j = 0for i /∈ A.2.3 Time-disrete Committor ProbabilitiesThe ommittor probability, q+

i pertaining to two sets A,B is the probability that starting instate i, we will go to B next rather than to A:
q+
i = Pi(H

B < HA).In order to ompute this, we de�ne an A-absorbing proess as
p̂ij =















pij i /∈ A, j ∈ S

1 i ∈ A, i = j

0 i ∈ A, i /∈ jand then ompute the hitting probability to B. Sine the proess is absorbing in A only,the hitting probability to B will re�et the probability to go to B next rather than to A.Using the hitting probability equations:
q+
i = 1for i ∈ B

q+
i =

∑

j∈I

pijq
+
j for i /∈ B.with the absorbing proess yields:

q+
i = 0for i ∈ A

q+
i = 1for i ∈ B

q+
i =

∑

j∈I

pijq
+
j for i /∈ {A,B}.The bakward ommittor probability, q−i pertaining to two sets A,B is the probabilitythat being in state i, we have been in A last rather than in B. In order to get the bakwardommittor, we use the bakwards propagator p̃ij =

πj

πi
pji, onsider a B-absorbing proess forthe reverse dynamis and ompute the hitting probability for A:
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q−i = 1for i ∈ A

q−i = 0for i ∈ B

q−i =
∑

j∈I

p̃ijq
−
j for i /∈ {A,B}.for reversibility / detailed balane, pij =
πj

πi
pji = p̃ij and thus:

q−i = 1for i ∈ A

q−i = 0for i ∈ B

q−i =
∑

j∈I

pijq
−
j for i /∈ {A,B}.it an be easily heked that:

q− = 1 − q+satis�es this equation as it transforms it to the forward ommittor equation.2.4 Time-ontinuous Committor Probabilities
l̂ij =

{

lij i /∈ A

0 i ∈ Asubstituted into the Dirihlet problem:
q+
i = 1for i ∈ B

∑

j∈I

lijq
+
j = 0for i /∈ B.yields

q+
i = 0for i ∈ A

q+
i = 1for i ∈ B

∑

j∈I

lijq
+
j = 0for i /∈ {A,B}.In order to get the bakward ommittor, we de�ne the bakwards propagator l̃ij =

πj

πi
ljiand obtain:
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q−i = 1for i ∈ A

q−i = 0for i ∈ B
∑

j∈I

l̃ijq
−
j = 0for i /∈ {A,B}.for reversibility / detailed balane, lij =

πj

πi
lji and it an be easily heked that:

q− = 1 − q+3 Reative Flux:3.1 Probability weight of reative trajetories:
mR

i = πiq
−
i q+

iwith ZAB =
∑

i mR
i =

∑

i πiq
−
i q+

i < 1 it is lear that we need to normalize:
mAB

i = Z−1
ABπiq

−
i q+

i .For detailed balane, we have:
mAB

i = Z−1
ABπi(1 − q+

i )q+
i .to obtain the probability distribution of reation trajetories, i.e. the probability to be atstate i and to be reative.3.2 Probability urrent of reative trajetories:

fAB
ij =

{

πiq
−
i lijq

+
i i 6= j

0 i = j
.(for detailed balane, we have q−i = 1−q+

i ). The probability urrent is the number of jumps
i → j whih lie on reative A → B trajetories.We have a number of nie properties:1) Flux onservation (Kirhho�'s 1st law)

∑

j∈S

(fAB
ij − fAB

ji ) = 0 ∀i /∈ {A,B}Proof:
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∑

j∈S

(fAB
ij − fAB

ji ) = πiq
−
i

∑

j 6=i

lijq
+
j − q+

i

∑

j 6=i

πjq
−
j lji

= πiq
−
i

∑

j 6=i

lijq
+
j − πiq

+
i

∑

j 6=i

q−j l̃ijDue to the ommittor equations, we have ∑j /∈{A,B} lijq
+
j = 0 and ∑j /∈{A,B} l̃jiq

−
j = 0 andthus:

∑

j∈S

(fAB
ij − fAB

ji ) = −πiq
−
i liiq

+
i + πiq

+
i l̃iiq

−
i = 0.From q+

i = 1∀i ∈ A and q−i = 0∀i ∈ B we see that
fAB

ij = 0∀j ∈ A

fAB
ij = 0∀i ∈ Bthus �ux is not onserved at A and B, but throughout the network suh that:

∑

i∈A,j /∈A

fAB
ij =

∑

j /∈B,i∈B

fAB
ji .Remarks:- It is worth noting that by setting q+

i as negative potential, f+
ij as urrent and πilij asondutane provides an eletri network theory with Ohm's law and Kirhho�'s laws beingvalid.- All TPT is valid when substituting pij in lij .3.3 E�etive urrentis de�ned as

f+
ij = max{fAB

ij − fAB
ji , 0}and gives the net average number of reative trajetories per time unit making a transitionfrom i to j on their way from A to B.3.4 Total rateThe total number of reative A → B trajetories per time unit is simply given by the e�etiveurrent �owing out of A and into B:

8



K =
∑

i∈A,j /∈A

fAB
ij =

∑

i∈A,j /∈A

πilijq
+
i =

∑

j /∈B,i∈B

fAB
ji =

∑

i∈B,j /∈B

πjq
−
j ljiIf the system is ergodi, every trajetory must go bak from B to A in order to be able totransit to B again. Thus, K is also equal to the number of reative B → A trajetories andequal to the number of A → B → A yles.4 Pathways- A reation pathway w = (i0, i1, ..., in) from A to B is a simple pathway, suh that

i0 ∈ A, in ∈ B, i1...in /∈ {A,B}.- the apaity of a pathway w is the minimal e�etive urrent:
c(w) = min

(i,j)∈w
{f+

ij }- the bottlenek of a reation pathway w is the edge with the minimal e�etive urrent:
(b1, b2) = arg min

(i,j)∈w
{f+

ij }- The best pathway is one that maximizes the minimal urrent. This is only neessarilyunique at the bottlenek. However, following algorithm is a rational way to �nd a unique bestpathway in graph G:BestPath(G,A,B)1. Determine bottlenek (b1, b2) in G2. Deompose G into L and R, whih are the parts of G left of b1 and right of b23. wL =

{

b1 if b1 ∈ A

BestPath(L,A, {b1} else4. wR =

{

b2 if b2 ∈ B

BestPath(L, {b2}, B else5. return (wL,wR)In order to deompose the network into individual pathways, let w = BestPath(G,A,B)and subtrat that pathway from the network:
(f+

ij )′ = f+
ij − c(w)if (i, j) ∈ w

(f+
ij )′ = f+

ij else.It diretly follows from the �ux onservation laws that in the new pathways we still have�ux onservation and
K ′ = K − c(w).9



We will have K ′ = 0 when all A → B pathways have been subtrated and the deomposi-tion is �nished. This results in a set of A → B pathways whose statistial ontribution to the
A → B is given by the apaity of eah, c(w).Literature1. J. Norris: �Markov Chains�. Cambride University Press.Parts available from: http://www.statslab.am.a.uk/~james/Markov/2. Ph. Metzner, Ch. Shütte, and E. Vanden-Eijnden: �Transition Path Theory for MarkovJump Proesses�. Mult. Mod. Sim. (2007)
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