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process s Gaussian if and anly if for every finite set of indices &4, ..., # In the index set T

-
X‘f:;[.....f:k — (Xf:j:l e Xﬁk)

15 a vector-valued GGaussian random variable White Noise: ¢, ~ A(0,1)

ol Q3
Q11 ?HIUF’ Q3+ ‘SMUE‘

Wiener Process (also called Brownian

Motion):
1. Wp=10
2. Wiz almost surely continuous - e

3. Wi has independent increments with distribution

L — W, m_,l"kﬂ:[ljt — ,gjl(fn:url:lﬂa-:if].



http://upload.wikimedia.org/wikipedia/en/8/89/Boxplot_vs_PDF.png
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Properties of a one-dimensional Wiener process

The unconditional prabability density function at a fixed time &

1 —F
fw(z) = e 2,

v 2t

The expectation is zero:
EEn=0.
The varance is &
2 2
E(W?) — BX(W,) = t.
The covariance and correlation:

cov(Ws, W;) = min(s,t),

Xivr = Xe +7f(Xy) Hov/Te

From: wikipedia.org

Wiener Process


http://upload.wikimedia.org/wikipedia/commons/f/f8/Wiener_process_3d.png
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» Forevery =0, the function wtakes bath (strictly) positive and (strictly) negative values on {J,£).
= The function wis continuous everywhere but differentiable nowhere (like the Weierstrass function).

» Paints of local maximum of the function ware a dense countable set; the maximum values are painwise different; each
local maximum is sharp in the following sense: if whas a local maximum at t then
|w[5) — w(t)|,"|5 —_ t| —+ ™0 as stends to b The same holds for local minima.

» The function whas no points of local increase, that is, no =0 satisfies the following for some & in (0,8 first, wis) £ W)
for all sin (+£,8), and second, wis) 2 wit) for all sin (¢ #4+<). (Local increase is a weaker condition than that wis
increasing on (f-g,8+€).) The same halds for local decrease.

= The function wis of unbounded variation an every interval.
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Filtration:

sequence of Galéehra.s on a measurahle-space. Tf-mt 15, given a rﬁeasurahle spa.ce (ﬂ! f} a filtration iz a sequencé of
calgebras {ﬁ }EED with 73 C JF for each t and

tli:tﬂ — E::[ EFF‘Q

The exact range of the "times" t will usually depend on context: the set of values for t might be discrete or continuous,
bounded ar unbounded. For example,

L € {D,]., - .,ﬁr},N{}, [D,T] or [D, |D§:I)

similarly, a filtered probability space (also known as a stochastic basis) is a probability space with a filtration of its
T-algebra.

Filtered Probability Space:

{Q,F_, (ﬁ)fzﬂgp)

The sigma algebra F represents the information available up until time ¢, and a process % is adapted if &} is
Frmeasurable. A Brownian motion 5 i understood to be an F-Brownian motion, which is just a standard Brownian
matian with the property that Biis - 5 15 independent of & for all 52 0
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In full generality, a stochastic process Y : T x (Q - Sis a martingale with
respect to a filtration 2 and probability measure P if

= 1 Is a filtration of the underlying probability space (Q, 2, P);

= Yis adapted to the filtration ZD, i.e., for each fin the index set T, the random
variable Yf is a Zf-measurable function:;

* for each f, Yf lies in the L” space L1(Q, Zf, P; 5), i.e.
Ep(|Yi]) < +oo;

= for all s and f with s < fand all F ¢ ZS,
Ep ([Y: — Yilxr) =0,

Xigr =Xo +7f(Xy) Ho VTE

Martingale
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f HdX = ]t H,. dX, What kind of Integral???
{0 0

H and X are functions of unbounded variation, non-smooth almost everyvwhere

4

Riemann-Stiltjes Integral does not exist!
Convergence in Probability: lim Pr(|X, - X|>¢) =0
|ldea: define via partial sum

b n
Martingalet | 1 = [ XedYi := lim 3~ X1u(Yin — Yo-1a) =
a i=1

n—0

b—a

n

b n
Not Martingale! S := f X;o0dY; := lim Z Xii—o5n (Yin — Yii—1)n)-
a i=1

—20
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Ito Isometry: E ((H : BE)E) =F (f; H’? ds)

Linearity (obvious)...

i f
Integration by parts: X¢¥: = Xuiﬁ+f} X, dY +f} Y dX, +[X,Y]
Expectation value of Ito integral is zero

Limitof X,,, =X, +7f(X,)+0y7e for 7— 0 can be defined as

T T
X, = ’D+fcrsdﬁs+f,usds
I i
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Stochastic Differential Equation (SDE):

t t
xfszJrf r:rsdBS+f 11 ds
0 ]

and

Partial Differential Equation (PDE):

oim(X,t) = Gr(X, 1)
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