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Short Reminder

Stochastic  Processes

Discrete State Space,
Discrete Time:
Markov Chain

Discrete State Space,
Continuous Time:
Markov Process

Continuous State Space,
Discrete Time:
Markov Process

Continuous State Space,
Continuous Time:
Stochastic Differential Equation
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Short Reminder: Markov Processes

Infenitisimal Generator:                            

Markov Process Dynamics:

This Equation is Deterministic: ODE! 

1) Numerical Methods from ODEs like Runge-Kutta-Method 
become available for stochatic processes

2) Monte-Carlo-Sampling just at the end!

Concepts from the Theory of Dynamical Systems are Applicable
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Markov Process in R

Realizations of the process:                            

Process:

Next-Step Probability: 

Next-Step Distribution:

This Equation is Deterministic! 
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Infenitisimal Generator:                            

Markov Process Dynamics:

This Equation is Deterministic: PDE! 

1) Numerical Methods from PDEs like Finite-Element-Methods (FEM) 
become available for stochatic processes

2) Monte-Carlo-Sampling just at the end!

Concepts from the Theory of Dynamical Systems are Applicable

Markov Process in R



Short Trip in the World of
Dynamical Systems



Essential Dynamics of many dynamical systems is defined by
 attractors. 

Attractor stays invariant under the
 

flow operator

Separation of informative (attractor) and non-informative (rest)
parts of the space leads to dimension reduction

Dynamical
 

systems
 

viewpoint

Figures from
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Problem: Euclidean distance
 

cannot be    
used as a measure

 
for the 

relative neighbourghood  of 
attractor elements.

How
 

to localize
 

the
 

attractor?

Attractors can have very complex, even fractal geometry

Strategy: the data have to be “embedded“
 

into Eucllidean space

Whitney embedding theorem (Whitney, 1936) : sufficiently 

smooth connected        -dimensional  manifolds can be smoothly

embedded in                      -dimensional Euclidean space.



Takens‘ Embedding (Takens, 1981)

and                     is a smooth map.

Assume that           has   an     attractor        with dimension

. Let                           ,      be a “proper“

measurement process. Then

is a                      -dimensional embedding in Euclidean space     

How
 

to construct
 

the
 

embedding?



Illustration of Takens‘
 

Embedding
The image of                is unfolded   in

Problems:
-

 
how to “filter out“

 
the attractive subspace?

-
 

how to connect the changes in attractive subspace
 

with hidden
phase?

Strategy:

Let                                               .  Define    a
 

new  variable 

.   Let  the  attractor          for 

each  of  the  hidden phases  be contained in a  distinct   linear

manifold defined via        



Topological
 

dimension
 

reduction

(H. 07):        for   a  given   time   series           we   look  for  a   

minimum  of the    reconstruction error
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Analysis of embedded
 

data

PCA + Takens‘ Embedding (Broomhead&King, 1986)

Let                                               .  Define   a new  variable 

.    Let      the        attractor          

from Takens‘
 

Theorem be in a  linear manifold defined  via        

. Then

Reconstruction from m
 

essential coordinates:



PCA+Takens: data
 

compression/reconstruction

1.

2.

3.

4.

5.
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Lorenz-Oszillator with 
measurement noise

Example: Lorenz



Example: Lorenz

Reconstructed trajectory
(red, for m=2)



1) Markov-Prozesse (I): Dynamische Systeme und Identifikation der 
metastabilen Mengen (Maren)

2) Markov-Prozesse (II): Generatorschätzung (??)

3) Large Deviations Theory (Olga)

4) Dimensionsreduktion in Datenanalyse: graphentheoretische 
Zugänge I (Paul)

5) Dimensionsreduktion in Datenanalyse: graphentheoretische 
Zugänge II(Ilja)

6)  Prozesse mit Errinerung (I): opt. Steuerung, Kalman-Filter und 
ARMAX-Model (??)

7)  Prozesse mit Errinerung (II): Change-Point analysis (Peter)

8) Varianz von Parameterschätzungen (Bootstrap-Algorithmus) 
(Beatrice)

9)  Modelvergleich in Finanzsektor (Lars)

Themen


	Slide Number 1
	Short Reminder
	Short Reminder: Markov Processes
	Short Reminder
	Markov Process in R
	Markov Process in R
	Slide Number 7
	Slide Number 8
	Dynamical systems viewpoint
	How to localize the attractor?
	How to construct the embedding?
	Illustration of Takens‘ Embedding
	Topological dimension reduction
	Topological dimension reduction
	Topological dimension reduction
	Analysis of embedded data
	PCA+Takens: data compression/reconstruction
	Example: Lorenz
	Example: Lorenz
	Slide Number 20

