Sfb 1946 A1

Coupled Simulation of Heterogeneous Hydrological Systems: Numerical Modeling of Runoff Generation in Lowland Areas

R. Kornhuber (FU Berlin), E. Bänsch (FU/WIAS Berlin),

Background

The quantification of available water resources in a lowland area is an essential prerequisite for their sustainable use and for assessment of their ecological value.

Fig. 1a Landsat Theme — February (Channel 5/4/3)

Fig. 1b Landsat Theme — June (Channel 5/4/3)

Specific hydrological processes in lowland river systems:

- ullet generation of saturated areas and their space/time variability (Fig. 1a+b)
- water fluxes between groundwater and surface water (Fig. 2a+b)

Existing hydrological models do hardly reflect these heterogeneous processes and are therefore not very suitable for simulation of runoff generation in lowland areas.

Goals

- System understanding of runoff generation processes in a selected lowland catchment
- Simulation based on an existing decoupled model
- Description and quantification of specific processes:
 - fluxes between groundwater and surface water
 - groundwater-dynamics
 - spatial variability of generated saturated areas

Fig. 2a Runoff Generation Processes for lowland areas — wet conditions

Fig. 2b Runoff Generation Processes for lowland areas — dry conditions

The application of the decoupled model will be used to judge the efficiency and advantage of a fully coupled and numerical innovative (advanced) model that is studied in the Kornhuber and in the Bänsch group.

Research Strategy

- Description of water cycle by use of:
 - experimental investigations, e.g. water table fluctuations (Fig. 3)
 - simulations based on process—oriented hydrological models
- Providing of initial and boundary conditions and the variability of certain processes for model-input (based on in-situ measurements of meteorological and hydrological variables and their variability)

Fig. 3 Groundwater dynamics related to the distance of the river (A: ca. 200 m from river, B: ca. 4.8 km from river)

- Extension and adaptation of an existing hydrological numerical model (composed of simplified modules for the vadose zone)
- Coupling of a 2D-horizontal finite-difference groundwater model to the surface module in a one-way mode

Work Plan

- Identification of a selected lowland catchment
- Providing of spatial data (digital terrain data, vegetation cover, soil type, channel geometry etc.) and time series of a variety of processes (e.g. precipitation and other meteorological variables, groundwater levels, surface runoff levels and discharge)

Fig. 4 Examples of areal catchment data:

- A) Digital Elevation Model and River + Channel System
- B) Variability of saturated areas (red: saturation always possible pink: saturated only in spring)
- Additional measurement devices at some locations
- Parameter identification and parameter sensitivity studies based on the collected data
- Implementation of relevant hydrological processes in the model system based on process studies (WaSIM-ETH, MOD-FLOW, Hydrain)

Fig. 5
Runoff generation processes represented in a hydrological model