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Summary. We investigate Dirichlet–Neumann and Robin methods for a quasilin-
ear elliptic transmission problem in which the nonlinearity changes discontinuously
across two subdomains. In one space dimension we obtain convergence theorems by
extending known results from the linear case. They hold both on the continuous and
on the discrete level. From the proofs one can infer mesh-independence of the con-
vergence rates for the Dirichlet–Neumann method, but not for the Robin method.
In two space dimensions we consider numerical examples which demonstrate that
the theoretical results might be extended to higher dimensions. Moreover, we inves-
tigate the asymptotic convergence behaviour for fine mesh sizes in these test cases
quantitatively. We observe a good agreement with many known linear results, which
is remarkable in view of the nonlinear character of the problem.

1 Introduction

The aim of this paper is to investigate the convergence behaviour of Dirichlet–
Neumann and Robin methods for a quasilinear elliptic transmission problem
and to compare it with well-known facts in the linear case. Theoretically, the
linear convergence results in 1D can be carried over to the nonlinear case.
Numerically, we find that the convergence behaviour in two nonlinear test
cases is in good agreement with theoretical results in linear cases.

We consider the following setting. Let Ω ⊂ R
n be a bounded Lipschitz

domain divided into two non-overlapping subdomains Ω1, Ω2 with the inter-
face Γ = Ω1 ∩ Ω2, see Figure 1. The outer normal of Ω1 is denoted by n.
Furthermore, let f ∈ L2(Ω) and k1, k2 ∈ L∞(R) with ki ≥ α > 0 for i = 1, 2.
In strong form the domain decomposition problem that we aim at reads:

Find a function p in Ω, pi := p|Ωi
∈ H1(Ωi), i = 1, 2, p|∂Ω = 0, such that
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matik für Innovationen in Industrie und Dienstleistungen”.
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Fig. 1. Non-overlapping partition of the domain Ω

− div(ki(pi)∇pi) = f on Ωi, i = 1, 2 (1)

p1 = p2 on Γ (2)

k1(p1)∇p1 · n = k2(p2)∇p2 · n on Γ . (3)

For certain nonlinearities k1 and k2, this problem can be interpreted as
a stationary nondegenerate Richards equation without gravity in a heteroge-
neous setting with two domains Ω1 and Ω2, that contain different soil types
[4, Sec. 3.3.2].

A powerful tool to treat problems of this kind is to introduce new variables
ui, i = 1, 2, by Kirchhoff transformations κi (cf. [1]), defined by

ui(x) := κi(pi(x)) =

∫ pi(x)

0

ki(q) dq a.e. in Ωi . (4)

This entails ki(pi)∇pi = ∇ui and, therefore, problem (1)–(3) can be rewritten
in the following form:

Find a function u in Ω, u|Ωi
= ui ∈ H1(Ωi), i = 1, 2, u|∂Ω = 0, such that

−∆ui = f on Ωi, i = 1, 2 (5)

κ−1
1 (u1) = κ−1

2 (u2) on Γ (6)

∇u1 · n = ∇u2 · n on Γ . (7)

As a consequence, in case of k1 6= k2, we obtain a discontinuity of the
primal variables and continuity of the dual variables across the interface, which
is just converse in the original problem. Above all, though, the problems (5)
on Ω1 and Ω2 are linear, and the nonlinearity of the problem is entirely
contained in the interface equation (6). This consequence of the Kirchhoff
transformation makes both the analysis and the numerical treatment of the
transmission problem easier.

In the linear case, where ki, i = 1, 2, are constant functions, Dirichlet–
Neumann and Robin methods are well-understood iteration procedures for
the treatment of non-overlapping elliptic domain decomposition problems,
see, e.g., [12], [14] and [11]. We introduce nonlinear versions of these meth-
ods applied to (1)–(3) or (5)–(7), respectively, without using linearization. In
one space dimension, both on the continuous and on the discrete level, we
obtain convergence results by extending approaches used in the linear case,
see [8] and [4]. We also obtain mesh-independent convergence rates for the



Convergence behaviour of Dirichlet–Neumann and Robin methods 3

damped Dirichlet–Neumann method, but not for the Robin method, just as
in the linear case. However, these generalizations of the convergence proofs
for the linear setting do not work in dimensions higher than one. Therefore,
we investigate the qualitative and quantitative convergence properties in 2D
numerically.

Concerning the nonlinear Dirichlet–Neumann method, we observe asymp-
totically mesh-independent optimal convergence rates for a certain mesh-
independent optimal damping parameter. Moreover, if the nonlinearities k1

and k2 are of different orders of magnitude, the Dirichlet–Neumann method
converges considerably faster than if they are of the same order of magnitude.
Strangely enough, this observation can be made plausible by investigations
that have been carried out on corresponding settings for the Robin method
in the linear case, see [10].

As to the nonlinear Robin method, we observe degenerating optimal con-
vergence rates and parameters if the two Robin parameters involved in the
method coincide. What is more, we can even establish formulas, which quan-
titatively describe the asymptotic behaviour of this degeneracy, and which are
very similar to the ones, that have been discovered for the Robin method ap-
plied to the linear case, cf. [13]. Results from the theory of optimized Schwarz
methods in linear cases (see, e.g., [11]) show, that the convergence speed can
be further increased by allowing the two Robin parameters to be different. In-
deed, we obtain a better asymptotic behaviour for our test cases if we choose
the two parameters independently from each other. Finally, if the nonlin-
earities k1 and k2 are of different orders of magnitude, the optimized Robin
method with different parameters converges quite fast with mesh-independent
convergence rates, which, again, reproduces the situation in the linear case as
considered in [10].

Altogether, the observations we made in our nonlinear numerical examples,
resemble strikingly well the proved results for linear cases.

2 Transmission problem with jumping nonlinearities

In this section we introduce some further notation and give weak formulations
of the problems (1)–(3) and (5)–(7). Furthermore, we point out the equivalence
of these weak formulations with two versions of a Steklov–Poincaré interface
equation.

In the following we use the notation and the definitions given in the intro-
duction. In addition, cf. [14], we introduce (for i = 1, 2) the spaces

Vi := {vi ∈ H1(Ωi) | vi|∂Ω∩∂Ωi
= 0}, V 0

i := H1
0 (Ωi), Λ := H

1/2
00 (Γ )

and for wi, vi ∈ Vi the forms

ai(wi, vi) := (∇wi,∇vi)Ωi
, bi(wi, vi) := (k(wi)∇wi,∇vi)Ωi

,
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where (·, ·)Ωi
stands for the L2 inner product on Ωi. The norm in Λ will be

denoted by ‖ · ‖Λ.
Let Ri, i = 1, 2, be any continuous extension operator from Λ to Vi. Then

the variational formulation of problem (1)–(3) reads as follows:
Find pi ∈ Vi, i = 1, 2, such that

bi(pi, vi) = (f, vi)Ωi
∀vi ∈ V 0

i , i = 1, 2 (8)

p1|Γ = p2|Γ in Λ (9)

b1(p1, R1µ) − (f, R1µ)Ω1
= −b2(p2, R2µ) + (f, R2µ)Ω2

∀µ ∈ Λ . (10)

Now, we understand the Kirchhoff transformations κi on H1(Ωi) in (4) as
defined pointwise almost everywhere on Ωi, i = 1, 2. Then problem (8)–(10)
is transformed into:

Find ui ∈ Vi, i = 1, 2, such that

ai(ui, vi) = (f, vi)Ωi
∀vi ∈ V 0

i , i = 1, 2 (11)

κ−1
1 (u1|Γ ) = κ−1

2 (u2|Γ ) in Λ (12)

a1(u1, R1µ) − (f, R1µ)Ω1
= −a2(u2, R2µ) + (f, R2µ)Ω2

∀µ ∈ Λ . (13)

For details concerning the Kirchhoff transformations in this sense, i.e., in
the sense of superposition operators on H1(Ωi), see [5], where one can also
find a proof of

Proposition 1. Problems (8)–(10) and (11)–(13) are equivalent.

Now, for a given λ ∈ Λ (and omitting brackets for operators applied to λ
from now on), we consider the harmonic extensions Hi(κiλ) ∈ Vi of the Dirich-
let boundary value κiλ on Γ for i = 1, 2. With these operators and denoting
by 〈·, ·〉 the duality pairing between Λ′ and Λ, we recall that the Steklov–
Poincaré operators Si : Λ → Λ′ are defined by

〈Siη, µ〉 = ai(Hiη, Hiµ) ∀η, µ ∈ Λ , i = 1, 2 .

Furthermore, let Gif be the solutions of the subproblems (11) with homoge-
neous Dirichlet data (Gif)|∂Ωi

= 0. We define the functional χ = χ1 +χ2 ∈ Λ′

by
〈χi, µ〉 = (f, Hiµ)Ωi

− ai(Gif, Hiµ) ∀µ ∈ Λ , i = 1, 2 .

Now, it is easy to prove the following equivalence result, see [8].

Proposition 2. By (4) and the relation

ui = Hiκiλ + Gif , i = 1, 2 ,

between λ and ui, the problems (8)–(10) and (11)–(13) are equivalent to the
Steklov–Poincaré interface equation

find λ ∈ Λ : (S1κ1 + S2κ2)λ = χ (14)



Convergence behaviour of Dirichlet–Neumann and Robin methods 5

or, equivalently,

find λ2 ∈ Λ : (S1κ1κ
−1
2 + S2)λ2 = χ (15)

if we set λ2 = κ2λ.

3 Nonlinear Dirichlet–Neumann and Robin methods

In this section we give a weak formulation of the nonlinear Dirichlet–Neumann
and Robin methods that we apply to problem (11)–(13). We make clear
what kind of iteration procedures these methods provide in terms of Steklov–
Poincaré operators for the treatment of the interface equations. This will pave
the way for proving the convergence of the methods in 1D by the application
of Banach’s fixed point theorem. All these considerations are closely connected
to and can be infered from the linear theory, cf. [14] and [9]. We restrict our-
selves to present the general line of thought and the main results. The proofs
that we omit here can be found in [4] and will be published in detail and more
general in further papers, see [6] and [7].

3.1 The methods and their Steklov–Poincaré formulations

We start with the nonlinear Dirichlet–Neumann method. Since its analysis and
its numerical treatment is carried out in transformed variables, we present it
for the domain decomposition problem (11)–(13). It reads as follows.

Given λ0
2 ∈ Λ, find successively uk+1

1 ∈ V1 and uk+1
2 ∈ V2 for each k ≥ 0

such that

a1(u
k+1
1 , v1) = (f, v1)Ω1

∀v1 ∈ V 0
1 (16)

uk+1
1|Γ = κ1κ

−1
2 (λk

2) in Λ (17)

and then

a2(u
k+1
2 , v2) = (f, v2)Ω2

∀v2 ∈ V 0
2 (18)

a2(u
k+1
2 , H2µ) − (f, H2µ)Ω2

= −a1(u
k+1
1 , H1µ) + (f, H1µ)Ω1

∀µ ∈ Λ . (19)

Then, with some damping parameter θ ∈ (0, 1), the new iterate is defined by

λk+1
2 := θ uk+1

2|Γ + (1 − θ)λk
2 . (20)

This iteration procedure can be formulated equivalently for the original
transmission problem (8)–(10). However, for the analysis (cf. [4, Sec. 3.3.2/3]),
it is necessary to carry out the damping of the iterates in the transformed
space. This is also reflected by the following link to the Steklov–Poincaré
equation (15). Since a linear preconditioner seems to be necessary in this
proposition, an analogous result for the symmetric equation (14), i.e., for
untransformed variables, does not appear to be feasible.
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Proposition 3. The damped Dirichlet–Neumann algorithm (16)–(20) applied
to (11)–(13) is a preconditioned Richardson procedure for the nonlinear
Steklov–Poincaré equation (15) with S2 as a preconditioner. Concretely, the
iteration is given by the operator Tθ : Λ → Λ defined by

Tθ : λk
2 7→ λk+1

2 = λk
2 + θS−1

2 (χ − (S1κ1κ
−1
2 + S2)λ

k
2) . (21)

It is clear that we reobtain the situation for the linear case if we set
κ1 = κ2 = id. This also applies to the nonlinear Robin method to which
we turn now. In contrast to the Dirichlet–Neumann method, the Robin iter-
ation procedure is related to the symmetric Steklov–Poincaré equation (14),
and it comes with two acceleration parameters γ1, γ2 > 0 rather than one.
But just as the former, the latter method can be formulated equivalently for
both problems (8)–(10) and (5)–(7). For the transformed problem (5)–(7) it
reads:

Given a u0
2 ∈ V2 find successively uk+1

1 ∈ V1 and uk+2
2 ∈ V2 for k ≥ 0 such

that
a1(u

k+1
1 , v1) = (f, v1)Ω1

∀v1 ∈ V 0
1 (22)

a1(u
k+1
1 , R1µ) − (f, R1µ)Ω1

+ γ1(κ
−1
1 uk+1

1 , µ)Γ =

− a2(u
k
2 , R2µ) + (f, R2µ)Ω2

+ γ1(κ
−1
2 uk

2 , µ)Γ ∀µ ∈ Λ (23)

and then
a2(u

k+1
2 , v2) = (f, v2)Ω2

∀v2 ∈ V 0
2 (24)

a2(u
k+1
2 , R2µ) − (f, R2µ)Ω1

+ γ2(κ
−1
2 uk+1

2 , µ)Γ =

− a1(u
k+1
1 , R1µ) + (f, R1µ)Ω1

+ γ2(κ
−1
1 uk+1

1 , µ)Γ ∀µ ∈ Λ . (25)

As for the Dirichlet–Neumann method above, the following proposition
provides a formulation of the Robin method in terms of Steklov–Poincaré
operators for the solution of the corresponding Steklov–Poincaré equation.
The result (cf. [4, Sec. 3.4.2]) generalizes linear theory in [9, Sec. 5.4]. We use
the notation

〈Iη, µ〉 = (η, µ)Γ ∀η, µ ∈ Λ .

Proposition 4. The Robin iteration procedure (22)–(25) applied to (11)–(13)
is equivalent to the Alternating Direction Iterative (ADI) method applied to
the Steklov–Poincaré equation (14). With a given λ0

2 ∈ Λ the ADI method
means solving

〈(γ1I + S1κ1)λ
k+1
1 , µ〉 = 〈χ + (γ1I − S2κ2)λ

k
2 , µ〉 ∀µ ∈ Λ

〈(γ2I + S2κ2)λ
k+1
2 , µ〉 = 〈χ + (γ2I − S1κ1)λ

k+1
1 , µ〉 ∀µ ∈ Λ

successively for k ≥ 0. The equivalence to the Robin method is given in the
sense of Proposition 2, i.e., by
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uk
i = Hiκi(λ

k
i ) + Gif ⇐⇒ λk

i = κ−1
i (uk

i|Γ ) ∀k ≥ 0 , i = 1, 2 , (26)

with the iterates uk
i from (22)–(25). The operator

Tγ1,γ2
: Λ → Λ , Tγ1,γ2

: λk
2 7→ λk+1

2 (27)

providing the ADI method and, equivalently, the Robin iteration, is given by

λk+1
2 = (γ2I +S2κ2)

−1(χ+(γ2I −S1κ1)(γ1I +S1κ1)
−1(χ+(γ1I −S2κ2)λ

k
2)) .
(28)

3.2 Convergence results

The approach for proving the convergence of the methods is based on con-
sidering the iteration operators Tθ in (21) and Tγ1,γ2

defined in (27), (28),
compare [4, Sec. 3.3/3.4]. First, it is not hard to see that a fixed point λ of
the iterative scheme (21) or of the scheme given by (28) is a solution of the
Steklov–Poincaré equation (15) or (14), respectively. Secondly, it is possible to
extend theorems for the linear case and find conditions to be imposed on Tθ

and Tγ1,γ2
, respectively, so that Banach’s fixed point theorem can be applied.

This provides convergence of the iterative schemes as well as well-posedness
of the domain decomposition problems.

The results look quite similar for the Dirichlet–Neumann and for the Robin
method although the proofs are somewhat different. We give sufficient condi-
tions guaranteeing convergence which are almost the same for both methods.
However, for the Dirichlet–Neumann method they entail that Tθ : Λ → Λ is
a contraction if θ is small enough, whereras for the Robin method, only the
composition of Tγ1,γ2

: Λ → Λ with a continuous transformation of Λ can
be proved to be a contraction, for equal but otherwise arbitrary γ1 and γ2.
Since Tθ is a contraction, we obtain theoretical convergence rates in [0, 1) for
the Dirichlet–Neumann method on a continuous level, which turn out to be
mesh-independent, i.e., they also apply to a discrete version of it. Since we do
not know whether Tγ1,γ2

is a contraction, this cannot be proved for the Robin
method, and, even in linear cases, it is not true for the Robin iteration.

Again, we start with a convergence theorem for the Dirichlet–Neumann
method, which is a generalization of a linear result to be found in [14,
pp. 118/119].

Theorem 1. Let β2 and α2 be the positive constants such that

〈S2η, µ〉 ≤ β2‖η‖Λ‖µ‖Λ ∀η, µ ∈ Λ , 〈S2η, η〉 ≥ α2‖η‖
2
Λ ∀η ∈ Λ

is satisfied, cf. [14, pp. 8/9]. Let κ1κ
−1
2 : Λ → Λ and, therefore, S1κ1κ

−1
2 be

Lipschitz continuous, i.e., there is a constant β1 > 0 such that

〈S1κ1κ
−1
2 η − S1κ1κ

−1
2 µ, λ〉 ≤ β1‖η − µ‖Λ‖λ‖Λ ∀η, µ, λ ∈ Λ . (29)
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Suppose there exists a constant κ∗ > 0 such that

〈S1κ1κ
−1
2 η − S1κ1κ

−1
2 µ, η − µ〉 ≥

(κ∗

2
− α2

)

‖η − µ‖2
Λ ∀η, µ ∈ Λ . (30)

Then (15) has a unique solution λ2 ∈ Λ. Furthermore, for any given λ0
2 ∈ Λ

and any θ ∈ (0, θmax) with

θmax :=
κ∗α2

2

β2(β1 + β2)2
,

the sequence given by (21) converges in Λ to λ2. Theoretically optimal (i.e.,
minimal) convergence rates ρopt for corresponding optimal damping parame-
ters θopt are given by

θopt =
θmax

2
and ρopt = 1 −

κ∗2α2
2

4β2
2(β1 + β2)2

= 1 −
κ∗

2β2
θopt . (31)

The assumptions in Theorem 1 are satisfied in 1D.

Theorem 2. In one space dimension, κ1κ
−1
2 : Λ → Λ is Lipschitz continuous,

i.e., (29) holds, and S1κ1κ
−1
2 : Λ → Λ′ is a strongly monotone operator, i.e.,

(30) even holds with a κ∗ > 2α2.

We do not know if the assertion of Theorem 1 also holds in higher dimen-
sions. However, there are counterexamples of operators S1κ1κ

−1
2 : Λ → Λ′

in 2D, that are not monotone, see [4, Sec. 3.3.4]. If Theorem 1 can be applied,
it also has consequences for the untransformed problem (8)–(10) and for a
discrete version of the transformed problem (11)–(13).

Theorem 3. If the assumptions in Theorem 1 are satisfied, then problem
(8)–(10) is well-posed. Moreover, we have pk

i → pi, k → ∞, in Vi for the
iterates

pk
i = κ−1

i (Hiκiλ
k + Gif) ∈ Vi , i = 1, 2 ,

on Ωi which correspond via λk = κ−1
2 λk

2 , k ≥ 0, to the iterates (λk
2)k≥0 of the

Dirichlet–Neumann scheme (16)–(20).
In addition, we assume that the problems in (11) and (13) are discretized by

piecewise linear finite elements and that in (12) piecewise linear interpolation
is applied to the function after having been Kirchhoff–transformed in the nodes
of the interface. Then Theorem 1 can also be applied to this discretization with
the same constants and, thus, leads to mesh-independent optimal convergence
rates and optimal damping parameters.

For proving convergence of the Robin method (generalizing the linear re-
sult in [9, pp. 99/100]) we need S1κ1, S2κ2 : Λ → Λ′ to be Lipschitz continuous
and strongly monotone, which, by Theorem 2, is satisfied in 1D. Note that
we do neither obtain convergence rates on the continuous level nor mesh-
independence of optimal rates or parameters for the discretized problem.
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Theorem 4. Let γ1 = γ2 = γ > 0 and Ω ⊂ R be one-dimensional. Then for
any initial iterate λ0

2 ∈ Λ the operator Tγ = Tγ1,γ2
defined by (27), (28) pro-

vides a sequence (λk
2)k≥0 which converges in Λ to the unique fixed point of Tγ .

Moreover, we have convergence of the sequences (uk
i )k≥1 and (κ−1

i uk
i )k≥1 for

i = 1, 2 given by (26) to the solutions of (11)–(13) and (8)–(10), respectively.
For the discretization of problem (11)–(13) in Theorem 3 the corresponding

discrete version of the Robin method converges to the discrete solution.

4 Parameter studies for the Dirichlet–Neumann method

The purpose of this section is to apply our nonlinear Dirichlet–Neumann
method (16)–(20) on a discrete level to two concretely specified cases of the
transmission problem in two space dimensions. In the next section we ap-
ply the nonlinear Robin method to the same test cases. Therefore, we first
give a detailed description of these two examples here. After that, we present
the numerical results that we obtained for the application of the Dirichlet–
Neumann method. A discussion and an interpretation of the results as well as
a comparison to the linear case follows.

We consider the transmission problem (1)–(3) on the unit Yin Yang do-
main Ω within a circle of radius 1 as shown in Figure 2 where one can see the
coarse grid corresponding to level 1 of our calculations. We denote the white
subdomain together with the grey circle B1 by Ω1 and the grey subdomain
with the white circle B2 by Ω2. Furthermore, we select the data

f(x) = fi on Bi , i = 1, 2 , f(x) = 0 elsewhere ,

and the nonlinearities

ki(pi) =

{

Ki pb,i max{(−pi)
−3λi−2, c} for pi ≤ −1

1 for pi ≥ −1

with certain parameters Ki, pb,i, λi and a c > 0. These values are specified in
Tables 1 and 2 for the two test cases that we want to consider.

Our choice represents a nondegenerate stationary Richards equation with-
out gravity in a heterogeneous setting with two different soil types in Ω1

and Ω2 (see [15, Table 5.3.2]) and values f1 and f2 which can be regarded
as a sink and a source, respectively. In Case I, which we call mildly hetero-
geneous, we only alter one soil parameter λ1 6= λ2 when we go from one
subdomain to the other. In the strongly heterogeneous case II, we change all
parameters, in particular, the coefficients in front of the Laplacian have dif-
ferent orders of magnitude. In addition, with c = 0.01 the ellipticity constant,
which enforces convergence, is more extreme in Case II than in Case I, where
we choose c = 0.1.

Starting with the coarse grid (level 1) we successively carry out uniform
refinement steps in order to obtain finer meshes, i.e., higher (refinement) levels.
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Ωi fi λi pb,i Ki

i = 1 (fine clay) 1.0 0.1 −1.0 2.0 · 10−3

i = 2 (coarse sand) −1.0 1.0 −1.0 2.0 · 10−3

Table 1. Case I: mildly heterogeneous case

Ωi fi λi pb,i Ki

i = 1 (clay) 5.0 · 10−5 0.165 −0.373 1.67 · 10−7

i = 2 (sand) −2.5 · 10−3 0.694 −0.0726 6.54 · 10−5

Table 2. Case II: strongly heterogeneous case

For the discretization of (11)–(13) we use piecewise linear finite elements and
apply the nonlinear transformation in (12) only in the nodes of the grid (as
described in Theorem 3). Figures 3 and 4 show the solutions p on Ω for the
mildly and the strongly heterogeneous case, respectively. They are calculated
on level 6 with 235,000 nodes and have a range of [−56.1, 0.9] in Ω1 and
[−7.3, 5.7] in Ω2 for Case I and [−56.1, 0.0] in Ω1 and [−36.2, 3.0] in Ω2

for Case II. The crater-like parts of the graphs (indicated by a black line in
Figure 3) indicate the nonlinear (hydrologically, the unsaturated) regime of
the equation.

For Case I, Figure 5 shows average convergence rates ρ of the Dirichlet–
Neumann iteration with respect to the damping parameter θ on the first six
levels, from the rightmost curve representing the first level to the leftmost
curve corresponding to the 6th level. The convergence rates are given with
respect to the transformed variables and are measured in the energy norms
induced by the stiffness matrices on the relevant finite element spaces. Starting
with the initial iterates u0

i = 0 for i = 1, 2, the Dirichlet–Neumann iteration is
carried out until the relative error is below 10−12. Each of the local problems
on the subdomains is solved by 50 iterations of a linear multigrid which leads
to numerically exact solutions. For the implementation we used the numerics
environment dune, cf. [3], and the grid manager from UG, see [2].

In Figure 5 one can see that, as on the continuous level in Theorem 1,
one obtains convergence if the damping parameter θ ∈ (0, 1) is below a
threshold θmax, and one observes optimal (i.e., minimal) convergence rates
ρopt for a certain θopt. Both the threshold and the optimal parameter are
level-dependent and decrease for higher levels. The corresponding optimal
rates increase correspondingly. However, one also observes a stabilization of
the optimal rates and the optimal damping parameters for higher levels. Con-
cretely, the damping parameter θopt ≈ 0.17 leads to the optimal convergence
rates ρopt ≈ 0.77 on levels 5, 6 and 7 (see Figures 6 and 7). This indicates that
mesh-independence is obtained in this two-dimensional case as was proved for
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Fig. 2. Yin Yang domain Ω

Fig. 3. Solution p on Ω in
Case I (mildly heterogeneous)

Fig. 4. Solution p on Ω in
Case II (strongly heterogeneous)
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Fig. 5. ρ vs. θ on levels 1 (rightmost
curve) to 6 (leftmost curve) in Case I
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Fig. 6. θopt vs. level in Case I
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Fig. 7. ρopt vs. level in Case I

1D-cases (Theorem 3) and is known in linear settings (see [14, pp. 122–128]
for additional quantitative results). Finally, we have the mesh-independent
relationship ρopt ≈ 1 − 7

5θopt on all levels 1 to 7, which reflects (31).
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Fig. 8. θopt vs. level in Case II
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Fig. 9. ρopt vs. level in Case II

In principle, the situation for the strongly heterogeneous case II is the
same as for Case I, see Figures 8 and 9. Again, optimal convergence rates cor-
responding to optimal damping parameters seem to stabilize asymptotically
for high levels, but now we need considerably less damping θopt ≈ 0.85 for
much better optimal rates ρopt ≈ 0.15 (on levels 5, 6 and 7) than in Case I.
In addition, even for overrelaxation, i.e., for parameters θ > 1, convergence
can be observed (concretely, we obtain θopt = θmax/2 as in (31)). In con-
trast to Case I, the convergence rates remain stable even if we choose a much
smaller c > 0, e.g., c = 10−100.

A possible reason for this considerably improved convergence behaviour
of the Dirichlet–Neumann method might be the big jumps of the diffusion
coefficients K1 and K2 in Case II, see Table 2. Surprisingly, the numerical
results in the next section, where we present the convergence behaviour of
the nonlinear Robin method for the two test cases, will shed some light on
this phenomenon, again supported by linear theory. Here, we want to dis-
cuss this issue heuristically, regardless of the linear or nonlinear nature of
the problem, by considering the corresponding constants in Theorem 1. Mo-
tivated by K1 ≪ K2 in Table 2, we assume that α2 ≃ β2 have the same
order of magnitude which is “big” compared to α1 ≃ β1 (where we assume
κ∗/2 − α2 =: α1 > 0 in (30)). Then, considering (31), we estimate roughly

ρopt = 1 −
κ∗

2β2
θopt = 1 −

α1 + α2

β2
θopt ≃ 1 − θopt

which, indeed, is the relation between θopt and ρopt on levels 1 to 7 in Figures 8
and 9. With the same arguments we find that

θopt = α2
α1 + α2

(β1 + β2)2
·
α2

β2

has the order of magnitude of α2. Indeed, if we exchange the Dirichlet-
subdomain Ω1 and the Neumann-subdomain Ω2, we only obtain convergence
for very small damping parameters in Case II, whereas we do hardly see any
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change in Case I. Also, the convergence rates are very bad for Case II af-
ter exchanging domains. This, however, cannot be inferred from the formula
in (31), but by numerical stability: One can argue that the smaller K1 is,
the better the Dirichlet problem is conditioned on Ω1 (with respect to the
Dirichlet value), and the bigger K2 is, the better the Neumann problem is
conditioned on Ω2 (with respect to the Neumann value). For more illumi-
nating theory on linear cases with discontinuous coefficients, which confirms
some of our findings in Case II, consult [10, p. 97]. Altogether, in such asym-
metric cases, the asymmetry of the Dirichlet–Neumann method reveals itself
dramatically.

5 Parameter studies for the Robin method

In this last section we present the numerical results that we obtained by ap-
plying the nonlinear Robin method (22)–(25) to the two test cases introduced
in Section 4. In contrast to the Dirichlet–Neumann method, this leads to
four different parameter studies. For both cases we first consider the Robin
method with one Robin parameter γ = γ1 = γ2, for which our convergence
result (Theorem 4) in 1D is valid, and secondly, we investigate the situation
with different γ1 and γ2. Another difference between the Robin iteration and
the Dirichlet–Neumann iteration is the nonlinear nature of each subproblem
(22)–(23) and (24)–(25), for the solution of which we use a monotone multi-
grid method, see [4, Sec. 3.4.5]. The latter is stopped if the relative error of
succeeding iterates in the energy norm drops below 10−12. Otherwise, we use
the same stopping criterion and average convergence rates as for the Dirichlet–
Neumann method above.

Using the Robin iteration with γ = γ1 = γ2, we find that the numerical re-
sults of the two cases are virtually the same. Therefore, we only present Case II
here. As one can see (on the logarithmic scale) in Figure 10, there are cer-
tain ranges for the Robin parameter γ on each level 1 to 6, where convergence
rates are bounded away from 1. This is remarkable since Theorem 4 guarantees
convergence for all γ > 0 in 1D. Furthermore—as for the Dirichlet–Neumann
method—there is an optimal convergence rate ρopt obtained for an optimal
γopt on each level. However—in contrast to the Dirichlet–Neumann method—
these optimal rates and the corresponding parameters seem to degenerate
rather than become asymptotically mesh-independent, compare Figures 12
and 13. The situation in Case I is almost the same as in Case II. However, the
range of Robin parameters, for which an acceptable convergence speed is ob-
served in the numerics, is about 104 times bigger than in Case II. Therefore, a
good choice of γ seems to be correlated to the factor in front of the Laplacian
(compare (23)), which is by some orders of magnitude bigger in Case I than
in Case II.

In convergence proofs for the Robin method on the continuous level, as
in the original [12], one usually does not derive convergence rates (compare
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Fig. 10. ρ vs. γ on levels 1 (leftmost)
to 6 (rightmost) for γ1 = γ2 in Case II
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Fig. 11. ρopt vs. level for
γ1 6= γ2 in Case II
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γ1 = γ2 in Case II

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Fig. 13. ρopt vs. level for
γ1 = γ2 in Case II

Section 3.2). This is because, usually, they are just not available. On the con-
trary, degeneracy of convergence rates is observed and proved on the discrete
level for fine mesh sizes. In the world of optimized Schwarz methods the latter
can even be formulated quantitatively as asymptotic convergence results. For
example, in linear cases the asymptotic behaviour

γlin
opt = O(h−1/2) and ρlin

opt = 1 −O(h1/2) (32)

of the optimal parameters and convergence rates with respect to the mesh
size h is known for quite general domains, see [13]. Now, if we investigate
the asymptotics in the nonlinear case II, displayed in Figures 12 and 13 with
respect to h, we find

γopt = O(h−0.45) and ρopt = 1 −O(h0.44) , (33)

i.e., we do not only observe an asymptotic behaviour of a similar kind as in
the linear case, but even with similar exponents. The situation for Case I is
virtually the same.

The convergence speed of the Robin method can be further increased by
allowing the Robin parameters γ1 and γ2 to be different. We have carried out
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Fig. 15. ρ (height) vs. γ1 and γ2

(x- and y-axes) on level 4 for Case II

extensive numerical parameter studies for the performance of the nonlinear
Robin method in both our cases on levels 1 to 8. Figures 14 and 15 shall
serve as examples of the results we obtained on the 4th level in Case I (34,000
parameter pairs in a colour plot) and in Case II (77,000 parameter pairs in a
height plot), respectively. First of all, in both graphics, which contain the case
γ = γ1 = γ2 on the diagonal, one can clearly see that the convergence speed
can be increased by an appropriate choice of different Robin parameters.

Now, however, the situations in Case I and in Case II are completely dif-
ferent. We start with considering Case I, where the slopes of the nonlinearities
in the subdomains are different but not their order of magnitude. Here, we
observe that the convergence rates are nearly symmetric with respect to the
diagonal γ1 = γ2 and that two local minima occur off the diagonal—a left
(global) one and a right one in Figure 14, which provide almost the same con-
vergence rate,and for both of which γ1,opt and γ2,opt are different. Although
the convergence speed can be increased by choosing different instead of equal
Robin parameters, asymptotically we still obtain degenerating optimal pa-
rameters and rates. However, we observe a weaker mesh-dependence of the
convergence rates than for γ1 = γ2 in (33). Concretely, we find the asymp-
totic behaviour

γ1,opt = O(h−0.45) , γ2,opt = O(h−0.41) and ρopt = 1 −O(h0.39) (34)

for the right minima and

γ1,opt = O(h−0.37) , γ2,opt = O(h−0.55) and ρopt = 1 −O(h0.34) (35)

for the left (asymptotically global) minima.
As before in (32), our observations (34), (35) in the nonlinear case I can

be compared to known results from the linear theory of optimized Schwarz
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methods. In [11, p. 17] the asymptotic behaviour of different optimized Robin
parameters and corresponding convergence rates has been derived for a linear
equation on R

2 decomposed into two half planes. The asymptotics is given by
the formulas

γlin
1,opt = O(h−1/4) , γlin

2,opt = O(h−1/4) and ρlin
opt = 1 −O(h1/4) . (36)

A comparison with (36) shows that quantitatively the asymptotic behaviour
of the different optimal Robin parameters in (34) and (35) does not seem to
follow the linear results. Also, we do not obtain the same degree of acceleration
of the convergence speed in (34) and (35) as suggested by the linear case (36).
However, we observe the same kind of asymptotic behaviour for ρopt and, at
least, the asymptotics lies between the situations (32) and (36).

In contrast to Case I, the situation in Case II is very unsymmetric with
respect to the diagonal γ1 = γ2, and we do no longer observe two distinct
local minima of convergence rates. We rather have a whole “valley” of param-
eter pairs, where one parameter γ2 is more or less fixed while the other γ1

is free (as long as it is big enough), in which nearly constant globally mini-
mal rates occur. And even for the global minimum in this strip of parameter
pairs, which is not at all distinct, one observes γ1,opt ≈ 104 γ2,opt on levels 1
to 8. Most importantly, however, these globally minimal rates in the strip are
asymptotically stable, i.e., mesh-independent, which can be seen in Figure 11,
where the value for the 7th level is the same as for the 8th level. Note that
with extreme values γ1,opt ≫ γ2,opt subproblems (22)–(23) and (24)–(25) re-
semble Dirichlet and Neumann problems, respectively, i.e., the Robin method
becomes an undamped Dirichlet–Neumann method. This observation is quite
striking if we compare Figure 11 for the optimized Robin method with two
different parameters with Figure 9, which shows the optimal convergence rates
for the damped Dirichlet–Neumann method.

We close this section by mentioning a known result on the Robin method
applied to a linear equation with discontinuous coefficients K1/K2 < 1 in R

2,
decomposed into two half planes, see [10, p. 84]. The asymptotic behaviour in
this case is given by

γlin
1,opt = O(1) , γlin

2,opt = O(h−1) and ρlin
opt =

K1

K2
−O(h1/2) .

Although, again, we cannot confirm the asymptotic behaviour for the opti-
mized Robin parameters in our Case II, this rare result of a mesh-independent
convergence rate for the Robin method makes our findings in this and in the
previous section on the good convergence of our optimized methods in Case II
a bit more understandable.

As a summary of our numerical test cases, we can say that, by and large,
the numerical results of these last two sections resemble quite well the known
theoretical results in linear situations.
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