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Definition 1.1:

1. Let [0, T ] be an observation intervall, then we call

x(t) : [0, T ]→ Ψ ⊂ Rn (1.1)

a time series.

2. Let F([0, T ],Ψ) be the space of all functions from [0, T ] to Ψ, then we call

g(x,Θ) : F([0, T ],Ψ)× Ω→ [0,∞) (1.2)

the model functional. Θ ∈ Ω,
(
Ω ⊂ Rd

)
are the modell parameters.

3. We denote by “problem of time series analysis” the solution of:

Θ∗ = arg min
Θ∈Ω

g(x,Θ) (1.3)

for given x(t), t ∈ [0, T ] and formaly given g(x,Θ).

These general definitions will give us the possibility to solve a lot of problems

Example 1.1: (analysis of a time series using a gaussian model) Let
t ∈ {0, 1, . . . , T} and x(t) = xt be normaly distributed with mean µ̄ and variance σ̄2.
Moreover, let x0, x1, . . . , xT be independend. Our model parameters are choosen to be
Θ = (µ, σ2). We look for the best parameters µ̄ and σ̄2 for the given dataset.
Since xt are normaly distributed, the density of the xt is

ft =
1√

2πσ2
exp

(
−(xt − µ)2

2σ2

)
. (1.4)

Given the independence of the xt we can calculate the joint distribution of
(xt), t ∈ {0, . . . , T}:

fx =
T∏

t=0

ft =
(

1√
2πσ2

)T+1

exp

[
−
∑T

t=0(xt − x̄)2 + (T + 1)(x̄− µ)2

2σ2

]
, (1.5)

where x̄ = E[xt] = 1
T+1

∑T
t=0 xt. If we define the Gaussian model functional as

g := − ln fx =
T + 1

2
ln(2πσ2) +

∑T
t=0(xt − x̄)2 + (T + 1)(x̄− µ)2

2σ2
(1.6)

we can solve the problem of the time series analysis analyticaly by solving the system of
equations: (

∂g

∂µ
,
∂g

∂σ2

)
= 0 (1.7)
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thus

∂g

∂µ
= −2(T + 1)(x̄− µ)

2σ2
= 0, (1.8)

∂g

∂σ2
=
T + 1
2σ2

−
∑T

t=0(xt − x̄)2 + (T + 1)(x̄− µ)2

2σ4
= 0. (1.9)

The solution is:

µ = x̄, (1.10)

σ2 =
1

T + 1

T∑
t=0

(xt − x̄)2. (1.11)

These are the known formulars for mean and variance from statistics. �

Example 1.2: (K-Means clustering) Given a set of points x(t) for t ∈ T ⊂ [0, T ], we
look for K clusters C1, . . . , CK . Therefore let γi(t) for i = 1, . . . ,K and t ∈ T be the
probabilities for point x(t) to belong to cluster Ci. Moreover let

K∑
i=1

γi(t) = 1, ∀t ∈ T (1.12)

γi(t) ≥ 0, ∀t ∈ T , i = 1, . . . ,K. (1.13)

Now let Ci be the central point of the ith cluster and a point should belong to this cluster, if
the function of distance d(x(t), Ci) ≤ d(x(t), Cj) for all j = 1, . . . ,K. Then we can choose
the model parameters according to

Θ(t) = (C1, . . . , CK , γ1(t), . . . , γK(t)). (1.14)

The model function should be

g =
K∑

i=1

∑
t∈T

γi(t)||x(t)− Ci||2. (1.15)

For given C1, . . . , CK the γ∗i (t) can be calculated easily: Choose γi(t) = 1 if x(t) belongs to
cluster Ci and else γi(t) = 0. On the other hand, for given γi, the C∗i can be choosen
optimaly by setting C∗i to be the mean of all points belonging to the ith cluster. This leads to
the following algorithm:

1. Choose the initial C0
1 , . . . , C

0
K randomly.

2. Repeat for j = 1, 2, . . . unitl some stopping criteria is satisfied:

(a) Choose γj
i (t) = 1 if x(t) belongs to cluster Ci, else γj

i (t) = 0.

(b) Choose Cj
i by calculation the mean of all points belonging to the ith cluster.

One can prove: Every step of this algorithm improves the result (in sense of making g
smaller). �
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Example 2.1: (Markov chain) In this example we will have a closer look at the discrete
time series that satisfy certain independency conditions. Let
x = x(t), t ∈ {t0, t1, . . . , tN} ⊂ [0, T ] with equidistant timesteps ti = t0 + i∆t a time series.
Moreover, the set of states shall be ΨN ∈ RN with x(t) ∈ Ψ = {1, . . . ,K}. We abreviate
xk = x(tk).

Definition 2.1: A process x is called Markovian or a Markov process, if x satisfies

P[xk+1 = j|xk = ik, . . . , x0 = i0] = P[xk+1 = j|xk = ik]. (2.1)

If the term above does not depend on the time tk, the Markov process is called
homogeneous. For a homogeneous Markov processes is the transition matrix P with
P = [pij ], pij = P[xk+1 = j|xk = i] time-invariant. The transition matrix satisfies the
following conditions:

1. 0 ≤ pij ≤ 1

2.
∑

j pij = 1,∀i

3. P1K = 1
K , where 1K = (1, 1, . . . , 1)T

4. |λ| ≤ 1 where λ is any eigenvalue of P .

5. If the process is reversible, thus πipij = πjpji for some π we get: λ ∈ R.

Now we want to solve the minimization problem:

Θ∗ = arg min
Θ

g(x,Θ). (2.2)

Using the homogeneous Markovian property of x we can state:

P[x = (x0, x1, . . . , xT )|P ] = P[x(0) = x0]
T∏

t=1

pxt−1,xt . (2.3)

Remark: We start by expressing this probabilities depending on the whole series to time t.
Then we use the Markov property to truncate all but the last dependency and in the end we
use the homogeneous property to express the probabilities by the components of P .

Now we denote by Nij the number of jumps from i to j during the lifetime of x. Then we

can write:

P[x = (x0, x1, . . . , xT )|P ] = P[x(0) = x0]
K∏

i=1

K∏
j=1

p
Nij

ij . (2.4)

Using g̃(·) = − ln(·) we get

g̃(P ) = − ln(P[x = (x0, . . . , xT )|P ]) = − ln(P[x(0) = x0])−
K∑

i=1

K∑
j=1

Nij ln pij . (2.5)
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We use only the condition ∀i :
∑

j pij = 1, the other ones will be satisfied automaticaly (has
to checked afterwards). Using the Lagrange technic we get the extended problem:

g(P, µ) = − log P[x(0) = x0]−
K∑

i=1

K∑
j=1

Nij ln pij +
K∑

i=1

µi

 K∑
j=1

pij − 1

 . (2.6)

Now we can write the derivatives:

∂g

∂pij
= −Nij

pij
+ µi. (2.7)

Setting this equal to zero we get:

p∗ij =
Nij

µi
. (2.8)

Now we put this into the condition to get:

1 =
∑

j

p∗ij =
1
µ∗

i

∑
j

Nij , µ
∗
i =

∑
j

Nij ∀i. (2.9)

Using this for p∗ij we get:

p∗ij =
Nij∑
l Nil

. (2.10)

This is a good point to introduce the robustness:

Definition 2.2: Robustness is a measure of the influence of small perturbations on the
optimal solution.

Since g̃ as a function of Θ is convex, we have a closer look at the second derivative:

∂2g

∂p2
ij

(p∗ij) =
Nij

p2
ij

(p∗ij) =
(
∑

l Nil)
2

Nij
. (2.11)

Thus we can state: The more information we have (thus Nij is large) the more stability we
have in the solution. �

We will need some convergence for stochastic objects, so we define:

Definition 2.3:

1. Xn converges almost surely (a.s.) to X if P[Xn → X] = 1.

2. Xn converges in probability to X if P[|Xn −X| > ε] → 0.

3. Xn converges in distribution to X if E[Xn] → E[X].
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We start by bringing some definitions back in mind:

Definition 3.1: The expectation Eω[X(ω)] can be calculated by

Eω[X(ω)] =
∫

Ω
X(ω)P (dω). (3.1)

The variance of a random variable is defined by

Varω[X(ω)] = E[(X − E[X])(X − E[X])T ]. (3.2)

This is a good point, to repeat the Central Limit Theorem:

Theorem 3.1 Let Xn, Xn : Ω → R be a sequenze of iid random variables with E[Xn] = µ,
Var[Xn] = σ2 for all n. Moreover, let

SN =
1
N

∑N
i=1 Xi − µ

1√
N

σ
. (3.3)

Then Sn
n→∞−→ N (0, 1) in distribution. Moreover, the probability for S∞ to be in an intervall

[a, b) is given by

P[a ≤ S∞ < b] =
1√
2π

∫ b

a
exp

(
−x2

2

)
dx. (3.4)

The second important theorem is the Law of Large Numbers:

Theorem 3.2 Let Xn iid with E[Xn] = µ < ∞ and Var[X] = σ2 < ∞. Then

P

[∣∣∣∣∣ 1
N

N∑
l=1

Xl − µ

∣∣∣∣∣ ≥ ε

]
≤ σ2

Nε2
. (3.5)

Now let Ψ = {1, 2, 3, . . . ,K} be the state space and P the transition matrix for a Markovian
process. Moreover v ∈ RK with 0 ≤ vi ≤ 1 and

∑
i vi = 1 should be a vector of state

probabilites, i.e. this is a distribution. Then we have the sequence of distributions starting
by some v0 given by

vt+1 = P T vt. (3.6)

Translating the fixed point theorem of Banach to our setting, we get:

Theorem 3.3 If the eigenvalue λ = 1 has a geometric size of 1, thus the sub space of the
eigenvectors has dimension 1, then vt t→∞−→ π. Where π is the stationary distribution.

This leads us to the Law of Large Numbers for Markovian processes

Theorem 3.4 Let π be unique and f : Ψ → R. Then

Eπ[f ] =
∑
j∈Ψ

πjf(j). (3.7)

If Eπ[|f |] < ∞, then
1
N

N∑
j=1

f(xj)
N→∞−→ Eπ[f ] (3.8)

almost surely.
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We might be interested in the leaving time, this is the average time we stay in a specific state:

τ(i) = min{t ≥ 0 : Xt0 = i,Xt0+t 6= i} (3.9)

The average leaving time would be:

E[τ(i)] = ∆t
∞∑

k=1

k(1− pii)pk−1
ii (3.10)

where ∆t is the step size we use during the time. We can calculate this by using:

E[τ(i)] = ∆t
∞∑

k=0

pk
ii =

∆t

1− pii
(3.11)

if and only if pii < 1. This is a measure for the metastability of the time series.

Definition 3.2: For x ∈ Ψ, y ∈ Ψ we write x 7→ y if P [Xt = y|X0 = x] > 0 for some t.
Then y is called attainable from x. We write x 7→ y 7→ x as x ↔ y.

We can use this to define communication classes:

Theorem 3.5 Let K be the set of close disjunct communication classes (thus x, y ∈ K ∈
K ⇔ x ↔ y), then λ = 1 is #K times an eigenvalue.

Theorem 3.6 Let C be a close, disjunct communication class and PC with pC,kl = pkl for
k, l ∈ C. Then there exists an irreducible Markovian process with transition matrix PC .
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Definition 4.1: E1, . . . , Ed are called cyclic or periodic classes, if

P[x1 ∈ Ek+1|x0 ∈ Ek] = 1 (4.1)

and Ed+1 = E1.

Example 4.1: (deterministic chain) We have a markov chain with transistion matrix

P =

 0 1 0
1 0 0
0 0 1

 . (4.2)

Then this chain has two communication classes C1 = {1, 2} and C2 = {3}. C1 can be split
in two periodic classes. �

Definition 4.2: If for all cyclic classes E1, . . . , Ed of a Markov chain d = 1 then the chain
is called aperiodic.

Theorem 4.1 The following statements are equivalent:

• P has K eigenvalues with |λ| = 1

• d = K

Theorem 4.2 Frobenius-Perron Let a Markov chain be irreducible and aperiodic, then
λ1 = 1 is a unique eigenvalue and |λi| < 1 for i > 1 and there exists a unique stationary
distribution πT = πT P .

If A,B ⊂ S where S is the state space of a Markov chain, then

P[x1 ∈ B|x0 ∈ A] =
∑
l∈A

P[x1 ∈ B|x0 = l]P[x0 = l|x0 ∈ A] (4.3)

=
∑
l∈A

m∈B

P[x1 = m|x0 = l]︸ ︷︷ ︸
plm

P[x0 = l|x0 ∈ A] (4.4)
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Example 4.2: (stochastic periodic markov chain) Let P be the transition matrix for a
Markov chain with

P =

 1
2 0 1

2
0 1 0
1
2 0 1

2

 . (4.5)

λ = 1 is two times an eigenvalue of this matrix, we have C1 = {2} and C2 = {1, 3}, thus by
exchanging the states 2 and 3 we get the block structure. For this blocks the assumptions of
Frobenius-Perron are satisfied and indeed: λ1 = 1 is unique and π1 = 1 respectively
π2 =

(
1
2 , 1

2

)T are the unique stationary distributions. �

Definition 4.3: Let (Xn)n be a sequence of outputs of a Markov chain, with Xn ∈ {1, 2}
and (µ1, σ1) and (µ2, σ2) two parameter sets. Now let Oi ∼ N (µXi , σ

2
Xi

). This is called a
(Gaussian) Hidden Markov Modell (HMM).
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This time, we will have a closer look to so called Gaussian Mixture Models (GMMs) and
Finite Mixture Models (FMMs). Let µi, θi be sequences of mean and variance for some
gaussian processes. Let fi be the density of N (µi, θi). Now we construct the density function

f =
∑

y

αyfy (5.1)

with
∑

y αy = 1 and 0 ≤ αy ≤ 1. Where fy and αy depend on the random variable Y . For
the Likelyhood operator L we can define the problem as

Θ̃ = arg max
Θ

L[Θ|x0, . . . , xT ] = arg max
Θ

T∏
t=0

P[Xt = xt|Θ] (5.2)

Given this we could use the Loglikelihood L, thus:

Θ̃ = arg max
Θ

T∑
t=0

log

(∑
y

P[Xt = xt|Yt = y, Θ]P[Yt = y]

)
(5.3)

Now we reduce this to the problem with marginal distribution:

Θ̂ = arg max
Θ

log L[Θ|X] = arg max
Θ

log
(∫

Y
P[x0, . . . , xT , y|Θ]dy

)
(5.4)

where Y : Ω → Y. Defining a family of lower bounds B(Θ) with

B(Θ) ≤ log L[Θ, x], ∀Θ (5.5)

we let Θi be the first i elements of this family with

log L[Θ|x] = log P[x0, . . . , xT |Θ] = log
∫
Y

P[x, y|Θ] dy (5.6)

= log
∫
Y

P[X, Y ]
f(y)

f(y) dy (5.7)

= log Ef(Y )

[
P[X, Y ]
f(Y )

]
. (5.8)

Now we use the Jensen inequation to get

log L[Θ|x] ≥ Ef(Y )

[
log

P[X, Y ]
f(y)

]
(5.9)

Theorem 5.1 Jensen inequation Let u : D ⊂ R → R be a convex function then:

E[u(X)] ≥ u(E[X]) (5.10)

This leads us to the formal equation:

LB =
{

Bf (Θ) = Ef(Y )

[
log

P[x, Y |Θ]
f(Y )

]}
(5.11)
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where f is a density function with f : Y → R. This leads to the Expectation-Maximization
(EM) algoritm. This algorithm consists of two steps: Expectation and Maximization. We
have a look at the first step. Here we try to solve the following problem:

Bmax = arg max
Bf∈LB

Bf (Θi) (5.12)

With
∫
Y f(y) dy = 1, therefore we define the Lagrangian

J(f,Θi) = Bf (Θi) + λ

(
1−

∫
Y

f(y) dy

)
. (5.13)

with
dJ

df
= lim

ε→0

J(f + εg)− J(f)
ε

(5.14)

For some testfunction g. We will have a look at the result during the next lecture.
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Last time we defined a family of lower bounds to use the EM-Algorithm. In step one (the
expectation step) we need to solve the following problem:

max
f

Bf (Θ) with
∫
Y

f(y) dy = 1 (6.1)

Thus we use the Lagrangian J to get

J(f,Θ) = Bf (Θ) + λ

(∫
Y

f(y) dy − 1
)

(6.2)

∂J

∂f
= 0 (How do we solve this?) (6.3)

∂J

∂λ
= 0 (6.4)

Equation (6.3) is not a typical problem, here we have to use a variational differential:

∂J

∂f
= lim

ε→0

J(f + εg)− J(f)
ε

= 0 (6.5)

⇒ 0 = λ + log P(x, y|Θ(i))− (1 + log f(Y )) (6.6)

To get the following solution

f∗(y) =
P(x, y|Θ(i))
P(x|Θ(i))

= P(y|x, Θ(i)) (6.7)

Now we use this within our family to get

Bf∗(Θ) =
∫
Y

P(y|x,Θ(i)) log
P(x, y|Θ)

P(y|x,Θ(i))
dy (6.8)

And thus

Bf∗(Θ(i)) =
∫
Y

P(y|x, Θ(i)) log
P(x, y|Θ(i))
P(y|x,Θ(i))

dy (6.9)

=
∫
Y

P(y|x, Θ(i)) log P(x|Θ(i)) dy (6.10)

=
∫
Y

P(y|x,Θ(i)) dy log P(x|Θ(i)) (6.11)

= log P(x|Θ(i)) = log L(Θ(i)|x) (6.12)

Thus, since Bf ≤ log L we have the maximum property. Now we can proceed to the second
step: Our new problem is

arg max
Θ

Bf∗(Θ) = arg max
Θ

∫
y

P(y|x,Θ(i)) log
P(x, y|Θ)

P(y|x,Θ(i))
dy (6.13)

= arg max
Θ

∫
y

P(y|x,Θ(i)) log P(x, y|Θ) dy =: arg max
Θ

Q(i)(Θ) = Θ(i+1)

(6.14)

Theorem 6.1 Let Θ(i) be output of the algorithm above. Then L(Θ(i+1)|x) ≥ L(Θ(i)|x).
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Proof:
log L(Θi+1|x) ≥ Bf (Θ(i+1)) = max

Θ
Bf (Θ) ≥ Bf (Θ(i)) = log L(Θ(i)|x) (6.15)

2

Nevertheless, solving these problems is no trivial task. Let’s have a closer look to the

solutions: If the timesteps are statistical independend we get

f∗ = P(y|x,Θ(i)) =
T∏

t=1

P(yt|x,Θ(i)) =
T∏

t=1

γt(yt) (6.16)

with

P(y|xt,Θ(i)) =
P (xt, y|Θ(i))∑K

y=1 P (xt, y|Θ(i))
= γt(y) (6.17)

then
f∗ = γt(y). (6.18)

Now we might use this for Q(i):

Q(i)(Θ) =
K∑

y=1

γt(y) log P(xt, Yt = y|Θ) (6.19)
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While the theory of the last lectures was for general Mixture Models, we will now have a special
look at Gaussian Mixture Models. Let G(·, µy,Σy) be the density function of N (µy,Σy), thus

G(x, µy,Σy) =
1
z

exp
(
−(x − µy)T Σ−1

y (x − µy)
)

(7.1)

where z is used to normalize the measure. Additionally let

αy = P (Y = y|Θ) (7.2)

with Θ = (µ1, . . . , µK ,Σ1, . . . ,ΣK , α1, . . . , αK). Then we write a Lagrangian:

J(Θ) = Q(i)(Θ) + λ

 K∑
y=1

αy − 1

 (7.3)

and differentiate with respect to Θ and set those to zero.

∂Σ−1
y

J(Θ) =
T∑

t=0

γt(y)(−(xt − µy)(xt − µy)T + ∂Σ−1
y

log(z(Σy))) = 0 (7.4)

∂µyJ(Θ) = −2
T∑

t=0

γt(y)(−(xt − µy)) = 0 (7.5)

∂λJ(Θ) =
K∑

y=1

αy − 1 = 0 (7.6)

∂αyJ(Θ) =
T∑

t=0

γt(y)
αy

− λ = 0 (7.7)

Now we start to solve these equations

µ∗y =
∑

t γtxt∑
t γt

(7.8)

Σ∗
y =

1∑
t γt

∑
t

γt(xt − µ∗y)(xt − µ∗y)
T (7.9)

α∗y =
1∑

y γ(y)

∑
t

γt, γy =
T∑

t=0

γt(y). (7.10)

At this point, the lecture was continued by a computational and graphical example, this will
not be included in this file.
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During this lecture, we will have a look at high-dimensional problems. Therefore we assume
there are some correlations between the different dimensions. Now we want to keep as much
information as possible while reducing the dimensions. Thus let T be a matrix where the
columns define a basis of some submanifold. Moreover, the colums should be orthonormal.
Then we have a look at∑

t

‖(xt − µ)− TT T (xt − µ)‖22 → min
T

, T T T = 1
m×m (8.1)

for some µ. To solve this, we use once more the Lagrangian principle:

L :=
∑

t

‖(xt − µ)− TT T (xt − µ)‖22 +
m∑

i,j=1

λij(T T T − 1
m×m) (8.2)

=
∑

t

‖(xt − µ)− TT T (xt − µ)‖22 + eT λ� (T T T − 1)e (8.3)

Where e is a vector full of ones. Let’s have a look at the first part of the L:

‖(xt − µ)− TT T (xt − µ)‖22 (8.4)

=((xt − µ)− TT T (xt − µ))T ((xt − µ)− TT T (xt − µ)) (8.5)

=((xt − µ)T (xt − µ)− (xt − µ)T TT T (xt − µ)− (xt − µ)T TT T (xt − µ) (8.6)

+ (xt − µ)T TT T TT T (xt − µ)) (8.7)

=((xt − µ)T (xt − µ)− (xt − µ)T TT T (xt − µ) (8.8)

=(xt − µ)T (1− TT T )︸ ︷︷ ︸
=:Q

(xt − µ) (8.9)

Thus

∂L

∂µ
= −2Q

∑
t

(xt − µ) (8.10)

By setting this to zero, we get∑
t

(xt − µ) ∈ Kern(Q) 3 ξ, x̄ =
1
N

∑
t

xt, µ = x̄ + ξ. (8.11)

We need one more derivative:

∂L

∂T
= −2

∑
t

(xt − µ)(xt − µ)T T − 2Tλ (8.12)

Now we set this to zero, too: ∑
t

(xt − µ)(xt − µ)T T = −Tλ (8.13)

For m = 1 this is an eigenvalue problem. Thus we can solve this problem step by step
by solving m eigenvalue problems. Therefore, this approach is called “principle components
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analysis”. Let us have a closer look at this stuff:∑
t

((xt − µ)− TT T (xt − µ))T ((xt − µ)− TT T (xt − µ)) (8.14)

=
∑

t

(xt − µ)T (xt − µ)−
∑

t

trace(T T (xt − µ)(xt − µ)T T ) (8.15)

=
∑

t

(xt − µ)T (xt − µ)− trace(T T
∑

t

(xt − µ)(xt − µ)T

︸ ︷︷ ︸
=Cov

T ) (8.16)

=
∑

t

(xt − µ)T (xt − µ)− trace(T T ΛT ) (8.17)

=
∑

t

(xt − µ)T (xt − µ)− trace(Λ) (8.18)

=
n∑

i=m+1

λi (8.19)
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This time we have a look at autoregressive processes. Therefore let Z = {z1, . . . , zt} with
zi ∈ Rd be a time series. Normally, we are looking for some f : Rd → Rd such that Ẑk+1 =
f(Zk) and ||Ẑk+1−Zk+1|| should be as small as possible. Now we add additional information
to this function, thus Ẑk+1 = f(Zk, Zk−1, . . . , Zk−p). We will use some general assumptions
throughout this lecture:

1. f should be affin multilinear, thus Ẑt = ν +A1zt−1 +A2zt−2 + · · ·+Apzt−p with ν ∈ Rd

and Ai ∈ Rd×d.

2. The error εt = zt − Ẑt ∈ Rd should be white noise, thus εt is a stochastic process with
E[εt] = 0 ∀t and E[εtε

T
t ] = R ∀t and E[εtε

T
s ] = 0∀, s 6= t.

Definition 9.1: A stochastic process Z = {zt} is called a VAR(p)-process (Vector
AutoRegressive), if a process ε = {εt} exists such that

zt+1 = ν + A1zt + A2zt−1 + · · ·+ Apzt−p+1 + εt+1 (9.1)

with εt, ν ∈ Rd and Ai ∈ Rd×d.

There are two different ways to initialize VAR(p)-processes:

1. We assume Z to be stationary (e.g. we started the process at t = −∞).

2. We initialize Z with arbitrary values (z1, . . . , zp).

For now, let p = 1, thus

Zt = ν + A1zt−1 + εt (9.2)

For some given z0 we get

z1 = ν + A1z0 + ε1 (9.3)

z2 = ν + A1(ν + A1 + z0 + ε1) + ε2 = (I + A1)ν + A2
1z0 + A1ε1 + ε2 (9.4)

zt = (I + A1 + · · ·+ At−1
1 )ν + At

1z0 +
t−1∑
k=0

Ak
1εt−k (9.5)

z∞ = lim
t→∞

zt = (I −A1)−1ν +
∞∑

k=0

Ak
1εt−k (9.6)

if and only if σ(A1) < 1, where σ(A1) is the spectral radius of A1.
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Definition 9.2: A VAR(1)-process is called stable, if σ(A1) < 1. This is equivalent to
det(I − sA) 6= 0 for s ≤ 1.

Now we expand this theory to VAR(p)-processes by splitting these into VAR(1)-processes:

Z̄t = [zt, zt−1, . . . , zt−p+1]T , ν̄ = [ν, 0, . . . , 0]T (9.7)

Ā =


A1 . . . Ap

I 0
. . .

...
0 I 0

0

 , ε̄t = [εt, 0, . . . , ]T (9.8)

Z̄t = ν̄ + Āz̄t−1 + ε̄t (9.9)

Thus a VAR(p)-process could be called stable, if σ(Ā) < 1 or det(I−A1s−A2s
2−· · ·−Aps

p) 6=
0 for all s ≤ 1. A stable VAR(p)-process started by t = −∞ will be stationary. How about
prediction?

z̄t+1 = E[zt+1|zt, . . . , zt−p+1] = ν + A1zt + · · ·+ Apzt−p+1 (9.10)

Multi-step prediction works the same way, we simply use the predicted values to calculate
the missing ones recursively. The error is εt+1. For multi-step predictions the errors sum up,
thus:

zt+j − z̄t+j =
j∑

i=1

Aj−1
i εt+i (9.11)

The expectation of the error is always zero, thus the guess is unbiased. Moreover, this is a
minimal MSE-estimator. As a last point, we try to estimate the parameters of the VAR(p)
model. Let Z = {z1, . . . , zT } where the first p elements are used as initial values. We define

Φ := (ν, A1, A2, . . . , Ap) ∈ Rd×(dp+1) (9.12)

Y := (zp+1, zp+2, . . . , zT ) ∈ Rd×(T−p) (9.13)

Xt :=


1
zt
...

zt−p+1

 ∈ Rdp+1 (9.14)

X := (Xp, Xp+1, . . . , XT ) ∈ R(dp+1)×(T−p+1) (9.15)

Thus zt = ΦXt−1 + εt for t > p. Then we get

ztX
T
t−1 = ΦXt−1X

T
t−1 + εtXt−1 (9.16)

E[ztX
T
t−1] = E[ΦXt−1X

T
t−1] (9.17)

The lefthand side of this equations could be estimated by

E[ztX
T
t−1] ≈

1
T − p

T∑
i=p+1

ziX
T
i−1 =

1
T − p

Y XT , (9.18)
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while the righthand side is approximatly

E[ΦXt−1X
T
t−1] ≈

1
T − p

T∑
i=p+1

Xi−1X
T
i−1 =

1
T − p

XXT . (9.19)

Putting these estimators together, we get:

Y XT = ΦXXT ⇒ Φ̂ = Y XT (XXT )−1 (9.20)
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Let Zt ∈ Rn with

Zt+τ =
p∑

i=0

Ai(τ)Zt−iτ + B(τ)εt+τ (10.1)

with Ai(τ), B(τ) ∈ Rn×n, E[εt] = 0 and E[εT
t1εt2 ] = δ(t1 − t2). Then we get

E[Zt+τ ] =
p∑

i=0

Ai(τ)E[Zt−iτ ] (10.2)

Now we multiply the Zt+τ by ZT
t−jτ for j = 0, 1, . . . to see

E[Zt+τZ
T
t−jτ ] =

p∑
i=0

Ai(τ)E[Zt−iτZ
T
t−jτ ]. (10.3)

Definition 10.1: We denote by ρ(t− τ) the auto-covariance. We define

ρ(t− τ) = E[(Zt − E[Zt])(Zτ − E[Zτ ])T ]. (10.4)

A special property of the auto-covariance is ρ(t− τ) = ρ(τ − t).

This allows us to write the equation (10.3) as

ρ((1− j)τ) =
p∑

i=0

Ai(τ)ρ((j − i)τ). (10.5)

This is the Jule-Walker-equation. Now let Zt be an auto-regressive process of order p. There-
fore let

α = [A0, A1, . . . , Ap] ∈ Rn×(p+1)n (10.6)

and

Y T = [Zp+1, . . . , ZT ], (10.7)

XT =

 Zp Zp+1 . . . ZT
...

...
. . .

...
Z0 Z1 . . . ZT−p

 , (10.8)

εT = (εp+1 . . . εT ) (10.9)

Then we can write
Y = Xα + εBT (10.10)

and thus
E[Y −Xα] = E[εBT ] = 0 (10.11)

so we try to solve
||Y −Xα|| → min . (10.12)
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We denote by α̂ so solution of this problem, therefore we get

α̂ = (XT X)−1XT Y (10.13)

For ergodic Zt the (XT X) is just the empiric auto-covariance matrix. If Z is periodic, then
we might get an eigenvalue of zero, thus the problem is no longer solveable. By changing the
problem to

||Y −Xα||+ Γ||α|| → min, (10.14)

we might get better results. Thus we define:

Ỹ = [Y 0] (10.15)

X̃ = [X Γ] (10.16)

Then we can solve the problem ||Ỹ − X̃α|| by using

̂̂α(X̃T X̃)−1X̃T Ỹ = (XT X + ΓT Γ)−1XT Y (10.17)
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