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Scientific Computing: Complex Systems 
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Fluid Mechanics
Market Phase 

1

Market 

Phase 2

Biophysics/Drug Design

Computational Finance

Deterministic description “from first principles“is
frequently Unavailable or Unfeasible!

Time Series
 

Analysis



Complex
 

Systems

Properties:

1)
 

non-stationarity

2)
 

a lot of d.o.f.s are
 

involved
 

(multidimensionality)

3)
 

stochasticity

4)
 

presence
 

of hidden phases/regimes

Aim
 

of the
 

Seminar:

mathematical concepts and methods of multidimensional stochastic

time series analysys and identification of hidden phases



Plan of the
 

Seminar (mornings):

Monday (Illia Horenko):
Deterministic view on stochastic processes (direct and inverse 
numerical problems)

Tuesday (Christof Schütte):
Identification of hidden phases: introduction (K-Means), 
subspace iteration methods, Expectation-Maximisation algorithm,
Gaussian Mixture Models (GMM)

Wednesday (Christof Schütte):
Hidden Markov models (HMM), HMM in multiple dimensions 
(HMM-VAR)

Thursday (Illia Horenko):
Variational approach to time series analysis, finite element 
methods (FEM) in data analysis (FEM-Clustering) 

Friday (Illia Horenko): 
Methods of non-stationary time series analysis



Numerics
 

of Direct and Inverse
Problems in Stochastics: deterministic

viewpoint



Complex
 

Systems

Properties:

1)
 

non-stationarity

2)
 

a lot of d.o.f.s are
 

involved
 

(multidimensionality)

3)
 

stochasticity

4)
 

presence
 

of hidden phases/regimes

Today
 

we
 

look
 

at:

1) stochastic processes and their
 

deterministic
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Memo I: Probability



Memo I: Probability



Memo II: Stochastic
 

Process

Probability Density Function:

Expectation Value:

Variance:

White Noise:

http://upload.wikimedia.org/wikipedia/en/8/89/Boxplot_vs_PDF.png


Classification
 

of Stochastic
 

Process

Stochastic Processes

Discrete
 

State Space,
Discrete

 
Time:

Markov Chain

Discrete
 

State Space,
Continuous

 
Time:

Markov Process

Continuous
 

State Space,
Discrete

 
Time:

Autoregressive Process

Continuous
 

State Space,
Continuous

 
Time:

Stochastic Differential Equation



Direct
 

Stochastic
 

Problems



Markov
 

Chains

Realizations of the process:                             

Markov-Property:

Example:   
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Discrete
 

Markov
 

Process…

Realizations of the process:                            

Markov-Property:

State Probabilities:

This Equation is Deterministic



Continuous
 

Markov
 

Process…



Continuous
 

Markov
 

Process…



Continuous
 

Markov
 

Process…



Continuous
 

Markov
 

Process…

infenitisimal
generator



Continuous
 

Markov
 

Process…

infenitisimal
generator

This Equation is Deterministic: ODE 



Continuous
 

State Space

Stochastic Processes

Discrete
 

State Space,
Discrete

 
Time:

Markov Chain

Discrete
 

State Space,
Continuous

 
Time:

Markov Process

Continuous
 

State Space,
Discrete

 
Time:

AR(1)

Continuous
 

State Space,
Continuous

 
Time:

Stochastic Differential Equation



Markov
 

Process
 

in R

Realizations of the process:                            

Process:  



Markov
 

Process
 

in R

Realizations of the process:                            

Process:

If then



Markov
 

Process
 

in R

Realizations of the process:                            

Process:

If then

Representing the arbitrary intial probability density with Dirac-

testfunctions results in:  

This Equation is Deterministic

(follows

 

also from
Ito‘s

 

formula)



Infenitisimal Generator:                            

Markov Process Dynamics: 

This Equation is Deterministic: PDE 

Markov
 

Process
 

in R



Numerics
 

of Stochastic
 

Processes

Discrete
 

State Space,
Discrete

 
Time:

Markov Chain

Discrete
 

State Space,
Continuous

 
Time:

Markov Process

Continuous
 

State Space,
Discrete

 
Time:

Autoregressive Process

Continuous
 

State Space,
Continuous

 
Time:

Stochastic Differential Equation



Numerics
 

of Stochastic
 

Processes

Deterministic Numerics of ODEs and PDEs!

Discrete
 

State Space,
Discrete

 
Time:

Markov Chain

Discrete
 

State Space,
Continuous

 
Time:

Markov Process

Continuous
 

State Space,
Discrete

 
Time:

Autoregressive Process

Continuous
 

State Space,
Continuous

 
Time:

Stochastic Differential Equation



Intermediate
 

Conclusions…
1) Numerical Methods from ODEs and (multidimensional) PDEs like

Runge-Kutta-Methods, FEM and (adaptive) Rothe particle methods
are applicable to stochatic processes

2) Monte-Carlo-Sampling of resulting p.d.f.‘s

Stochastic Numerics = ODE/PDE numerics + Rand. Numb. Generator

3) Concepts from the Theory of Dynamical Systems are Applicable (Whitney
and Takens theorems, model reduction by identification of attractors)

Adaptive PDE particle methods in multiple dimensions:
H./Weiser, JCC 24(15), 2003 
H./Weiser/Schmidt/Schütte, JCP 120(19), 2004
H./Lorenz/Schütte/Huisinga, JCC 26(9), 2005
Weiße/H./Huisinga, LNCS 4216, 2006



Short Trip to the World of
Dynamical Systems



Essential Dynamics of many
 

dynamical
 

systems
 

is
 

defined
 

by
 attractors. 

Attractor stays
 

invariant under
 

the
 

flow operator

Separation of informative (attractor) and non-informative (rest)
parts of the space leads to dimension reduction

Dynamical
 

systems
 

viewpoint

Figures
from

http:\\w
w

w
.w

ikipedia.org



Problem: Euclidean
 

distance
 

cannot
 

be
used

 
as a measure

 
for

 
the

relative neighbourghood
 

of 
attractor

 
elements.

How
 

to localize
 

the
 

attractor?

Attractors can have very complex, even fractal geometry

Strategy: the
 

data
 

have
 

to be
 

“embedded“
 

into
 

Eucllidean
 

space

Whitney embedding theorem (Whitney, 1936) : sufficiently

smooth connected -dimensional  manifolds can be smoothly

embedded in                      -dimensional Euclidean space.



Takens‘ Embedding (Takens, 1981)

and                     is a smooth map.

Assume that has   an     attractor with dimension

. Let ,                be a “proper“

measurement process. Then

is a                      -dimensional embedding in Euclidean space

How
 

to construct
 

the
 

embedding?



Illustration of Takens‘
 

Embedding
The

 
image of                is

 
unfolded

 
in

Problems:
-

 
how to “filter out“

 
the attractive subspace?

-
 

how
 

to connect
 

the
 

changes
 

in attractive
 

subspace
 

with
 

hidden
phase?

Strategy:

Let
 

.  Define
 

a      new
 

variable 

.   Let
 

the
 

attractor
 

for

each
 

of  the
 

hidden
 

phases
 

be
 

contained
 

in a  distinct
 

linear

manifold defined
 

via        



Topological
 

dimension
 

reduction

(H. 07):        for
 

a  given
 

time   series
 

we
 

look
 

for
 

a   

minimum
 

of the
 

reconstruction error

μ

T
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Topological
 

dimension
 

reduction

(H. 07):        for
 

a  given
 

time   series
 

we
 

look
 

for
 

a   

minimum
 

of the
 

reconstruction error

μ

(X-μ)

TT (X-μ)T

T
xt

t

t



Analysis of embedded
 

data

PCA + Takens‘ Embedding (Broomhead&King, 1986)

Let                                               .  Define   a new  variable 

.    Let      the        attractor          

from Takens‘
 

Theorem be in a  linear manifold defined  via        

. Then

Reconstruction from m
 

essential coordinates:



PCA+Takens: data
 

compression/reconstruction

1.

2.

3.

4.

5.
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Lorenz-Oszillator with 
measurement noise

Example: Lorenz



Example: Lorenz

Reconstructed trajectory
(red, for m=2)



Inverse Stochastic Problems



And Again: Memo I



Markov Processes: Log-Likelihood

Observed Time Series:                            

Markov-Property:   

State-Discrete (Markov Chains) State-Discrete (AR(1))



Markov Processes: Log-Likelihood

Observed Time Series:                            

Markov-Property:   

State-Discrete (Markov Chains) State-Discrete (AR(1))



Markov Chains: Log-Likelihood

Observed Time Series:                            , 

Markov-Property:   

Probability of Observed Time Series (Likelihood):   



Markov Chains: Log-Likelihood

Observed Time Series:                            , 

Markov-Property:   

Log-Likelihood Functional:   

Maximization problem is ill-posed



Memo III: Optimization with Constraints

Lagrange Principle

http://en.wikipedia.org/wiki/Image:LagrangeMultipliers2D.svg
http://en.wikipedia.org/wiki/Image:LagrangeMultipliers3D.png


Take-Home Messages:

1.
 

Numerics
 

of ODEs and PDEs is applicable to

Stochastic Processes

2.
 

Numerical inverse problems in stochastics can be understood

as deterministic minimization problems with constraints

3. Minimization problems can be ill-posed: additional 

information/assumptions may become necessary



Thank you for attention!
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