

Time Series Analysis in Scientific Computing (24.11.2008-28.11.2008) *I. Horenko, R. Klein, Ch. Schütte*

Institute of Mathematics Freie Universität Berlin (FU)

DFG Research Center **MATHEON** "Mathematics in key technologies"

Meteorology/Climate

Fluid Mechanics

Computational Finance

Biophysics/Drug Design

Deterministic description "from first principles" is frequently Unavailable or Unfeasible!

Time Series Analysis

Properties:

- 1) non-stationarity
- 2) a lot of *d.o.f.s* are involved (*multidimensionality*)
- 3) stochasticity
- 4) presence of *hidden phases/regimes*

Aim of the Seminar:

mathematical concepts and methods of multidimensional stochastic

time series analysys and identification of hidden phases

Monday (Illia Horenko):

Deterministic view on stochastic processes (direct and inverse numerical problems)

Tuesday (Christof Schütte):

Identification of hidden phases: introduction (K-Means), subspace iteration methods, Expectation-Maximisation algorithm, Gaussian Mixture Models (GMM)

Wednesday (Christof Schütte):

Hidden Markov models (HMM), HMM in multiple dimensions (HMM-VAR)

Thursday (Illia Horenko):

Variational approach to time series analysis, finite element methods (FEM) in data analysis (FEM-Clustering)

Friday (Illia Horenko):

Methods of non-stationary time series analysis

Numerics of *Direct* and *Inverse* Problems in Stochastics: *deterministic viewpoint*

Properties:

- 1) non-stationarity
- 2) a lot of *d.o.f.s* are involved (*multidimensionality*)
- 3) stochasticity
- 4) presence of *hidden phases/regimes*

<u>Today we look at:</u>

1) stochastic processes and their deterministic interpretation

- 2) dynamical systems viewpoint
- 2) inverse problems in stochastics: functional minimization

Properties:

- 1) non-stationarity
- 2) a lot of *d.o.f.s* are involved (*multidimensionality*)
- 3) stochasticity
- 4) presence of *hidden phases/regimes*

Today we look at:

1) stochastic processes and their deterministic interpretation

- 2) dynamical systems viewpoint
- 2) inverse problems in stochastics: *functional minimization*

A probability space is a measure space such that the measure of the whole space is equal to 1.

In other words: a probability space is a triple (Ω, \mathcal{F}, P) consisting of a set Ω (called the sample space), a σ -algebra (also called σ -field) \mathcal{F} of subsets of Ω (these subsets are called events), and a measure P on (Ω, \mathcal{F}) such that $P(\Omega) = 1$ (called the probability measure).

Event	Probability
А	$P(A) \in [0,1]$
not A	P(A') = 1 - P(A)
A or B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	= P(A) + P(B) if A and B are mutually exclusive
A and B	$P(A \cap B) = P(A B)P(B)$
	= P(A)P(B) if A and B are independent
A given B	P(A B)

A probability space is a measure space such that the measure of the whole space is equal to 1.

In other words: a probability space is a triple (Ω, \mathcal{F}, P) consisting of a set Ω (called the sample space), a σ -algebra (also called σ -field) \mathcal{F} of subsets of Ω (these subsets are called events), and a measure P on (Ω, \mathcal{F}) such that $P(\Omega) = 1$ (called the probability measure).

Given a probability space (Ω, \mathcal{F}, P) , a **stochastic process** (or **random process**) with state space X is a collection of X-valued random variables indexed by a set T ("time"). That is, a stochastic process F is a collection

$$\{F_t: t \in T\}$$

where each F_t is an X-valued random variable.

Probability Density Function:

$$\Pr(4.3 \le X \le 7.8) = \int_{4.3}^{7.8} p(x) \, dx$$

Expectation Value:

$$E(X) = \int_{\Omega} X \, dP \qquad \mu = \int x \, p(x) \, dx$$
Variance:

$$Var(X) = \int (x - \mu)^2 \, p(x) \, dx$$

J

Direct Stochastic Problems

Markov-Property:

$$\mathbb{P}\left[X_t = s_j | X_0, X_\tau, X_{2\tau}, \dots, \mathbf{X}_{t-\tau} = s_j\right] = \mathbb{P}\left[X_t = s_j | \mathbf{X}_{t-\tau} = s_j\right] = P_{ij}\left(t, \tau\right)$$

Markov-Property:

$$\mathbb{P}\left[X_t = s_j | X_0, X_\tau, X_{2\tau}, \dots, \mathbf{X}_{t-\tau} = s_j\right] = \mathbb{P}\left[X_t = s_j | \mathbf{X}_{t-\tau} = s_j\right] = P_{ij}\left(t, \tau\right)$$

$$\pi_i(t+\tau) = \sum_{k=1}^m \mathbb{P}[X_{t+\tau} = s_i, X_t = s_k]$$

Markov-Property:

$$\mathbb{P}\left[X_t = s_j | X_0, X_\tau, X_{2\tau}, \dots, \mathbf{X}_{t-\tau} = s_j\right] = \mathbb{P}\left[X_t = s_j | \mathbf{X}_{t-\tau} = s_j\right] = P_{ij}\left(t, \tau\right)$$

$$\pi_i(t+\tau) = \sum_{k=1}^m \mathbb{P}[X_{t+\tau} = s_i, X_t = s_k]$$
$$= \sum_{k=1}^m P_{ki}(t)\pi_k(t)$$

Markov-Property:

$$\mathbb{P}\left[X_t = s_j | X_0, X_\tau, X_{2\tau}, \dots, \mathbf{X}_{t-\tau} = s_j\right] = \mathbb{P}\left[X_t = s_j | \mathbf{X}_{t-\tau} = s_j\right] = P_{ij}\left(t, \tau\right)$$

$$\pi_i(t+\tau) = \sum_{k=1}^m \mathbb{P}[X_{t+\tau} = s_i, X_t = s_k]$$

Markov-Property:

$$\mathbb{P}\left[X_t = s_j | X_0, X_\tau, X_{2\tau}, \dots, \mathbf{X}_{t-\tau} = s_j\right] = \mathbb{P}\left[X_t = s_j | \mathbf{X}_{t-\tau} = s_j\right] = P_{ij}\left(t, \tau\right)$$

$$\pi_i(t+\tau) = \sum_{k=1}^m \mathbb{P}[X_{t+\tau} = s_i, X_t = s_k]$$
$$= \sum_{k=1}^m P_{ki}(t)\pi_k(t)$$

Markov-Property:

$$\mathbb{P}\left[X_t = s_j | X_0, X_\tau, X_{2\tau}, \dots, \mathbf{X}_{t-\tau} = s_j\right] = \mathbb{P}\left[X_t = s_j | \mathbf{X}_{t-\tau} = s_j\right] = P_{ij}\left(t, \tau\right)$$

State Probabilities: $\pi(t) = (\pi_1(t), \pi_2(t), \dots, \pi_m(t))$ $\pi_i(t) = \mathbb{P}[X_t = s_i]$

$$\pi_i(t+\tau) = \sum_{k=1}^m \mathbb{P}[X_{t+\tau} = s_i, X_t = s_k]$$
$$= \sum_{k=1}^m P_{ki}(t)\pi_k(t)$$

 $\pi(t+\tau) = \pi(t)P(t,\tau)$

This Equation is Deterministic

 $\pi(t+\tau)=\pi(t)P(t,\tau)$

$$\pi(t+\tau) = \pi(t)P(t,\tau)$$

$$\frac{\pi(t+\tau) - \pi(t)}{\tau} = \frac{\pi(t)P(t,\tau) - \pi(t)}{\tau}$$

$$\pi(t+\tau) = \pi(t)P(t,\tau)$$

$$\frac{\pi(t+\tau) - \pi(t)}{\tau} = \frac{\pi(t)P(t,\tau) - \pi(t)}{\tau}$$

$$\pi(t+\tau)=\pi(t)P(t,\tau)$$

$$\frac{\pi(t+\tau) - \pi(t)}{\tau} = \frac{\pi(t)P(t,\tau) - \pi(t)}{\tau}$$

$$\lim_{\tau \to 0} \frac{\pi(t+\tau) - \pi(t)}{\tau} = \lim_{\tau \to 0} \frac{\pi(t)P(t,\tau) - \pi(t)}{\tau}$$

$$\begin{split} \mathcal{G}(t) = \lim_{\tau \to 0} \frac{P(t,\tau) - \mathcal{I}}{\tau} \\ & \text{infenitisimal} \\ & \text{generator} \end{split}$$

$$\pi(t+\tau)=\pi(t)P(t,\tau)$$

$$\frac{\pi(t+\tau) - \pi(t)}{\tau} = \frac{\pi(t)P(t,\tau) - \pi(t)}{\tau}$$

$$\lim_{\tau \to 0} \frac{\pi(t+\tau) - \pi(t)}{\tau} = \lim_{\tau \to 0} \frac{\pi(t)P(t,\tau) - \pi(t)}{\tau}$$

$$\begin{split} \mathcal{G}(t) = \lim_{\tau \to 0} \frac{P(t,\tau) - \mathcal{I}}{\tau} \\ & \textit{infenitisimal} \\ & \textit{generator} \end{split}$$

$$\dot{\pi} = \pi \mathcal{G}(t)$$

This Equation is Deterministic: ODE

Continuous State Space

Realizations of the process: $X_t \in \mathbb{R} \{X_0, X_{\tau}, X_{2\tau}, \dots, X_{t-\tau}\}$

Process:

$$X_{t+\tau} = X_t + \tau f(X_t) + \sigma \sqrt{\tau} \epsilon_t$$
$$\pi(X, t+\tau) = \lim_{\epsilon \to 0} \mathbb{P}[X_t \in (X - \epsilon, X + \epsilon)]$$

Realizations of the process: $X_t \in \mathbb{R} \{X_0, X_{\tau}, X_{2\tau}, \dots, X_{t-\tau}\}$

Process:

$$X_{t+\tau} = X_t + \tau f(X_t) + \sigma \sqrt{\tau} \epsilon_t$$
$$\pi(X, t+\tau) = \lim_{\epsilon \to 0} \mathbb{P}[X_t \in (X - \epsilon, X + \epsilon)]$$

If $\pi(X,t) = \delta(X - X_t)$ then $\pi(X,t+\tau) = \mathcal{N}(X_t + \tau f(X_t),\tau\sigma^2)$

Realizations of the process: $X_t \in \mathbb{R} \{X_0, X_{\tau}, X_{2\tau}, \dots, X_{t-\tau}\}$

Process:

$$\begin{aligned} X_{t+\tau} &= X_t + \tau f(X_t) + \sigma \sqrt{\tau} \epsilon_t \\ \pi(X, t+\tau) &= \lim_{\epsilon \to 0} \mathbb{P}[X_t \in (X-\epsilon, X+\epsilon)] \end{aligned}$$

If
$$\pi(X,t) = \delta(X - X_t)$$
 then $\pi(X,t+\tau) = \mathcal{N}(X_t + \tau f(X_t),\tau\sigma^2)$

Representing the arbitrary intial probability density $\pi(X, t)$ with Dirac-

testfunctions $\delta(X - X_t)$ results in:

$$\tau \to 0$$
 $\pi(X, t + \tau) = \exp\{\frac{\tau\sigma^2}{2}\partial_X^2 + \tau f(X)\partial_X\}\pi(X, t)$

(follows also from Ito's formula)

This Equation is Deterministic

Infenitisimal Generator:

$$\mathbf{G} = \lim_{\tau \to 0} \frac{\exp\{\frac{\tau \sigma^2}{2} \partial_X^2 + \tau f(X) \partial_X\} - \mathbf{I}}{\tau}$$
$$= \frac{\sigma^2}{2} \partial_X^2 + f(X) \partial_X$$

Markov Process Dynamics:

$$\partial_t \pi(X,t) = \mathbf{G} \pi(X,t)$$

This Equation is Deterministic: PDE

Discrete State Space, Discrete Time: *Markov Chain*

Discrete State Space, Continuous Time: *Markov Process*

 $\dot{\pi} = \pi \mathcal{G}(t)$

1) Numerical Methods from ODEs and (multidimensional) PDEs like Runge-Kutta-Methods, FEM and (adaptive) Rothe particle methods are applicable to stochatic processes

Adaptive PDE particle methods in multiple dimensions: H./Weiser, JCC **24**(15), 2003 H./Weiser/Schmidt/Schütte, JCP **120**(19), 2004 H./Lorenz/Schütte/Huisinga, JCC **26**(9), 2005 Weiße/H./Huisinga, LNCS **4216**, 2006

veritas

iustitia libertas

2) Monte-Carlo-Sampling of resulting p.d.f.'s

Stochastic Numerics = ODE/PDE numerics + Rand. Numb. Generator

3) Concepts from the Theory of Dynamical Systems are Applicable (Whitney and Takens theorems, model reduction by identification of attractors)

Short Trip to the World of Dynamical Systems

Essential Dynamics of many dynamical systems is defined by *attractors*.

Attractor ${f A}$ stays invariant under the flow operator $f_{ au}$

Separation of informative (attractor) and non-informative (rest) parts of the space leads to dimension reduction

How to localize the attractor?

Attractors can have very complex, even fractal geometry

<u>Problem:</u> Euclidean distance cannot be used as a measure for the relative neighbourghood of attractor elements.

<u>Strategy</u>: the data have to be "embedded" into Euclidean space

Whitney embedding theorem (Whitney, 1936) : sufficiently

smooth connected m-dimensional manifolds can be smoothly

embedded in (2m+1) -dimensional Euclidean space.

Takens' Embedding (Takens, 1981)

veritas

libertas

 $z_t \in \mathbf{M} \subset \mathbf{R}^d$ and $f_{ au}: \mathbf{M} o \mathbf{M}$ is a smooth map.

Assume that f_{τ} has an attractor **A** with dimension

m << d . Let $\, lpha : {f A} o {f R}^1$, $\, lpha \in {\cal C}^2$ be a "proper"

measurement process. Then

$$\phi_{\alpha}(z) = (\alpha(z), \alpha(f_{\tau}(z)), \dots, \alpha(f_{2m\tau}(z)))$$

is a $\ (2m+1)$ -dimensional embedding in Euclidean space

 how to connect the changes in attractive subspace with hidden phase?

Strategy:

veritas

iustitia libertas

Let $\{z_t\}_{t=1,...,T}, z_t \in \mathbf{R}^d$. Define a new variable $\{x_t^q\} = \{z_t, z_{t-1}, \ldots, z_{t-q}\}$. Let the attractor \mathbf{A} for

each of the hidden phases be contained in a distinct linear

<u>manifold</u> defined via $\mathbf{T} \in \mathbf{R}^{nxm}, m << d$

(*H. 07*): for a given time series

 \boldsymbol{x}_t look for a

minimum of the <u>reconstruction error</u>

(*H. 07*): for a given time series

minimum of the <u>reconstruction</u> <u>error</u>

minimum of the <u>reconstruction error</u>

$$\left\| (x_t - \mu_t) - \mathbf{T} \mathbf{T}^{\mathsf{T}} (x_t - \mu_t) \right\|_2^2$$

TBER7

veritas

iustitia libertas

PCA + Takens' Embedding (Broomhead&King, 1986)

Let
$$\{z_t\}_{t=1,...,T}, z_t \in \mathbf{R}^d$$
. Define a new variable $\{x_t^q\} = \{z_t, z_{t-1}, \ldots, z_{t-q}\}$. Let the attractor

from Takens' Theorem be in a *linear manifold* defined via

$$\mathbf{T} \in \mathbf{R}^{nxm}, m << d$$
 . Then

veritas

iustitia <u>libert</u>as

$$\begin{split} \sum_{t=1}^{T} \left\| x_t - \mathbf{T} \mathbf{T}^{\mathsf{T}} x_t \right\|_2^2 &\to \min \\ \mathbf{T}^{\mathsf{T}} \mathbf{T} &= Id, \end{split}$$

Reconstruction from m *essential coordinates*:

PCA+Takens: data compression/reconstruction

veritas iustitia libertas TBER

Lorenz-Oszillator with measurement noise

$$\dot{x} = \frac{8}{3}x + yz$$

$$\dot{y} = -10y + 10z$$

$$\dot{z} = -xy + 28y - z$$

Example: Lorenz

Reconstructed trajectory (*red*, for *m=*2)

Inverse Stochastic Problems

A probability space is a measure space such that the measure of the whole space is equal to 1.

In other words: a probability space is a triple (Ω, \mathcal{F}, P) consisting of a set Ω (called the sample space), a σ -algebra (also called σ -field) \mathcal{F} of subsets of Ω (these subsets are called events), and a measure P on (Ω, \mathcal{F}) such that $P(\Omega) = 1$ (called the probability measure).

Observed Time Series: $\{X_1, \ldots, X_T\}$

Markov-Property:

$$\mathbb{P}\left(X_t | X_1, X_2, \dots, X_{t-1}\right) = \mathbb{P}\left(X_t | X_{t-1}\right)$$

State-Discrete (AR(1))

 $X_{t+\tau} = X_t + \tau f(X_t) + \sigma \sqrt{\tau} \epsilon_t$

 $P(X_{t+\tau}|X_t) = \mathbb{N}(X_t + \tau f(X_t), \tau \sigma^2)$

Observed Time Series: $\{X_1, \ldots, X_T\}$

Markov-Property:

Observed Time Series: $\{X_1, \ldots, X_T\}$, $X_t \in s_1, \ldots, s_m$

Markov-Property:

$$P[X_t = s_j | X_1, X_2, \dots, X_{t-1} = s_i] = P[X_t = s_j | X_{t-1} = s_i] = P_{ij}(t)$$

Probability of Observed Time Series (Likelihood): $P[X_1, \dots, X_T] = P[X_1] \prod_{i,j=1}^m \prod_{t \in \{t_{ij}\}} P_{ij}(t) \xrightarrow{m} P_{ij}(t) = 1, \text{ for all } t, i$

Observed Time Series: $\{X_1,\ldots,X_T\}$, $X_t \in s_1,\ldots,s_m$

Markov-Property:

$$P[X_t = s_j | X_1, X_2, \dots, X_{t-1} = s_i] = P[X_t = s_j | X_{t-1} = s_i] = P_{ij}(t)$$

Log-Likelihood Functional:

$$\mathbf{L}(P(t)) = \log P[X_1, \dots, X_T]$$

$$= \log P[X_1] + \sum_{i}^{m} \sum_{j=1}^{m} \sum_{t \in \{t_{ij}\}}^{m} \log P_{ij}(t) \rightarrow \max_{P(t)}$$

Maximization problem is ill-posed

Take-Home Messages:

1. Numerics of ODEs and PDEs is applicable to

Stochastic Processes

- 2. Numerical *inverse problems* in *stochastics* can be understood as deterministic minimization problems with constraints
- 3. Minimization problems can be ill-posed: additional

information/assumptions may become necessary

Thank you for attention!