

Analysis of non-stationary Data

Illia Horenko

Scientific Computing Institute of Mathematics Freie Universität Berlin (FU)

DFG Research Center MATHEON "Mathematics in key technologies"

- <u>Motivation</u>
 - global stationarity, local stationarity, examples
- Non-Stationarity for continuous state space processes:
 - Fuzzy Clustering with Regression Models (FCRM)
 - *Finite Element Clustering* for continuos state space processes
- Non-Stationarity for discrete state space processes:
 - Kernel Filtering Methods
 - Single Trend Model
 - *FEM-Clustering* of Markov-chain output
 - Example I: analysis of historical *weather patterns*
 - Example II: analysis of the *historical temperatures* (1947-2007)

Non-Stationarity

Meteorology/Climate

Fluid Mechanics

Computational Finance

Biophysics/Drug Design

(Local) weak stationarity: (local) time independence of mean values and covariances

Not fulfilled in many cases

Non-Stationarity in Continuous State Space Time Series

Example: weather data analysis

Global Historical Data

Local Historical Data

Deviation from the Mean Temperature

Non-stationarity because of the climate change => standard data-analysis methods are *not applicable*

Geometrical distance: $\theta_i \in \Psi$ - time-independent cluster centers

$$g(x, \theta_i) = || x - \theta_i ||^2,$$

$$t_j, j = 1, \dots, n \in [0, T]$$

$$\sum_{i=1}^{K} \sum_{j=1}^{n} \gamma_i(t_j) || x_{t_j} - \theta_i ||^2 \rightarrow \min_{\Gamma(t),\Theta} \qquad (Bezdek1981, Hoppner et.al. 1999)$$

Iteration number (l):

$$\begin{split} \gamma_i^{(l)}(t_j) &= \begin{cases} 1 & i = \arg\min \| x_{t_j} - \theta_i^{(l-1)} \|^2, \\ 0 & \text{otherwise}, \end{cases} \\ \theta_i^{(l)} &= \frac{\sum_{j=1}^n \gamma_i^{(l)}(t_j) x_{t_j}}{\sum_{j=1}^n \gamma_i^{(l)}(t_j)}. \end{split}$$

Assumption: time-independence of cluster centers **____** <u>local stationarity</u>

Non-stationary Extension of K-Means: FCRM

Geometrical distance: time-dependent cluster centers as linear

combinations of *basis functions* $\phi_{k}(t), k = 0, \dots, \mathcal{R}$

TBERT

veritas

iustitia libertas

Geometrical distance: time-dependent cluster centers as linear

combinations of *basis functions* $\phi_k(t), k = 0, \dots, \mathcal{R}$

veritas

libertas

$$\theta_{i}(t) = \sum_{k=0}^{\mathcal{R}} \theta_{ik} \phi_{k}(t_{j})$$
 (Hathaway and Bezdek1993)
$$\sum_{i=1}^{\mathbf{K}} \sum_{j=1}^{n} \gamma_{i}^{m}(t_{j}) \parallel x_{t_{j}} - \sum_{k=0}^{\mathcal{R}} \theta_{ik} \phi_{k}(t_{j}) \parallel^{2} \rightarrow \min_{\Gamma(t),\Theta}$$

Exercise 1: Derive an expression for the optimal estimator of

the regression parameters θ (x and γ are fixed). What happens

to this estimate if R is growing? How to define the optimal R?

Suggest and discuss the possible numerical solutions.

Time

Regularized clustering functional:

$$\mathbf{L}(\Theta, \Gamma(t)) = \int_{0}^{T} \sum_{i=1}^{\mathbf{K}} \gamma_{i}(t) g\left(x_{t}, \theta_{i}\right) \to \min_{\Gamma(t), \Theta},$$
$$\mathbf{L}^{\epsilon}(\Theta, \Gamma(t), \epsilon^{2}) = \mathbf{L}(\Theta, \Gamma(t)) + \epsilon^{2} \sum_{i=1}^{\mathbf{K}} \int_{0}^{T} \left(\partial_{t} \gamma_{i}\left(t\right)\right)^{2} dt \to \min_{\Gamma(t), \Theta}$$

$$g(x_t, \theta_i) = \| x_t - \sum_{k=0}^{\infty} \theta_{ik} \odot \phi_k(t) \|^2$$

terative Subspace Minimization

sparse

QP

can be used

$$\tilde{\mathbf{L}}^{\epsilon} = \sum_{i=1}^{\mathbf{K}} \left[a^{\mathbf{T}}(\theta_i) \bar{\gamma}_i + \epsilon^2 \bar{\gamma}_i^{\mathbf{T}} \mathbf{H} \bar{\gamma}_i \right] \to \min_{\bar{\gamma}_i, \Theta}$$

$$\sum_{i=1}^{\mathbf{K}} \tilde{\gamma}_i^{(k+1)} = 1, \quad \forall k = 1, \dots, N,$$

$$\tilde{\gamma}_i^{(k+1)} \ge 0, \quad \forall k = 1, \dots, N; i = 1, \dots, \mathbf{K}.$$

$$a(\theta_i) = \left(\int_{t_1}^{t_2} v_1(t) g(x_t, \theta_i) dt, \dots, \int_{t_{N-1}}^{t_N} v_N(t) g(x_t, \theta_i) dt \right)$$

 $g(x_t, \theta_i) = \| x_t - \sum_{k=0}^{\mathcal{R}} \theta_{ik} \odot \phi_k(t) \|^2$

Toy Example:

$$\begin{aligned} x_j(t) &= \theta_{i(t)j}(t - \bar{t}_j) + \sigma \mathbf{N}(0, 1), \quad i = 1, 2, \quad j = 1, 2, 3 \\ \theta_1 &= (0.01 \ -0.01 \ 0.01), \quad \theta_2 = (-0.01 \ 0.01 \ -0.01) \\ \bar{t} &= (0 \ 300 \ 600) \end{aligned}$$

×

$$\mathbf{L}^{\epsilon}(\Theta, \Gamma(t), \epsilon^{2}) = \mathbf{L}(\Theta, \Gamma(t)) + \epsilon^{2} \sum_{i=1}^{\mathbf{K}} \int_{0}^{T} \left(\partial_{t} \gamma_{i}\left(t\right)\right)^{2} dt \to \min_{\Gamma(t), \Theta}$$

$$g(x_t, \theta_i) = \| x_t - \sum_{k=0}^{n} \theta_{ik} \odot \phi_k(t) \|^2$$

TBER7

veritas

iustitia libertas

Non-Stationarity in Discrete State Space Time Series

TBERT

veritas

iustitia libertas

Historical Circulation Data: weather regimes (Data from the Univ. of East Anglia) 3 atmospherical states considered

Observed Time Series: $\{X_1,\ldots,X_T\}$, $X_t \in s_1,\ldots,s_m$

Markov-Property:

$$P[X_t = s_j | X_1, X_2, \dots, X_{t-1} = s_i] = P[X_t = s_j | X_{t-1} = s_i] = P_{ij}(t)$$

Log-Likelihood:

$$\mathbf{L}(P(t)) = \log P[X_1, \dots, X_T]$$

$$\sum_{j=1}^m P_{ij}(t) = 1, \text{ for all } t, i$$

$$P_{ij}(t) \ge 0, \text{ for all } t, i, j$$

$$= \log P[X_1] + \sum_{i}^m \sum_{j=1}^m \sum_{t \in \{t_{ij}\}} \log P_{ij}(t) \rightarrow \max_{P(t)}$$

Maximization problem is ill-posed => *regularization necessary*

Historical Circulation Data: 27 Lamb regimes (Data from the Univ. of East Anglia) 3 atmospherical states considered

Regularization: global stationarity assumption

<u>ic</u>	anticyclonic	other	cyclonic
anticyclor	0.34	0.40	0.26
other	0.35	0.41	0.24
clonic	0.34	0.41	0.25
స్త			

Regularization: local stationarity assumption inside of the window

Gaussian Window:
$$\gamma(t, t_0) = \frac{1}{c} \exp(-\frac{(t-t_0)^2}{\sigma^2})$$

Approximate Log-Likelihood:

$$\mathbf{L}(P(t_0)) \approx \log \mathbf{P}[X_1] + \sum_{i,j=1}^m \sum_{t \in \{t_{ij}\}} \gamma(t,t_0) \log P_{ij}(t_0)$$

Gaussian Kernel Filtering.

$$P_{ij}(t_0) = \frac{\sum_{t \in \{t_{ij}\}} \gamma(t, t_0)}{\sum_{t \in \{t_i\}} \gamma(t, t_0)}$$

Standard statistical methods applicable to calculate the conf. intervals

Regularization: local stationarity assumption inside of the window

Gaussian Window:
$$\gamma(t, t_0) = \frac{1}{c} \exp(-\frac{(t-t_0)^2}{\sigma^2})$$

Approximate Log-Likelihood:

$$\mathbf{L}(P(t_0)) \approx \log \mathbf{P}[X_1] + \sum_{i,j=1}^m \sum_{t \in \{t_{ij}\}} \gamma(t,t_0) \log P_{ij}(t_0)$$

Gaussian Kernel Filtering.

$$P_{ij}(t_0) = \frac{\sum_{t \in \{t_{ij}\}} \gamma(t, t_0)}{\sum_{t \in \{t_i\}} \gamma(t, t_0)}$$

Exercise 2: proof that this formula is true

Historical Circulation Data: 27 Lamb regimes (Data from the Univ. of East Anglia) 3 atmospherical states considered

Gaussian Window vs. Homogenous Estimator

other anticyclonic

cyclonic

Historical Circulation Data: 27 Lamb regimes (Data from the Univ. of East Anglia) <u>3 atmospherical states considered</u>

 $\pi(t) P(t) = \pi(t)$

(H. 08, to appear in J. of Atmos. Sci.)

Markovian Trend Model:

$$P(t) = P^{(0)} + P^{(1)}\phi(t), \quad \phi : [1,T] \to (-\infty, +\infty)$$

Log-Likelihood:

$$\sum_{j=1}^{m} \sum_{t \in \{t_{ij}\}} \log \left(P_{ij}^{(0)} + P_{ij}^{(1)} \phi(t) \right) \rightarrow \max_{P^{(0)}, P^{(1)}},$$

$$\sum_{j=1}^{m} P_{ij}^{(0)} = 1,$$

$$\sum_{j=1}^{m} P_{ij}^{(1)} = 0,$$

$$P_{ij}^{(0)} + P_{ij}^{(1)} \sup_{t \in [1,T]} \phi(t) \geq 0, \text{ for all } j,$$

$$P_{ij}^{(0)} + P_{ij}^{(1)} \inf_{t \in [1,T]} \phi(t) \geq 0, \text{ for all } j.$$

Numerics: Nelder-Mead Optimization Algorithm

Historical Circulation Data: 27 Lamb regimes (Data from the Univ. of East Anglia) 3 atmospherical states considered

Polynomial Trend Model

Historical Circulation Data: 27 Lamb regimes (Data from the Univ. of East Anglia) 3 atmospherical states considered

Polynomial Trend Model

Regularized clustering functional:

$$\mathbf{L}^{\epsilon}(\Theta, \Gamma(t), \epsilon^{2}) = \mathbf{L}(\Theta, \Gamma(t)) + \epsilon^{2} \sum_{i=1}^{\mathbf{K}} \int_{0}^{T} \left(\partial_{t} \gamma_{i}\left(t\right)\right)^{2} dt \to \min_{\Gamma(t), \Theta}$$

$$\mathbf{L}(\Theta, \Gamma(t)) = \int_0^T \sum_{i=1}^{\mathbf{K}} \gamma_i(t) g(x_t, \theta_i) \to \min_{\Gamma(t), \Theta},$$

TBER7

veritas

iustitia libertas

(H. 08, to appear in J. of Atmos. Sci.)

$$\mathbf{L}^{\epsilon}(\Theta, \Gamma(t), \epsilon^{2}) = \mathbf{L}(\Theta, \Gamma(t)) + \epsilon^{2} \sum_{i=1}^{\mathbf{K}} \int_{0}^{T} \left(\partial_{t} \gamma_{i}\left(t\right)\right)^{2} dt \to \min_{\Gamma(t), \Theta}$$

$$\mathbf{L}(\Theta, \Gamma(t)) = \int_0^T \sum_{i=1}^K \gamma_i(t) g\left(x_t, \theta_i\right) \to \min_{\Gamma(t), \Theta}$$
$$x_t : X_t \to X_{t+1}$$
$$g(x_t, P^i) = -\log P^i_{X_t X_{t+1}}$$

$$\sum_{i=1}^{\mathbf{K}} \gamma_i(t) = 1, \quad \forall t \in [0, T]$$
$$\gamma_i(t) \geq 0, \quad \forall t \in [0, T], i = 1, \dots, \mathbf{K}$$

(H. 08, to appear in J. of Atmos. Sci.) Regularized clustering functional: $\mathbf{L}^{\epsilon}(\Theta, \Gamma(t), \epsilon^{2}) = \mathbf{L}(\Theta, \Gamma(t)) + \epsilon^{2} \sum_{i=1}^{\infty} \int_{0}^{1} \left(\partial_{t} \gamma_{i}\left(t\right)\right)^{2} dt \to \min_{\Gamma(t), \Theta}$ $x_t: X_t \to X_{t+1}$ $g(x_t, P^i) = -\log P^i_{X_t X_{t+1}}$ rative Subspace $\tilde{\mathbf{L}}^{\epsilon} = \sum_{i=1} \left[a^{\mathbf{T}}(\theta_i) \bar{\gamma}_i + \epsilon^2 \bar{\gamma}_i^{\mathbf{T}} \mathbf{H} \bar{\gamma}_i \right] \to \min_{\bar{\gamma}_i, \Theta}$ QP can be used
$$\begin{split} \sum_{i=1}^{\mathbf{K}} \tilde{\gamma}_i^{(k+1)} &= 1, \quad \forall k = 1, \dots, N, \\ \tilde{\gamma}_i^{(k+1)} &\geq 0, \quad \forall k = 1, \dots, N; i = 1, \dots, \mathbf{K}. \end{split}$$
Minimizatic

Historical Circulation Data: 28 Lamb regimes (Data from the Univ. of East Anglia) 3 atmospherical states considered

 $\mathbf{L}\left(\gamma_{i}(t)\right)$

mit

 X_{t+1}

veritas iustitia libertas

Historical Circulation Data: 28 Lamb regimes (Data from the Univ. of East Anglia) 3 atmospherical states considered

Circulation Patterns for UK(1945-2007)

Gaussian Kernel Estimator

FEM-Clustering vs. Single Trend

Example: analysis of hystorical temperatures (1947-2007)

Temperature Data Analysis

Global Historical Temperatures

Historical Temperatures in Europe

Deviation from the Mean Temperature

Data from Boulder Center, USA

Data from Ch. Franzke, BAS Cambridge

Temperature Data on the 2D-Grid (1947-2007)

Temperature Data in Europe: 29x20 grid

TBER7

veritas

iustitia libertas

Seasonal Cycle Eliminated

$$\mathbf{L}(\gamma_{i}(t), \mathbf{T}_{i}, \mu_{i}) \rightarrow \min : \mathsf{K=1}$$

$$g(x_{t}, \theta_{i}) = || x_{t} - \sum_{k=0}^{\mathcal{R}} \theta_{ik} \odot \phi_{k}(t) ||^{2}$$
Linear Regression

veritas iustitia libertas TBERT

Temperature Data in Europe: 29x20 grid

Seasonal Cycle Eliminated

Temperature Data in Europe: 29x20 grid

∆ T(01-Jan-1947)

Cluster 1

<u>Cluster 2</u>

Cluster 3

Temperature Data in Europe: 29x20 grid

∆ T(31-Dec-2007)

Cluster 1

Cluster 2

Cluster 3

Temperature Data in Europe: 29x20 grid

∆ T(01-Jan-1947)

Cluster 1

<u>Cluster 2</u>

Cluster 3

Temperature Data in Europe: 29x20 grid

∆ T(31-Dec-2007)

Cluster 1

<u>Cluster 2</u>

Cluster 3

Temperature Data in Europe: 29x20 grid

Global Historical Temperature Data (80x120 grid, daily values 1947-2007) (Data from the NCAR, Boulder, US)

∆T(Start)

NCEPNCAR/air.1948.2007.1000.mat

Global Historical Temperature Data (80x120 grid, daily values 1947-2007) (Data from the NCAR, Boulder, US)

Take-Home-Messages

- 1. Different methods for analysis of non-stationary data were presented
- 2. One can use similar approaches in both continuous and discrete data analysis
- 3. Issue of non-stationarity is important in analysis of historical time series

Thank you for attention!