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•
 

Hidden Regimes and Model Reduction

•
 

overwiev of the standard clustering methods, their problems

•
 

variational approach: regularized model distance functional

•
 

finite element approach to clustering problem

•
 

manifold clustering

•
 

toy examples

•
 

Applications: 

•
 

analysis
 

of weather
 

data
 

(regimes,
 

prediction)

•
 

computational finance (portfolio theory)

•
 

compression of 3D turbulence simulation data



Hidden Regimes and Model Reduction



Let
 

be
 

the
 

observed process

Define
 

local
 

models
 

by
 

a   model distance functional: 

Examples

•
 

Geometrical clustering:                   -
 

cluster
 

centers

Model Distance Functional



Let
 

be
 

the
 

observed process

Define
 

local
 

models
 

by
 

a   model distance functional: 

Examples

•
 

Geometrical clustering:                   -
 

cluster
 

centers

•
 

Gaussian clustering:                          -
 

Gaussian
 

parameters

Model Distance Functional



What is “clustering“?

Find                                                     such that
 

for
 

each
 

:

subjected
 

to constraints:

Clustering
 

Problem: definition



Find                                                     such that
 

for
 

each
 

:

subjected
 

to constraints:

Numerical Method: Subspace
 

Iteration (splitting scheme)

No global convergence
 

(non-convex optimization, simulated annealing) 

Averaged
 

Clustering
 

Functional



K-Means
 

clustering: problems



K-Means
 

clustering: Toy Example I



K-Means
 

clustering: Toy
 

Example
 

I



Distribution 2Distribution 1
Switching

 
between

the
 

distributions

K-Means-Algorithm

K-Means
 

clustering: Toy
 

Example
 

II



colouring
 

from
geometrical

 
clustering

K-Means-Algorithm

K-Means
 

clustering: Toy
 

Example
 

II

Problems:
1. Euclidean distance may be not appropriate
2. geometrical clustering gets no use of temporal information



Manifold
 

Clustering
 

(H.06-07)
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Problem 1:

m << n



Manifold
 

Clustering
 

(H.06-07)
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Idea: Essential manifold
can

 
be

 
appproximated

 
by

linear attractive manifolds+switching
i=1

i=2

H./Schmidt-Ehrenberg/Schütte 06
H. 07

Problem 1:

m << n



Fuzzy
 

C-Means
 

Algorithm



Fuzzy
 

C-Means
 

Algorithm

Exercise
 

1:  proof that this formulas are true



Fuzzy
 

C-Means
 

Algorithm



Fuzzy
 

C-Means
 

Algorithm



Fuzzy
 

C-Means
 

Algorithm



Fuzzy
 

C-Means
 

Algorithm

Just to “fuzzify“ is not enough!



=

Incorporation of Temporal Information

identification of “persistent states“

Let
 

on                                            be
 

differentiable
 

and 

, i. e. :

Problem 2:

Number Of Jumps
Time Interval

=



Tikhonov-type
 

Regularization

incorporation of temporal information

Let
 

on                                            be
 

differentiable
 

and 

, i. e. : 

subjected
 

to

Regularized clustering functional: 

Problem 2:

(H. 08,  to appear in SISC)



FEM: Regularized
 

Clustering
 

Functional

Regularized clustering functional: (H. 08,  to appear in SISC)



FEM: Regularized
 

Clustering
 

Functional

Regularized clustering functional:

Galerkin-Ansatz :

where
 

,    and    

(H. 08,  to appear in SISC)



FEM-Discretized
 

Clustering
 

Functional

subjected
 

to

where

is
 

a vector
 

of FEM-discretized model distances and                 is

a mass-matrix of the
 

FEM-basis

Iterative S
ubspace M

inim
ization:

sparse

 

Q
P

 

can
be

used
(H. 08,  to appear in SISC)



Algorithm: monotony
 

conditions

Convergence
 

to a local
 

optimum
 

only!

(coupling
 

to some
 

global opimizer necessary)



Regularity
 

and
 

Persistence

controls the persistence
 

of the clusters

Exit Times

Exercise
 

2: calculate the mean time the Markov chain with

a given stationary transition probability matrix P will  spend 

in the state i. 



Toy
 

Example
 

I



Toy
 

Example
 

I



Toy
 

Example
 

I



Toy
 

Example
 

I

How
 

to determine
 

the
 

optimal K: probabilistic
 

model
 

assumptions
a posteriory



Toy
 

Example
 

I

How
 

to determine
 

the
 

optimal ε: standard
 

L-Curve
 

approach
from

 
Tikhonov-regularized

 
linear least-squares

 
problems

(Cullum(79), Hansen(99)) 



Toy
 

Example
 

II
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Angle        between
the

 
distributions



Toy
 

Example

Error of FEM-Based
 

Clustering



Toy
 

Example

Original switching
 

between
the

 
distributions

Switching
 

between
the

 
distributions

 
identified

 
by

Effect
 

of Regularization
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Application: meteorology
(cooperation with R. Klein)



“Hidden“
 

Weather
 

Phases: motivation

Wind Jets transport
 

moisture
 

from
US to Europe

Jet-Blocking

Jet-Blocking
 

results
 

in “indian
 

summer“
 

and “blackberry
 

cold“
in Europe



: K=4

Weather Data  in Europe: 29x20 grid (44 years) 
(Data from H.Osterle, PIK)

Up to 4 hidden states are statistically separable

Metastable MetastableIntermediate

Looking through Markovian : analysis of exit times
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: K=4

Weather Data  in Europe: 29x20 grid (44 years) 
(Data from H.Osterle, PIK)

Up to 4 hidden states are statistically separable

Comparison
 

with
Lejenas-Okland
blocking index
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Hidden State 4: Jet Blocking
 

Situation



: K=4

Stochastic Prediction: Markov+SDEs (H./Klein/Dolaptchiev/Schütte, SIAM MMS 06,
H., JAS 08,

H./Dolaptchiev/Eliseev/Mokhov/Klein, JAS 08)
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state

Unblocked
state

Transition states

R
educed

dynam
icaldescription



+ SDE Prediction

Weather Data  in Europe: 29x20 grid (44 years) 
(Data from H.Osterle, PIK)

Up to 4 hidden states are statistically separable

1 Day temperature
 

predictions



Example: Computational Finance



Minimal Risk
 

Portfolios



Memo II: Stochastic
 

Process

Probability Density Function:

Expectation Value:

Variance:

http://upload.wikimedia.org/wikipedia/en/8/89/Boxplot_vs_PDF.png


Application: Minimal Risk
 

Portfolio

Let
 

be
 

a stochastic price process and                

is
 

a portfolio, then
 

is
 

the
 

portfolio price

Maximize
 

Yield
 
and Minimize

 
Risk



Application: Minimal Risk
 

Portfolio

Let
 

be
 

a stochastic price process and                

is
 

a portfolio, then
 

is
 

the
 

portfolio price



Application: Minimal Risk
 

Portfolio

Let
 

be
 

a stochastic price process and                

is
 

a portfolio, then
 

is
 

the
 

portfolio price

Numerical
 

solution
 

possible

Exercise
 

3:  write the above maximization problem in vector-matrix

form.  What kind of constraints on x will be meaningful? Under which

conditions on                      does this constrained maximization problem

have a unique solution for a fixed α



Minimal Risk
 

Portfolios

I. Horenko, Ch.  Schütte,  
German Patent 10 2007 014 921.4 on 
22.03.2007



Minimal Risk
 

Portfolios

I. Horenko, Ch.  Schütte,  
German Patent 10 2007 014 921.4 on 
22.03.2007



http://www.portfolio-calculator.com



Example: analysis of DNS data
(with R.Klein)



Discrete-Continuous
 

Hybrid Models…

Aim:
 

construction
 

of reduced stochastic models for
 

subscale
 

phenomena

based
 

on  available
 

DNS data
 

or data-based model reduction
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+ local SDEs

DNS Data: Compression

Fluid Flow in 3D 
1.2 TB Data (Data from R.Klein/M.Uhlmann, FU)

15 x 80 GB ≈

 

2.000 EUR 1 USB with

 

2 GB ≈

 

20 EUR 1 CD ≈

 

0.2 EUR 



Take–Home-Messages  :

1. Variational approach to time series
 

analysis. No explicit
 

probabilistic

assumptions
 

needed
 

(difference
 

to GMM/HMM)

2.
 

Probabilistic
 

assumptions
 

can
 

be
 

done
 

a posteriory
 

(determination

of K )

3. Regularization controls the
 

persistence of regimes.



Thank you for attention!
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