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Introduction

”Divide and conquer.” — This saying has become one of the basic principles in
mathematics and, in particular, in numerical analysis and scientific computing.
And it will be a central feature of our approach to the problems which we
study in this work. The domain decomposition methods we are going to apply
to our problems — both on an analytical and on a computational level — are
certainly the most prominent characteristic of this principle in our approach.
Nonetheless, they are not the only one.

The starting and end point and the basis for the questions raised and investi-
gated in this work is the Richards equation. It arises from the physical prin-
ciple of mass conservation and serves as a mathematical model describing the
saturated-unsaturated fluid flow through a porous medium in one single partial
differential equation. As a consequence, the Richards equation assumes differ-
ent types in different regions of the computational domain. In the saturated
regime it is of elliptic type whereas it is parabolic in the unsaturated regime.

The equation contains two nonlinearities given by parameter functions, one
of which is related to the time derivative while the other one is a factor in
the spatial derivative. Moreover, it leads to heterogeneous problems since the
parameter functions depend on the soil types given in the domain. The Richards
equation is degenerate in the sense that the main part of the spatial derivative
does not provide a uniformly elliptic operator because the relative permeability
as a factor in it can become arbitrarily small for small pressure values in the
fluid. Finally, the parameter functions may contain big slopes and can even
degenerate into step functions for extreme soil parameters.

In view of these heterogeneities and degeneracies we propose a solution method
for the Richards equation which does not rely on any linearization whatsoever.
In order to realize this, however, we need to “divide” the problem into several
partial problems which we can “conquer”.

Therefore, in a first step we restrict ourselves to the Richards equation in a
homogeneous setting, i.e. to a single soil type resulting in two fixed parameter
functions. If, in addition, we neglect gravity in the equation, an implicit time
discretization of the resulting problem provides quasilinear spatial problems
which can be transformed into semilinear problems by an application of the
Kirchhoff transformation. This simplification is not possible in case of spatially
dependent parameter functions, i.e. in a heterogeneous setting.
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Now, the semilinear problem, which we obtain for each time step after the
time discretization and the Kirchhoff transformation, turns out to be equivalent
to a convex minimization problem. This is even true if we treat the gravita-
tional term explicitly in the time discretization, which we will do in this work.
Whether gravity is included in this way or not, an existence and uniqueness
result can be applied to the convex minimization problem and a convergence
result for an appropriate finite element discretization can be derived. Moreover,
with the monotone multigrid method a fast solver is at hand for the solution
of the arising discrete problems. In addition, the performance of the monotone
multigrid is robust with respect to varying soil parameters, even in the most
extreme cases.

We point out that our solution method for the spatial problems in the homo-
geneous case is based on nonlinear minimization rather than linearization. The
robustness of the method refers to the solution of the transformed problem,
which only contains one nonlinearity, rather than to the solution of the original
spatial problem, which is doubly nonlinear and degenerate for small pressure
values. Here, our “divide and conquer” approach pays out on the practical level,
since by virtue of the Kirchhoff transformation the degeneracy of the spatial
problem is completely separated from the solution procedure. The degenerate
character of the original problem reoccurs of course if we want to determine the
solution in the physical pressure variables. Here, the inverse Kirchhoff trans-
formation comes into play which is ill-conditioned for small pressure variables.
But this inverse transformation is applied only once — after the solution has
been calculated in the transformed variables.

Having understood the spatial problems arising from the Richards equation in
the homogeneous case, we use this knowledge in the second step to address the
situation in heterogeneous soil. Here, we consider the case of constant soil pa-
rameters on non-overlapping subdomains Ωi, i = 1, . . . , n, of a domain Ω ⊂ Rd

which change discontinuously across the interfaces between the subdomains.
As a consequence, we obtain a problem with jumping nonlinearities, i.e. with
nonlinear parameter functions which are fixed for each subdomain but different
on each side of an interface separating the subdomains.

The global problem is formulated as a domain decomposition problem in which
Richards equations in homogeneous soil on each subdomain are coupled by the
continuity of the physical pressure p and the continuity of the normal fluid flux
across the interfaces. Now, in order to apply the results from the homogeneous
case, this domain decomposition problem is reformulated by the application of a
Kirchhoff transformation on each subdomain. Since these transformations differ
on different subdomains, the continuity condition on p now turns into nonlinear
jump conditions for the transformed variables ui on Ωi, i = 1, . . . , n, across the
interfaces. As a consequence, we obtain a coupling of convex minimization
problems on the subdomains with nonlinear transmission conditions given on
the interfaces.
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Now, we propose to solve this domain decomposition problem by iterative sub-
structuring methods based on the transmission conditions which are well known
for the solution of linear problems. More concretely, a nonlinear Dirichlet–
Neumann method and a nonlinear Robin method are developed as generaliza-
tions of their linear counterparts. We point out that we apply these domain
decomposition methods directly to the nonlinear substructuring problem with-
out any further linearization. In particular, no linearization of the transmission
conditions is involved.

To our knowledge, nonlinear domain decomposition methods of this kind have
not yet been investigated in the literature. Here, we present an analysis for these
methods and the underlying domain decomposition problems by generalizing
existing linear theory on Steklov–Poincaré operators to our nonlinear case.

The main analytical results in this work concern the convergence of these non-
linear domain decomposition methods in one space dimension on two subdo-
mains in case of relative permeabilities which are bounded from below by a
positive constant. With these assumptions, the convergence of the damped
Dirichlet–Neumann method and of the Robin method and well-posedness of
the domain decomposition problem can be proved for the stationary Richards
equation without gravity. Moreover, for the time-discretized Richards equa-
tion we obtain a convergence result for the Robin method as well as a theorem
stating the well-posedness of the substructuring problem.

We emphasize that an existence and uniqueness result for the Richards equation
in the heterogeneous case does not seem to be at hand so far. To our knowledge,
the analysis on the Richards equation, which can be found in the literature, has
only been developed for the Kirchhoff–transformed version, i.e. in the homoge-
neous case. The well-posedness of the domain decomposition problem for the
time-discretized Richards equation, which we obtain in 1D for nondegenerate
relative permeabilities, might serve as a starting point to establish an existence
theorem for the Richards equation in heterogeneous soil at least in one space
dimension.

Our one-dimensional analytical results are accompanied by numerical results for
corresponding test cases in two space dimensions. In these examples we obtain
convergence with reasonable convergence rates if the damping parameter in the
Dirichlet–Neumann method or the acceleration parameter in the Robin method,
respectively, is chosen appropriately. Unfortunately, we observe deteriorating
convergence rates for the Robin method on higher levels, i.e. on fine grids. For
the Dirichlet–Neumann method, however, we measure convergence rates and
optimal damping parameters which are stable on higher levels. Therefore, even
though our analytical results are more general for the Robin method than for
the Dirichlet–Neumann method, the latter might be a promising tool for the
solution of the Richards equation, too.

The last partial problem we have to deal with in view of a stable numerical
solution method for the Richards equation is to find an appropriate space dis-
cretization of the gravitational term which is explicitly discretized in time. For
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this purpose we develop an artificial viscosity term in order to obtain an up-
wind finite element discretization which accounts for the constant direction of
gravity. As a consequence, we obtain a numerically stable solution method with
tolerable time step restrictions. Finally, we have a numerical example in 2D,
wherein the Robin method is successfully applied to the Richards equation in
four different soils and coupled with a surface water reservoir.

In the following we give an outline of this work which consists of four chap-
ters. In Chapter 1 we introduce the Richards equation in homogeneous soil and
study the Kirchhoff transformation and the parameter functions according to
Brooks–Corey which we want to use in this work. We carry out a scaling of
the Richards equation and take a look at hydrologically realistic, nondegenerate
and limit cases. Furthermore, we present and investigate Signorini-type bound-
ary value problems for the Richards equation and its Kirchhoff–transformed
version in strong and weak formulations. Here, we also discuss the Kirchhoff
transformation as a superposition operator. Finally, an overview of the analysis
which can be found in the literature on initial boundary value problems for the
Richards equation is given.

In Chapter 2 we discuss the numerical treatment of the Richards equation with-
out gravity in homogeneous soil. We start with an overview of the numerics for
the Richards equation to be found in the literature. Then we present our time
discretization for the Richards equation with the secondary role attributed to
the gravitational term. A uniquely solvable convex minimization problem is
derived from the arising boundary value problem for which related or equiva-
lent variational inequalities and variational inclusions are given. Furthermore,
we present a finite element discretization of the convex minimization problem
and prove a convergence result together with generalizations and consequences.
Finally, in view of appropriate solvers for the discrete problems, monotone
multigrid methods with the Gauss–Seidel relaxation as an essential ingredient
are discussed and an asymptotic convergence theorem is given. The chapter
ends with numerical results confirming the multigrid theory.

Chapter 3 is devoted to the Steklov–Poincaré theory for domain decomposi-
tion problems with jumping nonlinearities which are related to and motivated
by the Richards equation. We start with a theorem on the substructuring
of a Signorini-type problem for the Richards equation in homogeneous soil
which serves as a definition for the heterogeneous case. Here, we also de-
rive a Dirichlet–Neumann scheme for the time-discretized Richards equation
in heterogeneous soil. Then we investigate a nonlinear Dirichlet–Neumann
method applied to an elliptic transmission problem related to the nondegen-
erate stationary Richards equation without gravity. We give formulations via
linear Steklov–Poincaré operators and prove convergence and well-posedness
in one space dimension. Although we have counterexamples for our method
of proof in 2D, a numerical example shows that the method can also be ap-
plied in two space dimensions. Moreover, we study a nonlinear Robin method
for elliptic transmission problems related to the time-discretized nondegenerate
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Richards equation. Here, we introduce nonlinear Steklov–Poincaré operators in
which we formulate and analyse both the problem and the Robin method. The
latter turns out to have an equivalent formulation as a nonlinear ADI method
applied to the Steklov–Poincaré equation related to the problem. As before, we
prove convergence and well-posedness in 1D. Then we discuss the Robin method
applied to the time- and space-discretized Richards equation together with its
convergence and its numerical treatment. Finally, we give numerical results ob-
tained for the Robin method applied to the Richards equation without gravity
and compare its performance to the performance of the Dirichlet–Neumann
method in the stationary case.

In Chapter 4 we complete our numerical solution method for the Richards equa-
tion by appropriately addressing the explicitly time-discretized gravitational
term with the help of an upwind finite element discretization. A numerical
test in homogeneous soil demonstrates the stability and practicability of the
resulting method. Finally, we present a numerical example in which we solve
the Richards equation with the Robin method as the domain decomposition
method. In this test case, which marks the end of this work, we include four
different soil types and a surface water reservoir with realistic hydrological data.

I am deeply indebted to my supervisor Prof. Dr. Ralf Kornhuber for his in-
valuable support during the preparation of this work. Moreover, I am much
obliged that Prof. Dr. Alfio Quarteroni agreed to render his expert opinion on
my work. Also, I wish to thank Dr. Marco Discacciati for his rich expertise on
Steklov–Poincaré operators by which he inspired me a lot. In addition, I am
very grateful to my colleague Oliver Sander for his excellent work on the imple-
mentation of the algorithms. Furthermore, I would like to thank my colleague
Carsten Gräser for many clever ideas on convex analysis and beyond. Finally,
I think in gratitude of all the people around me these last years who appreciated
both the mathematical and the non-mathematical contents of this work.

Berlin, October 2007 Heiko Berninger
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Chapter 1

Richards equation in
homogeneous soil

1.1 Introduction

“Very great rivers flow underground.” — This citation by Leonardo da Vinci
(see for example MacCurdy [67, III. 961.]) shall serve as a starting point of
this work whose basis is the Richards equation which describes saturated-
unsaturated groundwater flow and was first published in Richards [79].

At the beginning it seems to be in order to introduce the Richards equation by
its hydrological derivation, which we give in Section 1.2, and then to look at it
from different mathematical points of view, which we pursue in the subsequent
sections. As a fist step we introduce the Kirchhoff transformation in Section 1.3
and apply it to the Richards equation. This transformation will be very help-
ful for the analytical treatment of the equation. Furthermore, it enables the
numerical approach we want to apply in Chapter 2.

The next step, also carried out in Section 1.3, is the scaling of the Richards
equation where we take a look at the equation and special parameter functions
in a version in which the units have been eliminated. Together with realistic
hydrological data given in Section 1.4 this will make clear the exact shape of
the parameter functions which we choose according to Brooks and Corey in this
work. Section 1.4 also contains a discussion of hydrologically relevant limit and
nondegenerate cases arising from our parameter functions.

In Section 1.5 we derive different strong and weak variational inequalities for the
Richards equation with Signorini-type boundary conditions which, for instance,
occur in the case of the coupling of groundwater flow with a surface water
reservoir. In this context we gain some important insights into the Kirchhoff
transformation as a superposition operator which will also be helpful for the
treatment of the heterogeneous Richards equation in Chapter 3. Finally, in
Section 1.6 we give an overview of what is known about the analysis of initial
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boundary value problems for the Richards equation in different settings. The
basic hydrological facts mentioned in this chapter can be found in Bear [13],
Chavent and Jaffré [24] and van Genuchten [91].

1.2 Elements of hydrology

In this section we introduce some basic hydrological concepts and terms which
occur throughout this work. In particular, we shall derive the Richards equation
from fundamental physical laws. Finally, we discuss the Brooks–Corey func-
tions which we use predominantly as the parameter functions in the Richards
equation.

It is well known that the mathematical description of fluid flow is based on
the principle of mass conservation. This principle states that for any control
volume Ω′ ⊂ Ω, where Ω ⊂ R3 is the computational domain, the increase or
decrease of mass of the fluid in Ω′ within a certain time ∆t is equalized by the
flow of mass across ∂Ω′ during that time, possibly influenced by an increase
or decrease of mass given by a source or a sink in Ω′. In concrete terms, with
∆t→ 0, we arrive at the mass conservation in the differential form

∂

∂t

∫

Ω′

θn̺ dx+

∫

∂Ω′

θn̺ v̄ · n dσ =

∫

Ω′

f̄dx (1.2.1)

if we consider flow of water in a porous medium. In this formula θn̺ represents
the rate of fluid mass per volume, v̄ is the microscopic velocity of the water
and f̄ is a source term. With the outer normal n of ∂Ω′ the term v̄ · n gives
the water flux across ∂Ω′. To obtain the rate of mass per volume the water
density ̺ is multiplied with the weighting factor θn in which n, the porosity, is
a function on Ω giving the rate of void space per volume in the porous medium
and θ, the saturation, gives the rate of water in this void space on Ω. We
remark that in the hydrological literature θn is often called (volumetric) water
or moisture content which, in contrast to our notation, is then denoted by θ.
Taking into account the incompressibility of the water, i.e. ̺ = const, and
assuming that the macroscopic velocity v is given by v = θnv̄ while denoting
f = f̄/̺, an application of the divergence theorem A.1.2 to (1.2.1) gives the
continuity equation

nθt + divv = f . (1.2.2)

Now, the following equation of motion, which is well known as the experimental
law of Darcy, relates the water flow to the pressure of the water for any time t
and states

v = −Kc∇h . (1.2.3)

In this formula the coefficient of proportionality Kc is called hydraulic conduc-
tivity. It is a scalar function if the flow takes place in an isotropic medium. In
general it is a symmetric positive definite 3× 3 –matrix for any x ∈ Ω. h is the
so-called piezometric head which can be regarded as the groundwater level at
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the point x = (x1, x2, z) ∈ Ω, see for example Bear [13, p. 64] or Richards [78].
It is related to the pressure of the water at x by the formula

h =
p

̺g
− z . (1.2.4)

Here we assume that the z-axis of the coordinate system points downwards in
the direction of gravity. Again ̺ is the density of the water, g is the gravitational
constant and p = pw − pa is the difference between the pressure of water and
the constant pressure of air. The value p/(̺g) is called pressure head ψ and
comes from a hydrostatic pressure if p > 0 and from a capillary pressure or a
suction if p < 0. In the first case the groundwater level is above the point x
and in the second case it is below the point x.

Although our choice of the direction of the z-axis is contrary to how the piezo-
metric head is measured, this choice is often made in the literature, such as
in Chavent and Jaffré [24], Fuhrmann [40] or Eymard et al. [37]. As a conse-
quence of (1.2.3) and (1.2.4) we obtain a positive component of water flux in
the direction of the z-axis due to gravity. Note that we are free in the choice
of the zero-level in z-direction because only spatial changes of h are relevant
in (1.2.3). However, if we choose the zero-level in z-direction as the surface of
the ground (in case it is horizontal), it is easy to see that −h in (1.2.4) is just
the (positive) distance between the groundwater level and the surface. As a
consequence, in an isotropic medium Darcy’s law (1.2.3) just states that at at
any point in the ground the water flows to where the groundwater level above
that point has its biggest decline.

If the saturation of water in the medium is maximal everywhere, Kc = Kh(·) is
a function on Ω which is given by

Kh(x) = K(x)µ−1̺g ∀x ∈ Ω . (1.2.5)

Here µ is the viscosity of the water. The remaining function K(·) on Ω is no
longer dependent on the fluid and is called permeability of the soil. Kh(x) can be
regarded as a maximal hydraulic conductivity. In fact the law of Darcy (1.2.3)
holds true in the more general setting of unsaturated soil. However, Kc is also
dependent on the saturation θ of the water in that case. More concretely, we
have

Kc(x, θ) = Kh(x) kr(θ) (1.2.6)

in which kr(·) is the so-called relative permeability and provides a weighting
factor in the interval [0, 1]. It is a monotonically increasing function of the
saturation θ. In this general case Kh(x) kr(θ) is sometimes called effective
hydraulic conductivity while K(x) kr(θ) is called effective permeability. It has
to be pointed out that the concrete shape of the function kr is dependent on the
soil so that the space dependency in (1.2.6) does not reflect spatial heterogeneity
in full generality. Therefore, we still call the situation of the medium in (1.2.6)
homogeneous soil. Figure 1.2 displays a typical shape of a relative permeability
function θ 7→ kr(θ).
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Finally, and again dependent on the soil, there is another equation of state
which relates the saturation θ of the water to the pressure p. The function
p 7→ θ(p) is also monotonically increasing between a minimal saturation θm and
a maximal saturation θM . In general we have θm > 0 due to residual water
and θM < 1 due to residual air in the soil. For hydrostatic pressures p ≥ 0 the
saturation is maximal. Figure 1.1 shows an example of a function p 7→ θ(p).

Altogether, if we put Darcy’s law (1.2.3) and the equations of state into (1.2.2)
with f = 0 we obtain the Richards equation

n(x)θ(p)t − div
(
K(x)µ−1kr(θ(p))∇

(
p− ̺gz

))
= 0 (1.2.7)

for the unknown function p on Ω× (0, T ) with T > 0 in which

v = −K(x)µ−1kr(θ(p))∇
(
p− ̺gz

)
(1.2.8)

is the water flux. Obviously the Richards equation is a quasilinear elliptic-
parabolic equation. More concretely, it is of elliptic type where the soil is fully
saturated and parabolic in the unsaturated regime. In this case it might even
be of hyperbolic type where kr(θ(p)) = 0. In what is to come we will restrict
ourselves to situations in which kr(θ(p)) is always positive.

There are different methods how to obtain concrete analytical versions of the
parameter functions p 7→ θ(p) and θ 7→ kr(θ) for which van Genuchten [91] is the
classical reference. Widely-used examples are the ones due to van Genuchten,
which are applied in Fuhrmann [40] for instance, and the ones due to Brooks–
Corey which shall be applied here (see also Section 1.3). Since the shapes of
these fitting functions are very similar we restrict ourselves to presenting the
Brooks–Corey model.

The main structural difference between the van Genuchten model and the
Brooks–Corey model is that the van Genuchten functions are smooth and
θ(p) < θM holds for p < 0, whereas we have θ(p) = θM for p ≥ pb according to
Brooks–Corey with a so-called bubbling pressure pb < 0 in which the Brooks–
Corey functions are non-differentiable. The latter model takes into account
that the saturation remains maximal until the suction is large enough to sud-
denly allow air bubbles to enter the soil. However, the non-differentiability does
not seem hydrologically essential. More refined models incorporate hysteresis
effects which shall not be considered here. With a soil dependent parameter
λ > 0 which is called the pore size distribution factor the so-called soil-water
retention curve due to Brooks–Corey is given by

Θ(p) :=
θ(p)− θm

θM − θm
=

[
p

pb

]−λ

:=





(
p
pb

)−λ
for p ≤ pb

1 for p ≥ pb .
(1.2.9)

In addition, using further theories, the following equation of state for the relative
permeability is established for Θ ∈ (0, 1] or θ ∈ (θm, θM ], respectively:

kr(θ) = k̂r(Θ) := Θe(λ) with e(λ) :=

{
3 + 2

λ due to Burdine

5
2 + 2

λ due to Mualem.
(1.2.10)
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Figure 1.1: p 7→ θ(p)
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Figure 1.2: θ 7→ kr(θ)

Thus, we obtain

kr(θ(p)) = k̂r(Θ(p)) =

[
p

pb

]−λe(λ)

. (1.2.11)

According to van Genuchten [91], it is not clear whether the theory of Burdine,
which was used by Brooks and Corey, or the theory of Mualem, which was
found later, fits better to realistic data. Typical graphs of the Brooks–Corey
functions are shown in Figures 1.1 and 1.2.

Considering the shape of the function p 7→ θ(p) it becomes clear that the pa-
rameter λ is indeed related to how the pore sizes are distributed in the porous
medium. If the pressure in the medium drops slightly below the bubbling pres-
sure, then the capillaries with the biggest diameters are filled with air first. If the
diameters of the pores in the medium vary a lot, i.e. if we have a big “pore size
distribution”, then the pressure has to decrease considerably in order to drain
the capillaries with small diameter, too. In this case the slope of the function
p 7→ θ(p) will be relatively small around the bubbling pressure pb which means
λ has to be relatively small. Consequently, 1/λ can be regarded as a measure
for the pore size distribution. In the following section we will investigate the
shape of the above functions in more detail and give concrete realistic values
for the hydrological and the soil parameters involved in the Richards equation.

1.3 Kirchhoff transformation of the Richards equa-
tion and scaling with the Brooks–Corey para-

meter functions

In this section we introduce the Kirchhoff transformation which turns out to
be a crucial tool both for the analysis and for our numerical treatment of the
Richards equation in Chapters 2 and 4. We apply this transformation to the
Richards equation with the Brooks–Corey parameter functions. Furthermore,
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regarding the concrete shape of the transformed functions, we carry out a scaling
of the Richards equation in order to obtain the equation as well as the Brooks–
Corey functions and the transformed functions in an adimensional form, i.e. in
a form of a real-valued equation in which all units have been eliminated.

The Kirchhoff transformation is a crucial tool for simplifying a class of partial
differential equations by eliminating certain nonlinearies (see, in particular, Alt
and Luckhaus [4]). It is not only applied to problems dealing with saturated-
unsaturated groundwater flow, where it is used in order to eliminate the rela-
tive permeability kr(·) in front of the gradient in (1.2.7). One also makes use
of the Kirchhoff transformation in problems in which temperature-dependent
material properties play the same role as kr(·) in our case, for example in the
analysis of semiconductor devices (Bonani and Ghione [18]), thermoelasticity
(Chen et al. [25]) or electrical eddy current fields (Breuer [20]).

For the Richards equation the Kirchhoff transformation κ : R → R is defined
as follows:

κ : p 7→ u :=

∫ p

0
kr(θ(q)) dq . (1.3.1)

The new variable u shall be called generalized pressure. The saturation as a
function of u is denoted by

M(u) := θ(κ−1(u)) . (1.3.2)

Taking the chain rule into account which gives

∇u = kr(θ(p))∇p (1.3.3)

the transformed Richards equation (1.2.7) reads

n(x)M(u)t − div
(
K(x)µ−1

(
∇u− kr(M(u))̺g∇z

))
= 0 . (1.3.4)

Thus, the transformed equation is a semilinear equation in which the nonlin-
earity in front of the spatial derivative has been eliminated.

Remark 1.3.1. We point out that the Kirchhoff transformation is of no use
if the relative permeability kr is not only dependent on p but also explicitly
on x ∈ Ω, i.e. if we have kr(x, θ(p(x))). We can still carry out the Kirchhoff
transformation (1.3.1) in this case, thus obtaining u(x) = κ(x, p(x)). Then,
however, the chain rule provides

∇u(x) = kr(x, θ(p(x)))∇p(x) +∇xκ(x, p(x)) ∀x ∈ Ω

in which ∇xκ(x, p(x)) is to be understood as the vector of partial derivatives
of κ(·, p) in its first d components corresponding to the entry x ∈ Ω ⊂ Rd.
Therefore, the transformation does not simplify the Richards equation if kr is
explicitly space-dependent. Nevertheless, such a case can be regarded as the
full heterogeneous case. We address this problem in Chapter 3.

We will discuss the application and the validity of the chain rule in a weak
formulation of the problem in Subsection 1.5.4 in more detail. At this stage
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we note that, although (1.3.3) can be understood in the classical sense here,
usually we cannot assume u 7→ kr(M(u)) to be spatially differentiable in case
of the Brooks–Corey equations of state (1.2.9) and (1.2.11) which are both
non-differentiable. However, as remarked in the previous section, this non-
differentiability is not essential to the problem of groundwater flow. So at this
stage one can either assume kr and M to be smooth (or smoothed) enough
for the differential formulation or refer to our weak formulation of a boundary
value problem for the Richards equation in Subsection 1.5.4.

The advantage of our choice of the parameter functions in (1.2.9) and (1.2.10)
according to Brooks and Corey is that the Kirchhoff transformation and its
inverse and the transformed functions involved in (1.3.4) can be given explicitly
in a closed form. More concretely, from (1.2.11) we have

u = κ(p) =

∫ p

0

[
q

pb

]−λe(λ)

dq

=





pb
−λe(λ)+1

(
p
pb

)−λe(λ)+1
+ −λe(λ)pb

−λe(λ)+1 for p ≤ pb

p for p ≥ pb .
(1.3.5)

Obviously the generalized pressure is equal to the physical pressure in case
of full saturation. In the unsaturated case, however, the interval (−∞, pb) is
mapped onto the bounded interval (uc, pb) in which we call

uc :=
λe(λ)

λe(λ) − 1
pb < pb (1.3.6)

the critical generalized pressure. Consequently, the inverse transformation reads

p = κ−1(u) =





pb

(
u(−λe(λ)+1)

pb
+ λe(λ)

) 1
−λe(λ)+1

for uc < u ≤ pb

u for u ≥ pb .
(1.3.7)

Furthermore, the saturation as a function of the generalized pressure is given
by

M(u) = θ(κ−1(u)) = θm + (θM − θm)

[
κ−1(u)

pb

]−λ

(1.3.8)

=





θm + (θM − θm)
(

u(−λe(λ)+1)
pb

+ λe(λ)
) λ

λe(λ)−1
for uc < u ≤ pb

θM for u ≥ pb

in which M(u) → θm for u ↓ uc. Finally, the relative permeability as a
function of u has the form

kr(M(u)) =

[
κ−1(u)

pb

]−λe(λ)

=





(
u(−λe(λ)+1)

pb
+ λe(λ)

) λe(λ)
λe(λ)−1

for uc < u ≤ pb

1 for u ≥ pb .

(1.3.9)
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Now we want to investigate the shape of the Brooks-Corey parameter functions
and the transformed functions obtained from the Kirchhoff transformation in
more detail. Concretely, we are interested in how big the slope of these functions
are in a situation with realistic hydrological data (see Section 1.4.1). To this
end, we want to get rid of the physical units in the Richards equation and obtain
only real-valued parameter functions and unknown functions in the problem.
We scale the equation using characteristic unit values of the problem for the
spatial coordinates, the time and the pressure.

For the sake of presentation in the rest of this section — and exclusively in the
rest of this section — we want to alter our notation introduced in Section 1.2,
where we had x = (x1, x2, z) ∈ Ω, in the following way. Let x = (x, y, z) ∈ Ω
and x0, y0, z0 be unit values for the corresponding coordinates. In addition,
let t0, p0 and u0 be unit values for the time, the pressure and the generalized
pressure.

We introduce the transformation

x̂ :=
x

x0
, ŷ :=

y

y0
, ẑ :=

z

z0
, t̂ :=

t

t0
, x̂ :=




x̂
ŷ
ẑ


 , ∇̂ :=




∂
∂x̂
∂
∂ŷ
∂
∂ẑ


 ,

obtaining x̂, ŷ, ẑ ∈ R and x̂ ∈ R3. Furthermore, we define the real functions

p̂(x̂) :=
p(x)

p0
and û(x̂) :=

u(x)

u0
(1.3.10)

and

n̂(x̂) := n(x) , θ̂(p̂) := θ(p) , K̂(x̂) := K(x) , M̂(û) := M(u) , (1.3.11)

where only K̂ is not a real function, and keeping in mind that p and u also
depend on t.

We have
∂

∂x
=

∂

∂x̂

dx̂

dx
= x−1

0

∂

∂x̂
etc.

leading to

∇ = diag (x−1
0 , y−1

0 , z−1
0 )∇̂ and ∇ · F = ∇̂ ·

(
diag (x−1

0 , y−1
0 , z−1

0 ) F
)

where diag (x−1
0 , y−1

0 , z−1
0 ) is the diagonal matrix with the entries x−1

0 , y−1
0 and

z−1
0 and F : Ω→ R3 is a differentiable vector field.

Finally, we define eẑ := ∇̂ẑ = ∇z =: ez which is the unit vector in ẑ- or in
z-direction, i.e. in the direction of gravity.

Now, from (1.2.7) we obtain the scaled Richards equation

n̂(x̂)t−1
0 θ̂(p̂)t̂ − ∇̂ ·

([
K̂(x̂)µ−1kr(θ̂(p̂)) diag (x−2

0 , y−2
0 , z−2

0 )
]

(
∇̂ (p0p̂− ̺gz0ẑ)

))
= 0 (1.3.12)
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and, analogously, from (1.3.4) we get the scaled Kirchhoff–transformed Richards
equation

n̂(x̂)t−1
0 M̂(û)t̂ − ∇̂ ·

([
K̂(x̂)µ−1 diag (x−2

0 , y−2
0 , z−2

0 )
]

(
∇̂(u0û)− kr(M̂(û))̺g∇̂(z0ẑ)

))
= 0 (1.3.13)

in which we have diagonal matrices within the brackets [. . . ], respectively.

Now, in order to get rid of the units in these equations we define

K̂h(x̂) := Kh(x) = K̂(x̂)µ−1̺g (1.3.14)

with the hydraulic conductivity Kh(x) from (1.2.5) which has the dimension of
a velocity (assumed to be given in m/s). Furthermore, we define the following
real-valued quotients of pressures

ur := u0(̺gz0)
−1, pr := p0(̺gz0)

−1 (1.3.15)

and the spatial scaling matrix

As := z0 diag (x−2
0 , y−2

0 , z−2
0 ) (1.3.16)

which provides the unit m−1. Then, altogether, if we consider t0 as a real
number given in the unit s, the scaled versions (1.3.12) and (1.3.13) provide the
adimensional (i.e. unit-free) Richards equation

n̂(x̂)t−1
0 θ̂(p̂)t̂ − ∇̂ ·

([
K̂h(x̂)As kr(θ̂(p̂))

]
∇̂ (prp̂− ẑ)

)
= 0 (1.3.17)

and the adimensional Kirchhoff–transformed Richards equation

n̂(x̂)t−1
0 M̂ (û)t̂ − ∇̂ ·

(
K̂h(x̂)As

(
∇̂(urû)− kr(M̂(û))∇̂ẑ

))
= 0 . (1.3.18)

Note that with our definitions in this section and with (1.2.2), (1.2.7) and (1.3.4)
we obtain the physical water flux in the form

v = −K̂h(x̂) kr(θ̂(p̂)) z0 diag (x−1
0 , y−1

0 , z−1
0 )

(
∇̂(prp̂)− eẑ

)

= −K̂h(x̂) z0 diag (x−1
0 , y−1

0 , z−1
0 )

(
∇̂(urû)− kr(M̂(û))eẑ

)

and, with regard to (1.3.17) and (1.3.18), the formal flux as

v̂ = −K̂h(x̂) kr(θ̂(p̂))
(
As∇̂(prp̂)− z−1

0 eẑ

)

= −K̂h(x̂)
(
As∇̂(urû)− kr(M̂(û))z−1

0 eẑ

)

which is clear from the transformation ∇̂·v̂ = ∇·v = ∇̂·
(
diag (x−1

0 , y−1
0 , z−1

0 )v
)
,

i.e.
v̂ = diag (x−1

0 , y−1
0 , z−1

0 )v .
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Now, again, we take a look at our concrete choice of state equations, the Brooks–
Corey functions (1.2.9) and (1.2.10) as well as their transformed versions and
the Kirchhoff transformation given in (1.3.5) in an adimensional form. To this
end, it is appropriate to set

u0 := p0 := −pb (1.3.19)

as the (positive) pressure unit. Then, with the notation in (1.3.10) and (1.3.11),
the definitions (1.2.9) and (1.2.10) provide

θ̂(p̂) =

{
(θM − θm) (−p̂)−λ + θm for p̂ ≤ −1

θM for p̂ ≥ −1
(1.3.20)

and

kr(θ̂(p̂)) =

(
θ̂(p̂)− θm

θM − θm

)e(λ)

=

{
(−p̂)−λe(λ) for p̂ ≤ −1

1 for p̂ ≥ −1 .
(1.3.21)

By a straightforward definition of the adimensional Kirchhoff transformation,
we obtain from (1.3.5)

κ̂(p̂) := û =
u

−pb
=

{
1

λe(λ)−1 (−p̂)−λe(λ)+1 − λe(λ)
λe(λ)−1 for p̂ ≤ −1

p̂ for p̂ ≥ −1 .
(1.3.22)

With the adimensional critical generalized pressure

ûc := − λe(λ)

λe(λ)− 1
< −1 (1.3.23)

due to (1.3.6) and (1.3.7) the adimensional inverse Kirchhoff transformation
reads

p̂ = κ̂−1(û) =

{
−((λe(λ)− 1)û+ λe(λ))

− 1
λe(λ)−1 for ûc < û ≤ −1

û for û ≥ −1 .
(1.3.24)

Furthermore, from (1.3.8) we obtain

M̂(û) = M(u) (1.3.25)

=




θm + (θM − θm)((λe(λ) − 1)û+ λe(λ))

λ
λe(λ)−1 for ûc < û ≤ −1

θM for û ≥ −1

where M̂(û)→ θm for û ↓ ûc. Finally, (1.3.9) gives

kr(M̂(û)) = kr(M(u))

=





((λe(λ) − 1)û+ λe(λ))
λe(λ)

λe(λ)−1 for ûc < û ≤ −1

1 for û ≥ −1 .
(1.3.26)
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We will take a look at the realistic shape of these functions in the following
section and come back to them again with concrete parameters when we deal
with the numerical treatment of the Richards equation in Sections 2.8, 3.3.5 and
3.4.6 as well as in Chapter 4. However, since we have only introduced these
adimensional functions with a ˆ for technical reasons, we will refer to these
functions and also to the scaled, adimensional Richards equations (1.3.17) and
(1.3.18) in the form without the ˆ from now on. Furthermore, as mentioned
at the beginning of this section, we will consider the points x ∈ Ω whose last
component we denote by z.

In view of a special time discretization of the Richards equation which we
introduce in Section 2.3, a primitive Φ ofM will be essential in order to treat the
arising spatial problems. Note that M is monotonically increasing on (uc,∞)
such that Φ turns out to be convex. We define this primitive as

Φ(u) =

∫ u

0
M(s) ds ∀u ∈ [uc,∞) (1.3.27)

and obtain Φ(u) = θM u for u ≥ −1 and

Φ(u) = θmu+
θM − θm

λ(1 + e(λ))− 1

((
(λe(λ)−1)u+λe(λ)

) λ(1+e(λ))−1
λe(λ)−1 −λ(1+e(λ))

)

for uc < u ≤ −1 with the exponent

λ(1 + e(λ)) − 1

λe(λ)− 1
=

(a+ 1)λ+ 1

aλ+ 1
> 1

(where a ∈ {3, 5/2} due to (1.2.10)) and the limit

Φ(uc) := lim
u↓uc

Φ(u) = θmuc − (θM − θm)
λ(1 + e(λ))

λ(1 + e(λ))− 1

= − λ

λ(1 + e(λ)) − 1

(
(1 + e(λ)) θM +

λ

λe(λ)− 1
θm

)
.

1.4 Realistic situations and limit cases

The purpose of this section is to investigate the concrete shape of the functions
given in (1.3.20)–(1.3.26) by considering a realistic hydrological situation. This
will give rise to some limit cases for deteriorating soil parameters pb and λ.
With regard to realistic physical situations but also to mathematical conditions
of nondegeneracy, we also take a look at the uniformly elliptic case kr(·) ≥ c
for some c > 0.

1.4.1 A hydrological example

Our realistic hydrological example was provided by hydrologists from the work-
ing group of Prof. Bronstert at the University of Potsdam. They have a research
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catchment of around 2000m × 3000m × 5m and measure bubbling pressures
as small as pb = −0.1m water column. With an overflow of up to 2m they
obtain maximal pressures of up to 7m water column in the ground. On the
other hand, they observe capillary pressures as little as −2m water column.
With (1.3.10) and our convention (1.3.19), this gives the interval [−20, 70] as
the range for the variable p. We remark that extreme cases for the bubbling
pressure which can be found in the literature Rawls et al. [77, Table 5.3.2]
range from pb = −0.0136m for sand to pb = −1.872m for clay. The usual
values are between −0.1m (geometric mean for sand) and −0.4m (geometric
mean for clay).

The volumetric water content nθ attained its residual value, i.e. its minimum,
at nθm = 0.08 and its maximum at nθM = 0.36. With a porosity in the soil
of n = 0.38 we obtain approximately θm = 0.21 and θM = 0.95 (< 1 due to
possible residual air in the soil). For completeness, we note the value for the
hydraulic conductivity in case of full saturation Kh = 0.002m/s which can
easily vary by one order of magnitude even for largely homogeneous soil.

As far as the scaling factor for the pressure in (1.3.15) is concerned setting
u0 = p0 = −pb = 0.1m we obtain ur = 0.02 here since ̺gz0 represents a
pressure of 5m water column. Furthermore, we point out that with the size of
the research catchment above, we obtain an anisotropy in the scaled equation
reflected by the scaling matrix (1.3.16)

As = 5m diag((4·106m2)−1, (9·106m2)−1, (25m2)−1) ≈ diag(10−6, 10−6, 1)m−1.

This anisotropy requires a special treatment in the numerical solution of the
Richards equation which shall not be considered here. For a linear analogue we
refer to Wittum [100].

Apart from the range of pressure and saturation, the crucial value for the shape
of the adimensional parameter functions (1.3.20) and (1.3.21) and the functions
in (1.3.22)–(1.3.26) is certainly the pore size distribution factor λ. For the loamy
sand-type soils of the research catchment this value was between 0.48 and 0.65.
It turns out that with the example λ = 2/3 already, the parameter functions
have quite big slopes and partly look like step functions. This does not change
much for other choices, even in extreme cases of λ = 1.090 for sand or λ = 0.037
for clay (the arithmetic mean values in sand and clay are λ = 0.7 and λ = 0.1,
respectively) which can be found in Rawls et al. [77, Table 5.3.2].

For our choice of λ we apply Burdine’s theory in (1.2.10) to obtain the most
relevant terms:

λ =
2

3
=⇒





e(λ) = 6

λe(λ) = 4

λ
λe(λ)−1 = 2

9 (-th root in M)

uc = − λe(λ)
λe(λ)−1 = −4

3
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With these values, the soil water retention curve is given by

θ(p) = θm + (θM − θm)[−p]− 2
3

and the permeability as a function of the saturation reads

kr(θ) =

(
θ − θm

θM − θm

)6

.

The graphs of these two functions and also of the functions below are shown on
pages 20 and 21. Since the following functions of the physical pressure p or the
generalized pressure u contain big slopes, the corresponding graphs are given
both on the full, expected range of p or of u, respectively, and on a smaller
neighbourhood around the adimensional bubbling pressure −1.

The permeability as a function of the pressure reads

kr(θ(p)) = [−p]−4 .

The Kirchhoff transformation gives the relationship between the pressure and
the generalized pressure by

u = κ(p) =

{
1
3(−p)−3 − 4

3 for p ≤ −1

p for p ≥ −1 .

The inverse Kirchhoff transformation reads

p = κ−1(u) =

{
−(3u+ 4)−

1
3 for − 4

3 < u ≤ −1

u for u ≥ −1 .

The saturation as a function of the generalized pressure has the form

M(u) =

{
0.21 + 0.74 (3u + 4)

2
9 for − 4

3 < u ≤ −1

0.95 for u ≥ −1 .
(1.4.1)

Finally, the permeability as a function of the generalized pressure is given by

kr(M(u)) =

{
(3u+ 4)

4
3 for − 4

3 < u ≤ −1

1 for u ≥ −1 .

Note that by considering the full, expected range for p or u in the graphs of these
functions we account for the influence of the bubbling pressure pb on the shape
of the functions. The bubbling pressure scales this range as in (1.3.5)–(1.3.9)
at the beginning of this section and has been set as the negative pressure unit
(1.3.19) later on. As already mentioned above, in the most extreme case to
be found in Rawls et al. [77, Table 5.3.2] we have pb = 1.36 · 10−2 [m] for very
coarse sand.
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Figure 1.3: p 7→ θ(p): full range
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Figure 1.4: θ 7→ kr(θ)
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Figure 1.5: p 7→ kr(θ(p)): full range
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Figure 1.6: p 7→ kr(θ(p)): zoomed
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Figure 1.8: p 7→ κ(p): zoomed
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Figure 1.9: u 7→ κ−1(u): full range
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Figure 1.10: u 7→ κ−1(u): zoomed
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Figure 1.11: u 7→M(u): full range
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Figure 1.12: u 7→M(u): zoomed
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Figure 1.13: u 7→ kr(M(u)): full range
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Figure 1.14: u 7→ kr(M(u)): zoomed
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1.4.2 Limit cases for the Brooks–Corey functions

Since the graphs of the functions shown on pages 20 and 21 already look quite
extreme (i.e. quite steep) for our realistic hydrological data, it is natural from
a mathematical point of view to ask how the functions in (1.3.20)–(1.3.26) be-
have for deteriorating soil parameters pb and λ. Of course, such considerations
are particularly important with respect to the robustness of numerical solution
methods (see Section 2.8). We point out that especially the shape of M is in-
teresting for the solution method, and also the inverse Kirchhoff transformation
κ−1 which is, however, only applied to calculate the physical solution after one
has already obtained the generalized solution. For the following discussion, we
refer to the hydrological meaning of the soil parameters pb and λ on page 10
and recall (1.2.10) as well as (1.3.23), i.e.

λe(λ) = aλ+ 2 and uc = −aλ+ 2

aλ+ 1
(1.4.2)

with a = 3 according to Burdine and a = 5/2 according to Mualem. Both cases
behave the same in the limits that we consider.

First, for λ → 0 the slopes of the parameter function p 7→ θ(p) in (1.3.20)
decrease and the function becomes flatter, tending pointwise to the constant
function

θ0 : p 7→ θM ∀p ∈ R .

In contrast, the slopes of θ 7→ kr(θ) in (1.2.10) increase and we get the step
function kr0 with

kr0(θ) =

{
0 for θm ≤ θ < θM

1 for θ = θM
(1.4.3)

as the pointwise limit. The limit case seems hydrologically useless since it
ignores the unsaturated case unless one defines something like

θ0(−∞) := θm . (1.4.4)

Strangely enough, the function p 7→ kr(θ(p)) in (1.3.21) which turns into

k0 : p 7→
{
p−2 for p ≤ −1

1 for p ≥ −1
(1.4.5)

and the Kirchhoff transformation do not reflect this singular situation. In the
limit λ→ 0 we obtain

λe(λ)→ 2 and uc ↓ −2

by (1.4.2) such that the interval (−2,−1) accounts for the unsaturated regime.
The inverse Kirchhoff transformation κ−1 in (1.3.24) tends pointwise to the
function

κ−1
0 : u 7→

{
−(u+ 2)−1 for − 2 < u ≤ −1

u for u ≥ −1
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On the one hand, this makes clear that for big λ the function κ−1 remains ill-
conditioned due to big slopes for small pressures u. On the other hand, this is
irrelevant in the limit case λ→ 0, in which the saturation M of the generalized
pressure u in (1.3.25) tends pointwise to

M0 : u 7→ θM ∀u ∈ (−2,∞) (1.4.6)

while kr(M(u)) in (1.3.26) tends to 1 on (−2,∞). However, since one can
extend M continuously by setting

M(uc) := θm

with kr(M(uc)) = 0, one can extend the limit M0 (discontinuously) in −2 with

M0(−2) = M0

(
lim
λ→0

uc

)
:= lim

λ→0
M(uc) = θm (1.4.7)

reflecting the definition (1.4.4) since one could define

κ(−∞) := uc . (1.4.8)

Another view on this case is the observation that the graph of M (which is a
degenerating root function as the exponent in (1.3.25) vanishes) turns into the
monotone graph

u 7→
{

[θm, θM ] for u = −2

θM for u > −2 .
(1.4.9)

It seems that the limit case for λ→ 0 can be regarded as hydrologically reason-
able if one accepts the definitions in (1.4.4) and in (1.4.6)–(1.4.8). Obviously,
this limit case produces a jump in the saturation (from θm to θM ) and in the
pressure (from −∞ to p ∈ R), respectively, across the wetting front in a soil
(cf. [13, p. 303]), thus modelling the unsaturated regime in a degenerate way.
We point out that such models are considered in the literature, e.g. for so-
called dam problems, see page 52. Furthermore, we note that with our solution
method, see Remark 2.4.5, Remark 2.7.5 and Section 2.8, we can also treat a
version of this limit case generated by the maximal extension of the monotone
graph in (1.4.9).

For λ→∞, while kr(·) (in (1.2.10) with (1.4.2)) becomes

kr∞ : θ 7→
(
θ − θm

θM − θm

)a

∀θ ∈ [θm, θM ] , (1.4.10)

the parameter function p 7→ θ(p) degenerates into a step function θ∞ with

θ∞(p) =

{
θm for p < −1

θM for p ≥ −1 .
(1.4.11)

Analogously, so does kr(θ(·)) with the limit k∞ satisfying

k∞(p) = kr∞(θ∞(p)) =

{
0 for p < −1

1 for p ≥ −1 .
(1.4.12)
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Consequently, in the limit case the Kirchhoff transformation is no longer invert-
ible for the unsaturated regime.

Observe that for λ→∞ we have

λe(λ)→∞ and uc ↑ −1

due to (1.4.2) such that the slopes of the functions κ−1, M and kr(M(·)) in-
crease while the intervals (uc,−1) corresponding to the unsaturated regime
become smaller and smaller. So as above, the inverse Kirchhoff transformation
is also ill-conditioned for big λ, i.e. it always has big slopes for small general-
ized pressures u. Unfortunately, in contrast to the case λ → 0, we obtain the
constant function

M∞ : u 7→ θM ∀u ∈ [−1,∞) (1.4.13)

as the pointwise limit of M , in which nothing accounts for the unsaturated
regime anymore. So this limit case does not seem to make sense hydrologically.
Nevertheless, it can be given a sense if we observe that for λ → ∞ the graph
of M approaches the monotone graph

u 7→
{

[θm, θM ] for u = −1

θM for u > −1
(1.4.14)

which looks essentially like (1.4.9). A plausible remedy would now be to redefine

θ∞(−1) := θm and correspondingly M∞(−1) = θm (1.4.15)

with kr∞(M∞(−1)) = 0, thus assigning the unsaturated regime to the (normed)
bubbling pressure −1. As a consequence, the value p = −1 (corresponding to
u = −1) would play the same role as p = −∞ (corresponding to u = −2) in
the case λ→ 0 above, and the two limit cases would result in the same model.
Interestingly, our analytical and numerical approach to this limit case described
in Remark 2.4.5, Remark 2.7.5 and Section 2.8, is the same whether we carry
out the redefinition (1.4.15) or not. As mentioned above for λ→ 0, the crucial
aspect of this case is the argument uc and not the value M∞(uc) as already
suggested by (1.4.14).

Remark 1.4.1. With regard to variations of pb, our functions in (1.3.20)–
(1.3.26) do not seem to alter. However, in (1.3.19) we have defined p0 := −pb

as the (positive pressure) unit for these functions which has to be taken into
account when pb is variable. Note that pb is a negative (capillary) pressure
(corresponding to a suction). Decreasing the unit −pb results in “compressing”
the functions (1.3.20) with respect to the p- and the u-axis while increasing −pb

means “expanding” the functions (or their graphs). These transformations be-
come clear if we set p = p̂ p0 and u = û p0 in (1.2.9), (1.2.11) and (1.3.5)–(1.3.9)
with p0 = u0 6= −pb instead of (1.3.19) and vary pb/p0 for the resulting func-
tions in p̂ or û, respectively. Note that for the Kirchhoff transformation and
its inverse this scaling (i.e. compression or expansion of the axes) takes place
on both axes while for the other functions in (1.3.20)–(1.3.26) it just applies to
one (the p̂- or û-) axis.
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As far as the Richards equation is concerned, especially if one is only interested
in the saturation rather than in the pressure, the influence of the bubbling
pressure is restricted to the scaling factor ur = pr = −pb(̺gz0)

−1 which is a
measure for the size of the spatial derivative (or the elliptic term) in (1.3.17)
and (1.3.18). Of course, pb as a pressure unit has to be taken into account
for the scale of the solution p when it comes to posing boundary conditions
(see Section 1.5) and possibly initial conditions (if they are not given in the
saturation, see Section 1.6) and, in particular, in situations where different
bubbling pressures occur (see Section 2.8 and Chapter 4). In the latter case,
one could also choose p0 = u0 = (̺gz0)

−1 as a canonical pressure unit, leading
to pr = ur = 1 in (1.3.15), and alter the parameter functions as just described.

Now, with a fixed p0, it becomes clear from the observation in Remark 1.4.1 that
pb/p0 → −∞ results in functions (1.3.7)–(1.3.9) with increasing support and in
which both endpoints of the interesting interval accounting for the unsaturated
regime go to −∞. The limit case with the pointwise limits

θ−∞ = M−∞ : u 7→ θM ∀u ∈ R

of θ in (1.2.9) and M in (1.3.8) no longer “sees” the unsaturated case unless
one defines

θ−∞(−∞) = M−∞(−∞) := θm

which, in contrast to (1.4.9) and (1.4.14), does not result in a reasonable non-
trivial numerical problem, see also Section 2.4.

The limit case pb/p0 ↑ 0 is more interesting since here we obtain essentially
the same situation as for λ → ∞. We only need to replace −1 by 0 in the
definition of the relevant functions for that case above. Observe that the redefi-
nition of θ∞ and correspondingly M∞ in (1.4.15), which might seem somewhat
artificial in these limit cases, is not necessary if we apply an altered Kirchhoff
transformation in the form

κ̃ : p 7→ u =

∫ p

−∞
kr(θ(q)) dq (1.4.16)

which is possible here since the improper integral exists for the Brooks–Corey
functions. This entails a translation of the functions (1.3.5) and (1.3.7)–(1.3.9)
to the right by |uc| (given in (1.3.6)) such that the corresponding functions
obtained by the altered transformation are defined on (0,∞). Then, except for
pb/p0 → −∞, the limit cases look similar as above, now with ũc = 0 representing
the unsaturated regime (without redefinition). For pb/p0 → ∞ we would get
M(u)→ 0 for all u ∈ (0,∞), but this is just due to the fact that the interesting
range around the physical (atmospheric) pressure 0 is now mapped on |uc| by
κ̃ with |uc| → ∞.
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1.4.3 Altered Brooks–Corey functions for the nondegenerate
Richards equation

One difficulty in the analysis and the numerics of the Richards equation is
that the factor kr(θ(p)) in the spatial derivative can become arbitrarily small
(if p tends to −∞), such that an implicit time discretization of (1.3.17) does
not lead to uniformly elliptic spatial problems. On the other hand, physically
reasonable solutions p : Ω×(0, T )→ R should be bounded. Therefore, and since
we consider this situation in Chapter 3, we take a look at the nondegenerate
Richards equation in which kr(·) is replaced by an altered relative permeability
function krα(·) satisfying the nondegeneracy condition

krα(θ) ≥ α ∀θ ∈ [θm, θM ] (1.4.17)

for a (small) α ∈ (0, 1). Consequently, if K(·) ≥ α holds, too, the main part
div(K(x)µ−1krα(θ(p))∇p) of the spatial derivative in (1.2.7) is a quasilinear
uniformly elliptic operator (cf. [44, p. 203]) in the sense that (with (A.2.13))

c ‖p‖21 ≤
∫

Ω
K(x)µ−1krα(θ(p))|∇p|2 dx ≤ C‖p‖21 ∀p ∈ H1

0 (Ω)

holds for certain c, C > 0. Whenever we speak of the uniformly elliptic case in
this work, we have these inequalities in mind with a focus on the left estimate.

The obvious way to achieve (1.4.17) is to define

krα(θ) := max(kr(θ), α) ∀θ ∈ [θm, θM ] (1.4.18)

with kr(·) in (1.2.10). The function θ(·) in (1.3.20) can remain untouched (see,
however, (1.4.23)). With this definition and pα < −1 given by

(−pα)−λe(λ) = α ⇐⇒ pα = −α− 1
λe(λ) (1.4.19)

the altered relative permeability function with respect to p reads

krα(θ(p)) =

{
α for p ≤ pα

kr(θ(p)) for p ≥ pα

with kr(θ(·)) given in (1.3.21). Clearly, if a function p : Ω × (0, T ) → R is
bounded by |pα|, it is a solution of (1.3.17) if and only if it solves this equation
with krα instead of kr. For this altered nondegenerate Richards equation,
however, the altered Kirchhoff transformation κα : R→ R is surjective and the
corresponding improper integral in (1.4.16) no longer exists.

More concretely, with κ given in (1.3.22) and

uα := κ(pα) =
1

λe(λ)− 1
α

1− 1
λe(λ) − λe(λ)

λe(λ) − 1
(1.4.20)

satisfying uc < uα < −1 we obtain

κα(p) =

{
α(p− pα) + uα for p ≤ pα

κ(p) for p ≥ pα
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such that κα(p) → −∞ holds for p → −∞. Consequently, the altered inverse
Kirchhoff transformation κ−1

α : R→ R no longer has a singularity uc and reads

κ−1
α (u) =

{
α−1(u− uα) + pα for u ≤ uα

κ−1(u) for u ≥ uα

with κ−1 given in (1.3.24), i.e. κα is an affine function on (−∞, uα] with the
(big) slope α−1.

Now, in contrast to the function p 7→ θ(p), the saturation of the generalized
pressure u 7→Mα(u) = θ(κ−1

α (u)) differs from u 7→M(u). One can think of the
function M on (uc, uα] being “stretched” onto the interval (−∞, uα] in order to
obtain Mα given by

Mα(u) =

{
θm + (θM − θm)(−α−1(u− uα)− pα)−λ for u ≤ uα

M(u) for u ≥ uα .
(1.4.21)

Mα is monotonically increasing with Mα(u)→ θm for u→ −∞ and

θs := Mα(uα) = θ(pα) = θm + (θM − θm)α
1

e(λ) , (1.4.22)

i.e. with a (small) range M((−∞, uα)) = (θm, θs). We point out that one could
also treat θ(·) similarly as or instead of kr(·) in (1.4.18) and obtain the same
results for the altered functions that we just discussed. Even though in doing
so we alter the Richards equation (1.3.17) in the saturation term, too, let us
define the “cut” saturation

θα(p) := max(θ(p), θs) ∀p ∈ R , (1.4.23)

which provides the same results as above, for further use. For completeness, we
note that

krα(Mα(u)) =

{
α for u ≤ uα

kr(M(u)) for u ≥ uα .

We remark here that, instead of cutting kr(·) as in (1.4.18), one could of course
think of parameter functions for which kr(·) ≥ 0 does not satisfy kr(·) ≥ α for
an α > 0, but which nevertheless generate surjective Kirchhoff transformations
κ : R→ R leading to similar results as just discussed for the nondegenerate case.
As an example one could choose λ = 1 in (1.2.9) but replace e(λ) by 1 in (1.2.10).
This would lead to a logarithmic expression for κ with respect to p ≤ −1 and
to exponential terms in κ−1, M and kr(M(·)) with respect to u ≤ −1, i.e. to
big slopes of these functions which is characteristic in hydrologically realistic
situations.

1.4.4 Limit cases for the altered Brooks–Corey functions

Finally, we take a look at the limit cases for our altered functions with a fixed
α ∈ (0, 1), using the results obtained above for the original parameter functions.
In our considerations in Section 2 we come back to these limit cases, too.
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First, for λ→ 0 we get

pα → −α− 1
2 =: pα,0 < −1 and uα → −2 + α

1
2 =: uα,0 > −2

from (1.4.19) and (1.4.20). According to (1.4.3) and (1.4.5) the pointwise limit
of the relative permeability functions krα(·) and krα(θ(·)) is given by

krα,0(θ) = max(kr0(θ), α) ∀θ ∈ [θm, θM ]

and
kα,0(p) = max(k0(p), α) ∀p ∈ R ,

respectively. The limit of the inverse Kirchhoff transformation κ−1
α reads

κ−1
α,0 : u 7→

{
α−1(u− uα,0) + pα,0 for u ≤ uα,0

κ−1
0 (u) for u ≥ uα,0 .

Unfortunately, the limit of Mα is

Mα,0 : u 7→ θM ∀u ∈ R (1.4.24)

which is clear for u > uα,0 due to the behaviour of M0. On the other hand, by
definition of Mα for u ≤ uα,0 we obtain

−α−1(u− uα)− pα → −α−1(u− uα,0)− pα,0 > 1

and consequently
(−α−1(u− uα)− pα)−λ → 1

for u ≤ uα,0 and λ→ 0. The limit (1.4.24) does not account for the unsaturated
case and is therefore useless as a hydrological model. This does not change if
we use (1.4.23) with a fixed θs ∈ (θm, θM ) instead of (1.4.18) with a fixed α at
the beginning. Even though we get an altered saturation

Mθs(u) =

{
θs for u ≤ uα

M(u) for u ≥ uα

in this case which is independent of λ on (−∞, uα), we still have the dependency
(1.4.22) of θs and α which is equivalent to

logα = log

(
θs − θm

θM − θm

)
e(λ) .

But this relationship forces α → 0 (and uα → −2) for λ → 0 because of
e(λ) → ∞ for λ → 0. This, however, spoils our initial intention (1.4.17) to
consider a nondegenerate Richards equation in which the factor in front of the
spatial derivatives is bounded from below by a positive constant. Instead we
basically regain the limit case λ→ 0 for our original parameter functions (with
θm replaced by θs in (1.4.9)).
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The situation is more promising for λ→∞. Here we have

pα → −1 and uα → −1

due to (1.4.19) and (1.4.20). The relative permeabilities converge pointwise to

krα,∞(θ) = max(kr∞(θ), α) ∀θ ∈ [θm, θM ]

and
kα,∞(p) = max(k∞(p), α) ∀p ∈ R ,

respectively, with the functions in (1.4.10) and (1.4.12). In the limit the inverse
of the altered Kirchhoff transformation reads

κ−1
α,∞ : u 7→

{
−α−1(u+ 1)− 1 for u ≤ −1

u for u ≥ −1 .

The saturation Mα tends pointwise to the step function

Mα,∞(u) =

{
θm for u < −1

θM for u ≥ −1
(1.4.25)

with krα(Mα(·)) converging to

krα,∞(Mα,∞(u)) =

{
α for u < −1

1 for u ≥ −1 .

This limit case makes sense hydrologically because it models both the saturated
case to which all physical pressures values p ≥ −1 refer and the unsaturated
case for all p < −1. In addition, the full range of possible values p ∈ R is
still contained in the model and the inverse Kirchhoff transformation is not
ill-conditioned since its slopes are bounded by α−1. If we choose (1.4.23) with
a fixed θs ∈ (θm, θM ) instead of (1.4.18), the limit looks the same with θm in
(1.4.11) and (1.4.25) replaced by θs.

For realistic situations as discussed at the beginning of this section, one would
of course choose α small enough, such that θs is close to θm and the resulting
Mα almost “looks like” a step function (see Figure 1.11), thus resembling the
situation in this limit case. Finally, we mention that our analytical and nu-
merical approach to the Richards equation (compare (2.4.7), Remark 2.7.5 and
Section 2.8) allows an efficient and robust treatment of this limit case, too.

As far as variations of pb are concerned for the altered parameter functions, we
obviously obtain the same case as above for pb/p0 → −∞ which is hydrologically
senseless. For pb/p0 ↑ 0 we obtain pα ↑ 0 as well as uα ↑ 0. Therefore, krα(θ(·))
turns into the step function

p 7→
{
α for p < 0

1 for p ≥ 0
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and (keeping in mind that both axes are scaled for the transformation) κα

converges to a piecewise linear function on R with the inverse

u 7→
{
α−1u for u < 0

u for u ≥ 0 .

The saturation Mα tends to

u 7→
{

θm for u < 0

θM for u ≥ 0
(1.4.26)

and krα(Mα(·)) goes to

u 7→
{
α for u < 0

1 for u ≥ 0

with θm replaced by θs if we consider the “cut” saturation (1.4.23). We conclude
that, just as for the original parameter functions, this limit case pb/p0 ↑ 0 is
basically the same as the one obtained above for λ → ∞ with the altered
parameter functions.

1.5 Boundary value problems for the Richards equa-

tion: strong and weak formulations

The purpose of this section is to give strong and weak formulations of a stan-
dard boundary value problem we would like to consider for the homogeneous
Richards equation (1.3.17) and its Kirchhoff–transformed version (1.3.18). In
Subsection 1.5.1 we focus on a differential form of a Signorini-type boundary
value problem for the Richards equation with surface water which we obtain
from hydrological considerations on a reservoir model. Then, on the basis of
this problem, we derive an equivalent variational formulation for the generalized
physical pressure in Subsection 1.5.2 giving rise to an interpretation in a weak
sense which we introduce in Subsection 1.5.3. Finally, in Subsection 1.5.4 we
derive a weak variational inequality of the Signorini-type problem in the phys-
ical pressure variable and investigate the connection between this variational
inequality and the one obtained in the generalized variables. To this end, we
shall discuss intensively the Kirchhoff transformation as a superposition oper-
ator on different Sobolev spaces, which will be needed for the analysis of the
heterogeneous Richards equation in Chapter 3, too.

For simplicity and without loss of generality we set t0 = 1 s, As = m−1, n ≡ 1,
pr = ur = 1 and Kh ≡ 1 in the equations (1.3.17) and (1.3.18). The ˆ in
these equations has only been introduced to carry out the scaling in Section 1.3
and will be skipped from now on. So in the following we mostly deal with the
Richards equation in the form

θ(p)t − div
(
kr(θ(p))∇ (p− z)

)
= 0 (1.5.1)
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and its transformed version which reads

M(u)t − div
(
∇u− kr(M(u))ez

)
= 0 . (1.5.2)

We will indicate how to deal with space dependent n(·) and Kh(·) where it is
necessary and appropriate. In general, these functions are at least required to
be positive and bounded and Kh(·) ≥ c should be satisfied for a c > 0.

1.5.1 A problem of Signorini’s type for the Richards equation
with surface water

Let Ω ⊂ Rd (in our concrete cases d ∈ {1, 2, 3}) be an open, bounded, connected
and nonempty set with a Lipschitz boundary ∂Ω (see Definition A.2.1). This
condition guarantees that the normal n, which we assume to be directed out-
wards, exists almost everywhere on ∂Ω (cf. Ciarlet [28, pp. 32–37]). In practical
cases we mostly consider Ω to be a polyhedron or at least having a boundary
which is piecewise C1 (see Definition A.1.1). Figure 1.15 shows an example
of such a domain Ω ⊂ R2 which could be regarded as a vertical cut through
the ground in three space dimensions with γu representing the surface of the
ground.

γu

γd

γl
γrΩ

Figure 1.15: 2D-domain Ω (vertical cut through the ground)

For a given time t ∈ [0, T ] we assume ∂Ω to be decomposed into finitely many
non-overlapping connected subsets each of which is contained in exactly one of
the three subsets γD(t), γN (t) and γS(t) of ∂Ω. With given functions uD(t)
on γD(t) and fN (t) on γN (t) we assume that the unknown function u and the
unknown flux

v = −(∇u− kr(M(u))ez) = −kr(θ(p))∇ (p− z) (1.5.3)

(compare (1.5.1), (1.5.2) with (1.2.2)) satisfy the following boundary conditions:

a) Dirichlet boundary conditions:

u = uD(t) on γD(t)

b) Neumann boundary conditions:

v · n = fN (t) on γN (t)
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c) Signorini-type boundary conditions:

u ≤ 0 , v · n ≥ 0 , u · (v · n) = 0 on γS(t)

Dirichlet and Neumann boundary conditions are well known for all kinds of
boundary value problems. Observe that in our case the Dirichlet boundary
conditions could be equivalently expressed in terms of the physical water pres-
sure p = pD(t) := κ−1(uD(t)) using the Kirchhoff transformation κ (see (1.3.1)).
The Neumann boundary conditions refer to the physical water flux v, whether
expressed by the physical variable p or the generalized pressure u. With regard
to the Signorini-type boundary conditions observe that due to the definition of
the Kirchhoff transformation (1.3.1) and kr(θ(p)) = 1 for p ≥ 0 we have p = u
for p ≥ 0 or u ≥ 0, respectively, and p < 0 ⇔ u < 0. Therefore, c) can be
equivalently formulated if we replace u by p.

Dirichlet boundary conditions usually appear as hydrostatic pressures given
by surface water (e.g. lakes or rivers) on γu or water (e.g. rivers or the sea)
on a side γl or γr of ∂Ω. Neumann boundary conditions specify water flow
into or out of Ω due to rain or water movements around ∂Ω and often occur
as homogeneous Neumann boundary conditions on dry parts of γu or on the
border of an impermeable soil, e.g. on γd.

Apart from the Dirichlet and Neumann boundary conditions which are called
boundary conditions of the first and second kind, respectively, one also encoun-
ters boundary conditions of the third kind (on semipermeable boundaries, see
Bear [13, p. 265]), known as Robin boundary conditions (consult Gustafson and
Abe [46] and [47]). They are conditions on linear combinations of Dirichlet and
Neumann boundary values and will play an crucial role for our treatment of the
heterogeneous Richards equation in Section 3.4. For simplicity we do not treat
them in the first two chapters of this work. Further (nonlinear) generalizations
of Robin boundary conditions are known as leaky boundary conditions (see e.g.
Carrillo and Chipot [23] and Chipot and Lyaghfouri [26]), which we do not
consider here.

Signorini boundary conditions are well known for contact problems in mechanics
(see Signorini [86] and Krause [61]). Moreover, “Signorini’s problem” is the
name for a problem in linear elasticity. Nevertheless, Signorini-type boundary
conditions or boundary conditions of Signorini’s type occur in various fields,
for instance in electrochemistry (cf. Gerbi et al. [42]), in connection with Stefan
problems (cf. Calvo et al. [22]) and in hydrology (cf. Bagagiolo and Visintin [8]
and Zheng et al. [103]). Therefore, we also attribute Signorini’s name to the
boundary γS and the complementary conditions given above in c).

In hydrological settings, boundary conditions of Signorini’s type usually appear
around surface water reservoirs on γu or in case of a so-called dam problem
(see e.g. Alt [2]) above the part of the boundary where the surface water or the
sea, respectively, is in contact with ∂Ω (in the latter case e.g. on a part of γl

or γr). Such a situation is depicted in Figure 1.16 which shows a zoomed part
of γu where a water reservoir occurs above γ3. Therefore, we consider γ3 to be
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Figure 1.16: Boundary of Signorini’s type around a water reservoir

a part of the Dirichlet boundary γD(t) with the boundary values given as the
hydrostatic pressure imposed by the surface water.

Although the surface of the reservoir is γ6, the domain Ω can be fully saturated
up to a curve lying above γ6, here up to the curve γ7∪γ2∪γ4∪γ8, on which the
pressure is vanishing. The part γ2 ∪ γ4 of ∂Ω is called the seepage face. Here
water can flow from the interior of Ω across ∂Ω tickling into the reservoir, thus
v · n ≥ 0, but the pressure of the water is p = u = 0. On γ1 ∪ γ5, however,
we have no flow v · n = 0, but then the water pressure cannot be positive,
i.e. p ≤ 0 ⇔ u ≤ 0. This is the hydrological reason for the complementary
conditions for u and v ·n on the Signorini-type boundary γS(t) given in c) that
result in a decomposition of γS(t) in seepage faces like γ2∪γ4 and adjacent parts
of ∂Ω like γ1 ∪ γ5. The points P1 and P2, which determine the boundary of the
seepage face within the Signorini-type boundary γS(t), are usually unknown
a priori and arise as part of the solution, which satisfies the conditions given
in c). Just as in mechanics, the boundary value problems with conditions of
Signorini’s type, which we encounter in the following, can therefore be regarded
as free boundary problems. Finally, note the analogy of our conditions in c)
and Signorini boundary conditions known from mechanics. For example, u ≤ 0
on γS corresponds to the non-penetration condition in contact problems.

There is a hydrological necessity for the existence of a nontrivial seepage face if
the so-called phreatic surface, which is given by p = 0, i.e. γ7 ∪ γ8, is above the
water table γ6 around the reservoir. Otherwise, if P1 and P2 were the endpoints
of γ3, the water flow v in these points would have to be parallel to the phreatic
surface on the one hand, but also perpendicular to γ3 on the other hand, which
is only possible if the phreatic surface is beneath γ6 around the water reservoir.
See Bear [13, pp. 260/261] for a detailed discussion of the seepage face.

Furthermore, we note that the area beneath γ7∪γ2∪γ3∪γ4∪γ8 in Figure 1.16,
where p ≥ 0 holds, does not necessarily coincide with the region in which the
ground is fully saturated. In general there is a so-called capillary fringe above
γ7 ∪ γ8 in which full saturation still occurs although p < 0 holds. This is due to
the so-called bubbling pressure pb < 0 that is discussed in Section 1.2 and that is
also reflected by our special choice of Brooks–Corey parameter functions (1.2.9)
and (1.2.10). Consequently, the groundwater table, i.e. the border between the
saturated and the unsaturated region in the interior of Ω, is given by p = pb

and generally lies above the phreatic surface.
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Now, for any t ∈ (0, T ], T > 0, we consider the boundary value problem

M(u)t − div
(
∇u− kr(M(u))ez

)
= 0 on Ω (1.5.4)

u = uD(t) on γD(t) (1.5.5)

v · n = fN (t) on γN (t) (1.5.6)

u ≤ 0 , v · n ≥ 0 , u · (v · n) = 0 on γS(t) (1.5.7)

which we call Signorini-type problem or problem of Signorini’s type for the
Kirchhoff–transformed Richards equation. Of course, it can be easily reformu-
lated for the Richards equation with the physical pressure p as the unknown.
Due to ellipticity and monotonicity, however, most of the analysis is only car-
ried out for the Kirchhoff–transformed version (compare Subsection 1.6), and
so is our numerical treatment of the Richards equation in Chapter 2. This is
why we choose the formulation above. An additional requirement needed in
(1.5.4)–(1.5.7) is certainly uD > uc and u > uc if M : (uc,∞) → R with a
uc < 0, which is the case for the Brooks–Corey parameter functions. Finally,
we point out that if subsets of γD(t) and γS(t) are adjacent, uD(t) needs to be
compatible with the condition u ≤ 0 on γS if functions u from certain solution
spaces are to satisfy both boundary conditions.

Remark 1.5.1. Before we derive a weak formulation for this free boundary
problem we shortly consider a straightforward model for a dynamic coupling of
ground and surface water. In the situation depicted in Figure 1.16 the Dirichlet
data on γ3 is given by the hydrostatic pressure pD(t) = uD(t) = ̺gh(t) (possibly
modulo scaling factors, e.g. |pb|−1 with the bubbling pressure pb as done in
Section 1.3). The surface water level h(t) over the ground is a function on the
subset γ3 of γD(t) which is in general time-dependent, too, i.e. we have γ3(t). In
fact, by considering the geometry of ∂Ω, knowing γ3(t) is equivalent to knowing
h(t) if the water in the reservoir is assumed to remain static. In this case we
speak of a reservoir model for the surface water. If the surface water is a big lake
or the sea, h(t) as a function of t can be regarded as practically not influenced
by the groundwater in Ω, i.e. as a given boundary condition on γ3(t) for the
Richards equation. This is assumed in (1.5.4)–(1.5.7).

If the reservoir is small enough such that the flow of groundwater from Ω into
the reservoir or back cannot be neglected, h(t) or the Dirichlet boundary γ3(t)
are not known a priori. Then we need to consider a coupling of the surface
water behaviour and the groundwater modelling which is given by the Richards
equation. The easiest way to do this for the reservoir model is to consider the
increase or decrease of volume d

dtV (t) of the surface water given by the water
flow v · n across γ(t) := γ2(t) ∪ γ3(t) ∪ γ4(t) (see Figure 1.16) and assuming
mass conservation

d

dt
m(t) = ̺

d

dt
V (t) = ̺

∫

γ(t)
v(x, t) · n dσ(x) (1.5.8)

for the total mass m(t) of the water in the reservoir. By the geometry of ∂Ω,
knowing V (t) is both equivalent to knowing h(t) and equivalent to know-
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ing γ3(t). Consequently, considering these geometric relationships, equations
(1.5.4)–(1.5.8) form a simple model for a coupling of ground and surface water.

1.5.2 A variational inequality in a classical sense

As a special type of boundary value problem the Signorini-type problem (1.5.4)–
(1.5.7) has a weak formulation in terms of a variational inequality. This follows
from an application of a generalization of Green’s formula or partial integration,
which we note below. See Theorem A.1.3 in the appendix for a derivation of it
from Gauss’s theorem. We also refer to Definition A.1.1 in the appendix for an
exact definition of a C1-polyhedron Ω ⊂ Rd which is sometimes called a domain
with a smooth boundary ∂Ω except for a (d−1)-nullset of singularities. Further-
more, see [55, pp. 362–369] for measurability of hyperfaces and Definition A.1.4
to recall the well-known spaces Ck(Ω) for k ∈ N0.

Theorem 1.5.2. Let Ω ⊂ Rd be a bounded C1-polyhedron with Hausdorff mea-
surable ∂Ω, G ∈ (C1(Ω))d and v ∈ C1(Ω). Then the following identity holds:

∫

Ω
div(G(x)) v(x) dx = −

∫

Ω
G(x)∇v(x) dx +

∫

∂Ω
(G(x) · n(x)) v(x) dσ(x) .

(1.5.9)

Furthermore, for

uD(t) ∈ {v = w|γD(t) : w ∈ C2(Ω) ∧ w|γS(t) ≤ 0} (1.5.10)

we define the convex set Kc(t) ⊂ C2(Ω) as

Kc(t) := {w ∈ C2(Ω) : w|γD(t) = uD(t) ∧ w|γS(t) ≤ 0} . (1.5.11)

It is clear that Kc(t) is nonempty since uD(t) is chosen to be compatible with
the Signorini-type boundary condition u|γS(t) ≤ 0.

Note that due to the definition (1.3.1) of the Kirchhoff transformation, the func-
tion κ : R→ R is continuously differentiable if kr is continuous and, therefore,
M = θ ◦ κ−1 is continuously differentiable if θ is. In what is to come we apply
the well-known definitions of (differentiable) manifolds in [55, pp. 115/116] and
Hausdorff measures on C1-polyhedra in [3, p. 13], see also Definition A.1.1 in
the appendix. Now we can prove the following equivalence.

Proposition 1.5.3. Let M,kr : R → R be continuously differentiable real
functions, and for t ∈ (0, T ] let u(t) ∈ C2(Ω) on a C1-polyhedron Ω ⊂ Rd with
Hausdorff measurable ∂Ω. Furthermore, let fN(t) be continuous on γN (t), and
let γN (t) and γS(t) be piecewise (d−1)-dimensional manifolds. Then u satisfies
the boundary value problem (1.5.4)–(1.5.7) for t if and only if it satisfies the
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variational inequality

∫

Ω
M(u)t (v − u) dx+

∫

Ω
∇u∇(v − u) dx ≥

∫

Ω
kr(M(u))ez∇(v − u) dx−

∫

γN (t)
fN (t) (v − u) dσ ∀v ∈ Kc(t) (1.5.12)

in the convex set Kc(t). In addition, (1.5.12) becomes a variational equality if
there is no boundary of Signorini’s type, i.e. if γS(t) = ∅. In this case the set
of test functions v − u is the subspace {w ∈ C2(Ω) : w|γD(t) = 0} of C2(Ω).

Proof. First, let u satisfy the boundary value problem (1.5.4)–(1.5.7) for a
t ∈ (0, T ]. Then, of course, we have u ∈ Kc(t) due to (1.5.7). With a v ∈ Kc(t)
we multiply (1.5.4) by v − u on both sides and integrate over Ω obtaining

∫

Ω
M(u)t (v − u) dx+

∫

Ω
− div(∇u− kr(M(u))ez) (v − u) dx = 0 .

Due to the conditions imposed on the involved functions we have v−u ∈ C1(Ω)
and v = −(∇u − kr(M(u))ez) ∈ (C1(Ω))d. So applying Theorem 1.5.2 for
G = v and v − u instead of v we arrive at

∫

Ω
M(u)t (v − u) dx+

∫

Ω
∇u∇(v − u) dx

−
∫

Ω
kr(M(u))ez∇(v − u) dx+

∫

∂Ω
v · n (v − u) dσ = 0 . (1.5.13)

Note that ∂Ω is a disjoint union of the sets γD(t), γN (t) and γS(t). Therefore,
taking v − u = 0 on γD(t) and v · n = fN(t) on γN (t) into account, we only
need to prove ∫

γS(t)
v · n (v − u) dσ ≤ 0

in order to obtain (1.5.12). But this follows from (v · n) · u = 0 and v · n ≥ 0
and v|γS(t) ≤ 0 on γS(t).

Conversely, let u ∈ Kc(t) satisfy (1.5.12) for a t ∈ (0, T ]. An application of
Theorem 1.5.2 as above for G = v and v − u instead of v to (1.5.12) provides

∫

Ω

(
M(u)t (v − u)− div(∇u− kr(M(u))ez)

)
(v − u) dx

+

∫

γN (t)
fN(t) (v − u) dσ −

∫

∂Ω
v · n (v − u) dσ ≥ 0 ∀v ∈ Kc(t) . (1.5.14)

We first prove that u satisfies (1.5.4) for t by assuming that this is not the case,
i.e. there is a x ∈ Ω such that w.l.o.g. we have

M(u(x, t))t − div(∇u(x, t)− kr(M(u(x, t)))ez) > 0 ,

which by continuity of the function on the left hand side we assume to be true
on a ball Bε(x) ⊂ Ω of radius ε > 0 around x. Now we choose a v ∈ Kc(t)
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such that v = u on Ω\Bε(x) and v − u < 0 on Bε(x). But with this choice
of v the integrals over γN (t) and ∂Ω in (1.5.14) vanish while the integral over Ω
is negative due to the continuity of the integrands. This is a contradiction
to (1.5.14), so u satisfies (1.5.4).

The construction of a smooth function v as used above is well known and relies
on the existence of a nonnegative ϕ ∈ C∞(Rd) with suppϕ = Bε(x). For the
basic ingredient of such a construction consult e.g. [56, p. 277]. In the following
we will use this idea to get test functions with certain properties on parts of
the boundary ∂Ω.

Since u satisfies (1.5.4) and u = v on γD(t), the variational inequality (1.5.14)
reduces to
∫

γN (t)
(fN (t)−v ·n)(v−u) dσ−

∫

γS(t)
v ·n (v−u) dσ ≥ 0 ∀v ∈ Kc(t) . (1.5.15)

Now, since γN (t) is a piecewise (n− 1)-dimensional manifold, we can conclude
fN (t) = v · n on γN (t) as required. Otherwise, using the continuity of the
involved functions, we find a subset γ̃ ⊂ γN (t) with a positive Hausdorff measure
and a suitable v ∈ Kc(t) such that we have (fN (t)−v ·n)(v−u) < 0 on γ̃ while
v = u holds on γS(t) ∪ (γN (t)\γ̃), leading to a contradiction to (1.5.15). Using
this result, (1.5.15) reduces to

∫

γS

v · n (v − u) dσ ≤ 0 ∀v ∈ Kc(t) , (1.5.16)

from which we prove (1.5.7) by applying the same technique: Let u(x, t) < 0
for a point x in a subset γ̃ε = Bε(x)∩ γS(t) with a positive Hausdorff measure.
We assume v(x, t) ·n 6= 0 and ε to be small enough such that u and v ·n do not
change their sign on γ̃ε. Then, we first construct an admissible test function
v ∈ Kc(t) such that u < v ≤ 0 on γ̃ε, i.e. v − u > 0 on γ̃ε, and v = u elsewhere
on γS(t). (1.5.16) now gives v(x, t) · n < 0. On the other hand, if we choose
v ∈ Kc(t) with v < u on γ̃ε, i.e. v − u < 0 on γ̃ε, and v = u elsewhere on γS(t),
we obtain v(x, t) · n > 0 from (1.5.16), which is a contradiction. So altogether,
we conclude v · n = 0 if u < 0. Since u ∈ Kc(t) we get u · (v · n) = 0 on γS(t).
Finally, if v · n < 0 on a γ̃ε ⊂ γS(t) as above, we choose a v < 0 on γ̃ε with
v = 0 on γS(t)\γ̃ε which leads to a positive value of the integral in (1.5.16) and,
thus, to a contradiction. Therefore, we also have v · n ≥ 0 on γS(t).

Now if γS(t) = ∅, it is clear that the set of test functions v−u in (1.5.12) is the
linear space {w ∈ C2(Ω) : w|γD(t) = 0}. Therefore, we can also test with u− v
instead of v − u in (1.5.12) and conclude that (1.5.12) is indeed a variational
equality in this case.

Remark 1.5.4. It is easy to see that a reformulation of (1.5.4)–(1.5.7) as a
Signorini-type problem for the Richards equation with the physical pressure
p(t) (for a t ∈ (0, T ]) is equivalent to an analogous reformulation of the varia-
tional inequality (1.5.12) in the corresponding convex set if θ, kr : R → R are
continuously differentiable.
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Observe that, due to our special choice of parameter functions according to
Brooks–Corey, the saturation M as a function of the generalized pressure u is
not defined on the whole real line but only on (uc,∞) with a uc < 0. In cases
like these the range of u needs to be a subset of (uc,∞) in order to satisfy
(1.5.4)–(1.5.7). Of course, the Dirichlet boundary condition uD(t) needs to be
chosen in that way in the first place. Given this, Proposition 1.5.3 also applies
if M : (uc,∞)→ R is continuously differentiable.

Alternatively, one can choose the convex set

K̃c(t) := {v ∈ Kc(t) : v(x) > uc ∀x ∈ Ω} . (1.5.17)

Then, the function u ∈ K̃c(t) satisfies (1.5.4)–(1.5.7) if and only if it satisfies
(1.5.12) in K̃c(t) instead of in Kc(t). Provided that γS(t) = ∅, the assertion
about the variational equality is also true in this case because of the strict
inequality in (1.5.17) since with the compactness of Ω and the norm in C2(Ω),
one can see that the set of test functions constitutes a neighbourhood of 0 in
the subspace given in Proposition 1.5.3.

We adopt this approach from now on because of our special interest in the
Brooks–Corey model and its analytical treatment. However, for a convex mini-
mization result that we want to apply in Section 2.3, we will need the somewhat
unphysical condition u ≥ uc instead of u > uc which means that p(x) = −∞ is
assumed to be possible for the physical pressure p(·). The formulas (1.3.5) and
(1.3.6) provide this straightforward extension of M in (1.3.25) by an improper
integral, see also (1.4.8). This is needed to obtain a closed convex subset in the
space considered (compare with the results in Section 1.6). Otherwise, unique
solvability of the variational inequality cannot be guaranteed. Then, however,
it has to be emphasized that the assertion in Proposition 1.5.3 about the varia-
tional equality is false in general because the test functions do no longer form a
neighbourhood of 0 in the subspace considered there. So as soon as an equality
in u(x) = uc holds (or can hold) for an x ∈ Ω, we need to deal with the vari-
ational inequality instead of a variational equality. We will come back to this
topic in Section 2.3 (see Remarks 2.3.12 and 2.3.17).

1.5.3 A weak variational inequality for the Kirchhoff–trans-
formed Richards equation

Observe that in case of the Brooks–Corey parameter functions M is not even
differentiable but only piecewise differentiable. Of course, one could consider a
smooth approximation of M since non-differentiability of M for the (normal-
ized) bubbling pressure −1 is hydrologically not essential. However, it seems to
be in order at this point to generalize the notion of a solution to the Signorini-
type problem (1.5.4)–(1.5.7) by extending the corresponding weak formulation
(1.5.12) to a variational inequality in a closed convex subset of a Sobolev space.
In the most simple case of γD(t) = ∂Ω and uD(t) = 0 (with uc = −∞), this
would be a variational equality for u ∈ H1

0 (Ω). In our general case, we need
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some more ingredients from the theory of Sobolev spaces which we have noted
in Appendix A.2 and which we use in the following.

With regard to a weak formulation of the variational inequality (1.5.12) for
models of Brooks–Corey type, we require the functions M : [uc,∞) → R and
kr : M([uc,∞)) → R to be continuous, monotonically increasing and bounded
with a uc < 0. Furthermore, let Ω ⊂ Rd be a Lipschitz domain and γD(t), γN (t)
and γS(t) be pairwise disjoint Hausdorff measurable submanifolds of ∂Ω for all
t ∈ [0, T ] with ∂Ω = γD(t) ∪ γN (t) ∪ γS(t).

Concerning the weak Dirichlet boundary condition for t ∈ [0, T ], we choose

uD(t) ∈ {v = trγD(t)w : w ∈ H1(Ω) ∧ w ≥ uc a.e. ∧ trγS(t)w ≤ 0 a.e. on γS(t)}
(1.5.18)

as an element of H1/2(γD(t)) analogously to (1.5.10) with the trace operators
trΣ : H1(Ω)→ H1/2(Σ) for Σ ∈ {γD(t), γS(t)}. As in Remark 1.5.4 we require
the range of uD(t) to be contained in [uc,∞), now almost everywhere on γD(t)
and even for an extension of uD(t) in H1(Ω) almost everywhere on Ω (for the
reason see the proof of Proposition 1.5.5). In order to model realistic physical
situations one would choose uD(t) with a range even contained in the open
interval (uc,∞). The set in (1.5.18) is nonempty since the function uD(t) = 0
with its trivial extension on Ω is contained in it. This is obvious but necessary
to make sense of the following.

The convex set K(t) ⊂ H1(Ω) as a weak counterpart of K̃c(t) given in (1.5.17)
is now defined as

K(t) := {v ∈ H1(Ω) : v ≥ uc ∧ trγD(t)v = uD(t) ∧ trγS(t)v ≤ 0 a.e. on γS(t)} ,
(1.5.19)

in which v ≥ uc is again to be understood as v(x) ≥ uc almost everywhere on Ω.
Observe that this latter condition ensures that K(t) is a closed subset of H1(Ω)
which is not the case of K̃c(t) in C2(Ω). Since we will need the properties of
K(t) in Section 2.3, we note them here.

Proposition 1.5.5. K(t) is a nonempty, closed and convex subset of H1(Ω).

Proof. Using the linearity of the trace operators trγD(t) and trγS(t), it is easy
to see that K(t) is a convex set. It is nonempty since the Dirichlet condition
uD(t) in (1.5.18) is chosen to be compatible with the Signorini-type boundary
condition trγS(t)u ≤ 0 and there is an extension w of uD(t) with w ≥ uc almost
everywhere on Ω, i.e. w ∈ K(t). (If we only require uD(t) ≥ uc almost every-
where on γD(t), we might not be able to guarantee the corresponding property
for an extension of uD(t) in H1(Ω). For the converse see the next proposition.)

Regarding the closedness, observe that for any w ∈ H1(Ω) with w(x) < uc

almost everywhere on a subset Ω′ ⊂ Ω with a positive Lebesgue measure, we
also obtain a subset Ω′′ ⊂ Ω′ with a positive Lebesgue measure such that
w(x) < uc − ε for an ε > 0. This follows from

⋃

n∈N

{x ∈ Ω′ : w(x) < uc − 1/n a.e.} = {x ∈ Ω′ : w(x) < uc a.e.}
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and the σ-additivity of the Lebesgue measure. As a consequence, the norm
‖w − v‖L2(Ω) and therefore the H1(Ω)-norm ‖w − v‖1 is bounded from below
by a positive constant, uniformly for all v ∈ K(t).

With the same arguments and with suitable constants c, C > 0 for a w ∈ H1(Ω)
for which trγD(t)w = uD(t) or trγS(t) ≤ 0 is false, we obtain

0 < c ≤ ‖trΣw − trΣv‖L2(Σ) ≤ ‖trΣw − trΣv‖H1/2(Σ) ≤ C‖w − v‖1 ∀v ∈ K(t)

for Σ ∈ {γD(t), γS(t)} by definition of H1/2(Σ) (see pages 248/249 in the ap-
pendix) and due to the trace theorem A.2.3.

Altogether, H1(Ω)\K(t) is open and therefore, K(t) ⊂ H1(Ω) is closed.

We find the following proposition instructive since it guarantees that nothing
unnatural can happen to the elements in the set K(t). Nevertheless, one might
be surprised that its proof is not straightforward.

Proposition 1.5.6. Any v ∈ K(t) satisfies tr∂Ω v ≥ uc almost everywhere in
the Hausdorff measure on ∂Ω.

Proof. In the first step we use the fact that

C∞(Ω) ∩ K0 is dense in K0 := {v ∈ H1(Ω) : v ≥ 0 a.e. on Ω}

in the H1(Ω)-topology. This is proved in Glowinski [45, p. 61]. Therefore, if
v ∈ K(t) we have v0 := v − uc ∈ K0 and the existence of a sequence (vn)n∈N in
C∞(Ω) ∩ K0 with vn → v0 in H1(Ω) for n → ∞. Obviously, vn(x) ≥ 0 holds
for all x ∈ Ω and all n ∈ N.

In the second step we note that the embedding theorem A.2.2 and the trace
theorem A.2.3 provide

vn|∂Ω → tr∂Ω v0 in L2(∂Ω) for n→∞ . (1.5.20)

Due to a result from measure theory, see e.g. [82, p. 74, ex. 18], (1.5.20) entails
the convergence vnk|∂Ω → tr∂Ω v0 of a subsequence (vnk

)k∈N almost everywhere
on ∂Ω for k →∞. Therefore, we have tr∂Ω v0 ≥ 0 and

tr∂Ω v = tr∂Ω (v0 + uc) = (tr∂Ω v0) + uc ≥ uc

almost everywhere on ∂Ω.

Note that with the same approximating sequence as in this proof we can con-
clude the corresponding result with trΣ v = (tr∂Ω v)|Σ for any Σ ⊂ ∂Ω as on
page 249, e.g. Σ ∈ {γD(t), γS(t), γN (t)}.
For completeness, we point out that the weak Neumann boundary data fN(t)

can be chosen as a distribution from H−1/2(γN (t)) or even from H
1/2
00 (γN (t))′.

However, we restrict ourselves to functions fN(t) ∈ L2(γN (t)).
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The canonical solution space for parabolic problems on the open time cylinder
Q := Ω×(0, T ) usually is the function space L2(0, T ;H1(Ω)) (see pages 252–254
in the appendix for more details on such spaces). But then the partial time
derivative ut is in general an element of the space H−1(0, T ;H1(Ω)), i.e. it does
in general no longer have an interpretation as a function. In order to make
sense of a generalization of (1.5.12), we require a solution u ∈ L2(0, T ;H1(Ω))
to have a regularity such that M(u)t ∈ L2(Ω) almost everywhere on (0, T ]. In
this case, we say that u is a weak solution of the variational inequality (1.5.12)
at the time t ∈ (0, T ] if u(t) ∈ K(t) and

∫

Ω
M(u)t (v − u) dx+

∫

Ω
∇u∇(v − u) dx ≥

∫

Ω
kr(M(u))ez∇(v − u) dx−

∫

γN (t)
fN (t) (v − u) dσ ∀v ∈ K(t) . (1.5.21)

Note that kr(M(u(·))) is bounded on Ω since both M and kr are bounded.
Moreover, since M and kr are both monotonically increasing, so is kr ◦ M .
Now, it is straightforward to prove that the composition of a monotonic and a
measurable function is measurable again, hence kr(M(u(·))) ∈ L∞(Ω) (without
using the continuity of kr ◦M). So all of the terms in (1.5.21) make sense.

1.5.4 Kirchhoff transformation as a superposition operator and
a weak variational inequality for the Richards equation in
physical variables

Finally, as for the classical case (1.5.12), one can consider a weak variational
inequality analogous to (1.5.21) for the untransformed Richards equation (1.5.1)
rather than for the Kirchhoff–transformed version (1.5.2). However, in contrast
to the classical case in which the formulations are equivalent, the equivalence
of (1.5.21) with a corresponding weak formulation for the physical pressure is
not clear. And it will turn out that we need quite a lot of preparatory work in
order to be able to answer this question, see the Concluding Remarks 1.5.20 of
this subsection.

The first problem is that uc can be in the range of u(t) in (1.5.21) which would
correspond to −∞ being in the range of p(t). And even if this is not the case
p(t) = κ−1(u(t)) does not need to be in H1(Ω) in case of the Brooks–Corey
functions if u(t) ∈ H1(Ω). The second problem is the question whether a chain
rule

∇u = ∇(κ(p)) = κ′(p)∇p = kr(θ(p))∇p (1.5.22)

such as (1.3.3) also holds in a weak sense for Sobolev functions p on Ω with the
Kirchhoff transformation κ in (1.3.1) applied pointwise almost everywhere on Ω
with kr◦θ ∈ L∞(R). Concerning this question we refer to Leoni and Morini [63]
where (1.5.22) is proved for functions with values in a finite-dimensional space
based on a known result for real-valued functions. The latter is needed here
and states that (1.5.22) holds almost everywhere on Ω if p ∈ W 1,1

loc (Ω) and
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κ : R → R is Lipschitz continuous. Since ∇p(x) = 0 holds for all x for which
κ′(p(x)) is undefined due to Rademacher’s theorem (see [97, pp. 341–349] or
[104, pp. 50/51]) and a result from Serrin and Varberg [85], we have to interpret
κ′(p(x))∇p(x) as zero in (1.5.22) for such x. For kr ◦ θ ∈ L∞(R) the function
κ : R→ R is Lipschitz continuous with κ′ = kr ◦ θ (see for example [15, p. 25])
and the last equation in (1.5.22) holds. In the following we formulate some
results based on these observations. We start with properties of the Kirchhoff
transformation.

Lemma 1.5.7. If kr ◦ θ ∈ L∞(R) (is nonnegative almost everywhere), then
κ : R → R as defined by (1.3.1) is (strictly monotonically increasing and)
Lipschitz continuous with the Lipschitz constant

L(κ) = ‖kr ◦ θ‖∞ and κ′ = kr ◦ θ a.e. on R .

If, in addition, there is a c > 0 such that kr(s) ≥ c holds for almost all s ∈ R, the
Kirchhoff transformation has a strictly monotonically increasing and Lipschitz
continuous inverse κ−1 : R→ R with the Lipschitz constant

L(κ−1) = ‖(kr ◦M)−1‖∞ ≤ c−1 and (κ−1)′ = (kr ◦M)−1 a.e. on R

with M as defined in (1.3.2).

Proof. The assertions on κ are well known and follow from the fundamental
theorem of calculus for Lebesgue integrals or the theory of Lebesgue points (see
[97, pp. 341–349] and [15, p. 25] or [82, pp. 138–147] for more details). The
assertions on κ−1 follow from the properties of κ. In particular, note that

(κ−1)′(u) =
1

κ′(κ−1(u))
=

1

kr(M(u))
(1.5.23)

is satisfied in the classical sense for all u ∈ R for which κ is differentiable
in p = κ−1(u), that is for almost all u ∈ R because Lebesgue nullsets are
invariant under Lipschitz mappings.

Remark 1.5.8. Note that in case of kr ≥ c > 0 and also in case of the Brooks–
Corey functions we can write

κ−1(u) =

∫ u

0

1

kr(M(s))
ds

for all u ∈ R or u ∈ (uc,∞), respectively, analogously to (1.3.1). Of course,
the function kr only needs to be given on the range θ(R) in Lemma 1.5.7. For
simplicity, however, we consider it to be extended to R.

Furthermore, it should be clear from the proof of Lemma 1.5.7 that, conversely,
any strictly monotonically increasing Lipschitz continuous function κ : R → R
can be regarded as a Kirchhoff transformation via the fundamental theorem

κ(p) =

∫ p

0
κ′(q) dq + κ(0) ∀p ∈ R (1.5.24)
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induced by the nonnegative function κ′ ∈ L∞(R) with ‖κ′‖∞ = L(κ). The
same holds with κ−1 instead of κ if κ−1 exists and is Lipschitz continuous or
equivalently if ‖(κ−1)′‖∞ = ‖(κ′)−1‖∞ < ∞. Although this result is straight-
forward, we note it here since we use the framework of these general Kirchhoff
transformations in Chapter 3. Moreover, we remark that most of the following
results hold in an analogous way if κ(0) 6= 0 in (1.5.24). In view of the Richards
equation, however, we mostly stick to the integrand kr ◦ θ ∈ L∞(R) as the
notation in what is to come, even where we do not require its nonnegativity
and the corresponding primitive does not provide a transformation.

So far we have not yet explicitly distinguished the Kirchhoff transformation
κ : R → R acting as a function on real numbers p from the transformation
which it provides by pointwise (almost everywhere) application on a function p
defined (almost everywhere) on Ω. At this point it is appropriate to do this.

Definition 1.5.9. Let p be a real-valued function defined on a subset S ⊂ Rd,
possibly almost everywhere with respect to an appropriate measure. Further-
more, let κ : R→ R be a real function. By the pointwise application

(κS(p))(x) := κ(p(x))

of κ to p (for x almost everywhere) on S the superposition operator

κS : p 7→ κ(p)

is defined. Let X be a normed space consisting of a subset of all measurable
functions on the open set S. If the superposition operator satisfies κS(p) ∈ X
for all p ∈ X, we say that it acts on the space X. In this case we write

κX : X → X

for the restriction of κS on the space X and call κX superposition operator
on X. Analogously one defines superposition operators acting between two
spaces X1 and X2.

There is a vast theory on superposition operators, also known as Nemytskij
operators, acting on function spaces of all kinds. For an introduction into this
theory we refer to the monograph of Appell and Zabrejko [6] which contains a
large reference list on the topic. Note that we have restricted ourselves to the
autonomous case p 7→ κ(p) on R instead of the general one given by a function
(x, p) 7→ κ(x, p(x)) on Ω × R. In the following we investigate the Kirchhoff
transformation as a superposition operator acting on different spaces which are
relevant for us. As usual in this work, the “appropriate measures” mentioned
in the definition are the Lebesgue measure on a Lipschitz domain S = Ω ⊂ Rd

or else the Hausdorff measure on a submanifold S = Σ ⊂ ∂Ω of its boundary.

Lemma 1.5.10. If kr ◦ θ ∈ L∞(R) then κ : R → R given in (1.3.1) induces a
Lipschitz continuous superposition operator

κL2(Ω) : L2(Ω)→ L2(Ω) .
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The corresponding Lipschitz constants satisfy

L(κL2(Ω)) = L(κ) = ‖kr ◦ θ‖∞ .

If, in addition, kr ≥ c > 0 holds almost everywhere on R, then κL2(Ω) has a
Lipschitz continuous inverse given by the superposition operator

κ−1
L2(Ω)

= (κ−1)L2(Ω) : L2(Ω)→ L2(Ω) .

The Lipschitz constants satisfy

L(κ−1
L2(Ω)

) = L(κ−1) = ‖(kr ◦M)−1‖∞ ≤ c−1

with M as defined in (1.3.2).

With a glance at Lemma 1.5.7 the proof is straightforward, and so is the proof
of the next result. We just remark that Lebesgue measurability of composites of
Lebesgue measurable functions can be proved by going back to Borel measurable
representatives.

Lemma 1.5.11. Let Ω ⊂ Rd be bounded and open and Σ ⊂ ∂Ω a Lipschitz
submanifold. If kr ◦ θ ∈ L∞(R) then κ : R → R given in (1.3.1) induces a
Lipschitz continuous superposition operator

κL2(Σ) : L2(Σ)→ L2(Σ) .

The corresponding Lipschitz constants satisfy

L(κL2(Σ)) = L(κ) = ‖kr ◦ θ‖∞ .

If, in addition, kr ≥ c > 0 holds almost everywhere on R, then κL2(Σ) has a
Lipschitz continuous inverse given by the superposition operator

κ−1
L2(Σ)

= (κ−1)L2(Σ) : L2(Σ)→ L2(Σ) .

The Lipschitz constants satisfy

L(κ−1
L2(Σ)

) = L(κ−1) = ‖(kr ◦M)−1‖∞ ≤ c−1

with M as defined in (1.3.2).

Now, with these preliminaries and based on the weak chain rule (1.5.22), we
obtain the following

Proposition 1.5.12. Let Ω ⊂ Rd be an open set, kr◦θ ∈ L∞(R) and κ : R→ R
as defined in (1.3.1). Then for p ∈ H1(Ω) we obtain u = κΩ(p) ∈ H1(Ω), and
the weak chain rule (1.5.22) holds in (L2(Ω))d. Moreover, we have

‖u‖1 ≤ ‖kr ◦ θ‖∞‖p‖1 . (1.5.25)

Conversely, if in addition to kr◦θ ∈ L∞(R) there is a c > 0 such that kr(s) ≥ c
holds for almost all s ∈ R, then we also have

c ‖p‖1 ≤ ‖u‖1 . (1.5.26)

Finally, with this latter condition u ∈ H1(Ω) implies p = (κ−1)Ω(u) ∈ H1(Ω).

44



Proof. For p ∈ H1(Ω) the chain rule (1.5.22) holds almost everywhere on Ω.
But since p ∈ H1(Ω) we also have
∫

Ω
|∇u(x)|2 dx =

∫

Ω
|kr(θ(p(x)))|2|∇p(x)|2 dx ≤ ‖kr ◦ θ‖2∞

∫

Ω
|∇p(x)|2 dx

(1.5.27)
and furthermore

∫

Ω
|u(x)|2 dx ≤ ‖kr ◦ θ‖2∞

∫

Ω
|p(x)|2 dx (1.5.28)

because of

|u(x)| =
∣∣∣∣
∫ p(x)

0
kr(θ(q)) dq

∣∣∣∣ ≤ ‖kr ◦ θ‖∞|p(x)| (1.5.29)

almost everywhere on Ω. This proves (1.5.25). The converse (1.5.26) follows
in the same way from (1.5.22) and kr ≥ c > 0. However, (1.5.22) is not
immediately clear because we do not know anything about p. Therefore, we
first apply (1.5.22) in the form

∇p = ∇(κ−1(u)) = (κ−1)′(u)∇u (1.5.30)

almost everywhere on Ω using the regularity of u. With the nondegeneracy
assumption kr ≥ c > 0 we can apply the formula (1.5.23) and obtain

(κ−1)′(u(x)) =
1

κ′(p(x))
=

1

kr(θ(p(x)))
> 0 (1.5.31)

wherever κ′ is (pointwise classically) differentiable which is almost everywhere.
Now, (1.5.22) follows from (1.5.30) and (1.5.31).

Remark 1.5.13. Note that in case of κ(0) 6= 0, (1.5.29) produces an additional
additive constant in the integrand on the right hand side of (1.5.28) such that
the assertions of Proposition 1.5.12 cannot be established in this case if Ω is
unbounded. Furthermore, we remark that κ : R → R is linear (and induces
linear maps on L2(Ω) and H1(Ω)) if and only if kr ◦ θ : R → R is constant.
Otherwise observe that although we have (1.5.27), we cannot expect κ to in-
duce a Lipschitz continuous map on H1(Ω) (except for affine κ) because the
Kirchhoff transformation of a function is defined pointwise and does not “see”
derivatives of the function. However, under reasonable conditions we can still
prove the continuity by rather elementary means. The next proposition covers
the Brooks–Corey functions but, of course, not the limit cases in Section 1.4.

Proposition 1.5.14. Let Ω ⊂ Rd be an open set, kr ◦ θ : R → R uniformly
continuous and bounded and the primitive κ : R → R as defined in (1.3.1).
Then the superposition operator

κH1(Ω) : H1(Ω)→ H1(Ω)

obtained in Proposition 1.5.12 is continuous. If d = 1 and kr ◦ θ : R → R
is Lipschitz continuous and bounded, the superposition operator is Lipschitz
continuous on any bounded subset of H1(Ω).
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Proof. We choose a fixed p0 ∈ H1(Ω) and a sequence (pn)n∈N ⊂ H1(Ω) con-
verging to p0 in H1(Ω). Since κΩ is Lipschitz continuous on L2(Ω) and the
chain rule (1.3.3) holds, it suffices to show that

∫

Ω
|kr(θ(pn))∇pn − kr(θ(p0))∇p0|2 dx

becomes small for small ‖pn − p0‖1. This term can be estimated by

2‖kr◦θ‖2∞
∫

Ω
|∇(pn−p0)|2 dx+2

∫

Ω
|kr(θ(pn))−kr(θ(p0))|2|∇p0|2 dx (1.5.32)

which means that it is enough to show that the second integral I in (1.5.32)
becomes small for small ‖pn − p0‖1. But this follows already from the conver-
gence of pn → p0 in L2(Ω) for n → ∞ which forces the Lebesgue measure of
the set

Mn := {x ∈ Ω : |pn(x)− p0(x)|2 > δ}
to go to 0 for n → ∞ and any fixed δ > 0. With the ε-δ-criterion for the
uniform continuity of kr ◦ θ we can estimate I by

ε2
∫

Ω\Mn

|∇p0|2 dx+ 2‖kr ◦ θ‖2∞
∫

Mn

|∇p0|2 dx

in which the second integral goes to 0 for n→∞ since the first integral goes to∫
Ω |∇p0|2 dx due to the theorem of Lebesgue (or, alternatively, of Beppo Levi).

If d = 1 and kr ◦ θ : R → R is even Lipschitz continuous, we can estimate
|kr(θ(pn))− kr(θ(p0))| in the integral I by

L(kr ◦ θ)‖pn − p0‖∞ ≤ C‖pn − p0‖1

for a C > 0 with the help of Sobolev’s embedding theorem (2.5.36) in one space
dimension.

To put it mildly, the next result is astonishing. Not only does it state that
Proposition 1.5.14 can be generalized, but in fact, that its assertion can virtually
never be wrong.

Theorem 1.5.15. Let Ω ⊂ Rd be a bounded open set and κ : R → R a Borel
function. The superposition operator κΩ acts on H1(Ω), i.e. it induces a map

κH1(Ω) : H1(Ω)→ H1(Ω) ,

if and only if it is continuous on H1(Ω) or, equivalently, if and only if κ is
Lipschitz continuous for d > 1 or locally Lipschitz in the case d = 1, respectively.

This result was proved in Marcus and Mizel [70, pp. 218–220] for (locally) Lip-
schitz continuous functions κ : R → R and also for unbounded sets Ω ⊂ Rd

if κ(0) = 0, see Remark 1.5.13. For bounded Ω ⊂ Rd the (local) Lipschitz
continuity of κ : R → R was deduced in Marcus and Mizel [69] as an acting
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condition (see [6, pp. 239–243]) from the sheer fact that the Borel function κ in-
duces a superposition operator from H1(Ω) into itself (see also [83, p. 267]). We
already know from Proposition 1.5.12 (and we can easily see it for d = 1) that
the converse assertion in Theorem 1.5.15 is true. In addition to the continuity
of κH1(Ω), one also obtains its boundedness in the sense that

‖κH1(Ω)v‖1 ≤ C(1 + ‖v‖1) ∀v ∈ H1(Ω)

holds for a C > 0 independent of v for d > 1 analogously to (1.5.25), and for
C(M) > 0 with ‖v‖1 ≤ M for d = 1. There are analogous statements about
superposition operators mapping W 1,p(Ω) into W 1,r(Ω) for p, r ≥ 1.

We note a nice consequence of Theorem 1.5.15. If this fact was not written
down here, one would probably take it for granted as something the trace
theorem should certainly provide, and one would be shocked if it did not hold for
reasonable, i.e. continuous κ : R→ R. Fortunately (in this case), our functions
defined almost everywhere behave as naturally as they “should”. In fact, the
condition that κ should be continuous turns out to be redundant.

Proposition 1.5.16. Let Ω ⊂ Rd be bounded and open and Σ ⊂ ∂Ω a Lipschitz
submanifold. If κ : R→ R is a Borel function and the superposition operator κΩ

acts on H1(Ω), then we have the commutativity

κΣ(trΣv) = trΣ(κΩv) ∀v ∈ H1(Ω) . (1.5.33)

Proof. We prove that for any v ∈ H1(Ω)

‖trΣ(κΩv)− κΣ(trΣv)‖L2(Ω) (1.5.34)

is arbitrarily small by considering a sequence (vn)n∈N ⊂ C∞(Ω) converging to v
in H1(Ω). In fact, since Theorem 1.5.15 provides the continuity of κ, the norm
in (1.5.34) can be estimated by

‖trΣ(κΩv)− (κΩvn)|Σ‖L2(Ω) + ‖κΣ(vn|Σ)− κΣ(trΣv)‖L2(Ω) . (1.5.35)

The first term in (1.5.35) is at most

‖trΣ‖ ‖κΩv − κΩvn‖1
due to the trace theorem A.2.3, and this estimate goes to 0 for n →∞ by the
continuity of κH1(Ω). The second term in (1.5.35) can be estimated by

L(κL2(Σ)) ‖vn|Σ − trΣv‖L2(Σ) ≤ L(κL2(Σ)) ‖trΣ‖ ‖vn − v‖1
with Lemma 1.5.11 (for d > 1 where κ : R → R is Lipschitz continuous) and
the trace theorem A.2.3 and, therefore, tends to 0 for n → ∞, too. Note
that for d = 1 the real function κ is locally Lipschitz continuous on R due to
Theorem 1.5.15 and, consequently, it is also locally Lipschitz continuous as a
superposition operator on H1/2(Σ) which is isomorphic to R or to R× R with
any norm. Moreover, in one space dimension (1.5.33) is trivial anyway due to
the Sobolev embedding (2.5.36).
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The message of this proposition is that (1.5.33) is true as soon as the right
hand side of it makes sense for all v ∈ H1(Ω), and this cannot be the case for
discontinuous κ : R → R. However, it seems that Proposition 1.5.16 cannot
be proved without using the continuity of the superposition operator κH1(Ω),
i.e. the very strong general result from Theorem 1.5.15. Strangely enough, the
commutativity (1.5.33) appears to be a very natural property for continuous
κ : R→ R (one may think of C∞-functions converging in H1(Ω) and H1/2(Σ)
and w.l.o.g. at the same time almost everywhere on Ω to v and almost every-
where on Σ to trΣv.) Still, it seems to depend on something which, even in this
case, can be regarded as quite surprising.

The commutativity (1.5.33) will be important in the proof of Theorem 1.5.18
which relates the physical and the generalized solution of the weak Signorini-
type problem for the Richards equation. Moreover, it will already be essential
for an adequate formulation and treatment of Dirichlet boundary conditions in
the domain decomposition in Chapter 3. With regard to our theory presented
in that chapter we note another important consequence of (1.5.33) here.

Proposition 1.5.17. Let Ω ⊂ Rd be bounded and open and Σ ⊂ ∂Ω a Lip-
schitz submanifold. If κ : R → R is a Borel function and the corresponding
superposition operator κΩ acts on H1(Ω), then the superposition operator κΣ

acts on H1/2(Σ) and is continuous. If κ(0) = 0, then κΣ also acts on H
1/2
0 (Σ)

and H
1/2
00 (Σ) and is continuous on these trace spaces, too.

Proof. With the continuous extension operator RΣ : H1/2(Σ) → H1(Ω) given
by the trace theorem A.2.3 and using Proposition 1.5.16 we can write

κΣ = κΣ ◦ trΣ ◦RΣ = trΣ ◦ κH1(Ω) ◦RΣ

and the operator on the right hand side is a composition of continuous oper-
ators which obviously acts on H1/2(Σ). This also shows the continuity of the

superposition operator on H
1/2
0 (Σ) once it acts on this space. The latter can

be seen by the definition of H
1/2
0 (Σ) on page 248.

Assume that η ∈ H1/2
0 (Σ) and (vn)n∈N is a sequence of functions in C∞(Ω) such

that each vn vanishes on a neighbourhood of ∂Ω\Σ and vn|Σ → η for n → ∞
in H1/2(Σ). Then the sequence (κΩ(vn))n∈N lies in C(Ω) ⊂ H1(Ω) and the
support of each κΩ(vn) is contained in the support of vn since κ(0) = 0. In
addition, we have

κΣ(vn|Σ)→ κΣ(η) for n→∞ in H1/2(Σ)

due to the continuity of κH1/2(Σ). Therefore, since each κΣ(vn|Σ) ∈ H
1/2
0 (Σ)

can be approximated in H1/2(Σ) by a sequence (wn,m)m∈N ⊂ C∞(Ω) such
that each wn,m vanishes on a neighbourhood of ∂Ω\Σ, we also obtain such an

approximating sequence for κΣ(η), i.e. by definition κΣ(η) ∈ H1/2
0 (Σ).

In order to see that κΣ acts on H
1/2
00 (Σ) and is continuous, we refer to the def-

inition (A.2.4). Let η ∈ H1/2
00 (Σ) and η̃ be a trivial extension of η in H1/2(∂Ω).
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Then, since κ(0) = 0 and κ∂Ω acts on the space H1/2(∂Ω), we can conclude
κ∂Ω(η̃) ∈ H1/2(∂Ω) and κ∂Ω(η̃)|Σ is a trivial extension of κΣ(η) ∈ H1/2(Σ), i.e.

by definition κΣ(η) ∈ H1/2
00 (Σ). Moreover, if µ ∈ H1/2

00 (Σ) is treated as η, then

κ∂Ω(η̃)−κ∂Ω(µ̃) ∈ H1/2(∂Ω) is a trivial extension of κΣ(η)−κΣ(µ) ∈ H1/2
00 (Σ).

Now, (A.2.5) and the continuity of κ∂Ω provide that for any ε > 0 we have

‖κΣ(η) − κΣ(µ)‖
H

1/2
00 (Σ)

= ‖κ∂Ω(η̃)− κ∂Ω(µ̃)‖H1/2(∂Ω) ≤ ε

if ‖η̃ − µ̃‖H1/2(∂Ω) = ‖η − µ‖
H

1/2
00 (Σ)

≤ δ holds with a suitable δ > 0.

With the results collected so far in this subsection, we have given an overview of
how the pointwise application of κ on p almost everywhere on Ω or on Σ ⊂ ∂Ω
and in all spaces, which are relevant for us, can or should be understood in
terms of superposition operators. With these results and knowing what we are
talking about, we can again — and will from now on — just talk simultaneously
of κ(p) as a real number or as a function on Ω or on Σ. Note that the latter
would be impossible if (1.5.33) did not hold.

We are now in a position to relate (1.5.21) to a corresponding weak variational
inequality for the Richards equation in the physical pressure p. Analogously to
(1.5.18) and (1.5.19) let

pD(t) ∈ {v = trγD(t)w : w ∈ H1(Ω) ∧ trγS(t)w ≤ 0 a.e. on γS(t)} (1.5.36)

and the nonempty closed and convex set

K0(t) := {v ∈ H1(Ω) : trγD(t)v = pD(t)∧ trγS(t)v ≤ 0 a.e. on γS(t)} . (1.5.37)

Then we say p : Ω× (0, T ]→ R is a weak solution of the Signorini-type problem
for the Richards equation (1.5.1) corresponding to (1.5.4)–(1.5.7) at the time
t ∈ (0, T ] if p(t) ∈ K0(t) and

∫

Ω
θ(p)t (v − p) dx+

∫

Ω
kr(θ(p))∇p∇(v − p) dx ≥

∫

Ω
kr(θ(p))ez∇(v − p) dx−

∫

γN (t)
fN (t) (v − p) dσ ∀v ∈ K0(t) . (1.5.38)

As for (1.5.21), in order to make sense of (1.5.38) we assume that a solution
p ∈ L2(0, T ;H1(Ω)) is regular enough such that θ(p)t ∈ L2(Ω) holds almost
everywhere on (0, T ]. Then we can state the following

Theorem 1.5.18. Let θ : R → R and kr : θ(R) → (0, 1] be bounded and
monotonically increasing while κ : R→ R is defined by (1.3.1). In addition, let
uD(t) := κ(pD(t)). Then u(t) = κ(p(t)) solves (1.5.21) if p(t) solves (1.5.38).
If, in addition, kr ≥ c holds for a c > 0 and γS(t) = ∅, then (1.5.21) and
(1.5.38) are equivalent in the sense that u(t) satisfies (1.5.21) if and only if
p(t) = κ−1(u(t)) satisfies (1.5.38).
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Proof. First, if p(t) solves (1.5.38) and p ∈ L2(0, T ;H1(Ω)), then by Propo-
sition 1.5.12 we have u(t) = κ(p(t)) ∈ H1(Ω) for almost all t ∈ (0, T ] and
‖u(t)‖1 ≤ ‖kr ◦ θ‖∞‖p(t)‖1 for these t, which also gives u ∈ L2(0, T ;H1(Ω)).
Furthermore, we have θ(p(t)) = θ(κ−1(κ(p(t)))) = M(u(t)) ∈ L∞(Ω) as well as
kr(θ(p(t))) = kr(M(u(t))) ∈ L∞(Ω) for almost all t ∈ (0, T ], in particular these
composite functions are all measurable due to the conditions on θ and kr. This
and the chain rule (Proposition 1.5.12) give an equivalent formulation of (1.5.38)
in terms of u in which only the test functions v − p with v ∈ K0(t) differ from
those in (1.5.21). However, the set of test functions K0(t) − p(t) contains the
set of test functions K(t)− u(t) considered in (1.5.21). In order to see that

K(t)−u(t) = {v ∈ H1(Ω) : v ≥ uc−u ∧ trγD(t)v = 0 ∧ trγS(t)v ≤ −trγS(t) u(t)}

is a subset of

K0(t)− p(t) = {v ∈ H1(Ω) : trγD(t)v = 0 ∧ trγS(t)v ≤ −trγS(t) p(t)}

note that trγS(t) p(t) ≤ 0 and therefore

trγS(t) p(t) ≤ κ(trγS(t) p(t)) = trγS(t) κ(p(t)) = trγS(t) u(t) ≤ 0 (1.5.39)

holds almost everywhere on γS(t). Here the two inequalities are due to the
(pointwise) definition (1.3.1) of κ and the fact that the range of kr is contained
in (0, 1]. The first equality is (1.5.33) and the second is the definition of u(t).

Finally, observe that p(t) ∈ K0(t) entails u(t) ∈ K(t). First, with pD(t) as
in (1.5.36), the function uD(t) := κ(pD(t)) almost everywhere on γD(t) is an
admissible Dirichlet condition for K(t) contained in the set given in (1.5.18). To
see this we choose w̃ := κ(w) as an admissible extension of uD(t) in H1(Ω) if w
is an extension of p(t) in (1.5.36) and do not forget to apply (1.5.33). (Knowing
that p(t) solves (1.5.38) we could of course choose w = p(t) and w̃ = u(t).)
Secondly, from trγD(t) p(t) = pD(t) we can conclude trγD(t) u(t) = uD(t), once
again with (1.5.33). With (1.5.39) this proves the first statement of the theorem.

For the equivalence result one can also argue backwards from u(t) to p(t) using
Proposition 1.5.12 and the observation that the set of test functions K(t)−u(t)
and K0(t)− p(t) both coincide with H1

γD
(Ω) if γS(t) = ∅.

We note that even though parameter functions θ and kr in the Richards equa-
tion are always monotonically increasing, the above theorem holds for more
general θ, kr ∈ L∞(R) with kr > 0. As indicated earlier, the Lebesgue measur-
ability of composites θ(p(·)), kr(θ(p(·))) for Lebesgue measurable p(·) on Ω can
then be deduced by considering Borel measurable representatives θ, kr.

Remark 1.5.19. In Section 2.3 we will show that a time-discretized ver-
sion of (1.5.21) is uniquely solvable in K(t). Theorem 1.5.18 carries over to
the corresponding time discretizations of the variational inequalities (1.5.21)
and (1.5.38). In hydrologically interesting situations such as in the case of
Brooks–Corey functions or similar parameter functions, the first set of condi-
tions in Theorem 1.5.18 is satisfied. Consequently, if (1.5.38) has a physical
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meaning, i.e. a solution p(t), then u(t) = κ(p(t)) satisfies (1.5.21) and the
uniqueness of u(t) implies the uniqueness of p(t) since κ : R → R is invertible
due to kr > 0. In order to have this chance at all in case of κ−1 : (uc,∞)→ R
with the singularity in uc < 0, one certainly needs to consider the trans-
formed set

κ({w ∈ H1(Ω) : trγS(t)w ≤ 0}) ⊃ {w ∈ H1(Ω) : w ≥ uc ∧ trγS(t)w ≤ 0}

of (1.5.36) as the admissible set for the generalized Dirichlet values in (1.5.18).
Observe that this transformed set reads

{w ∈ H1(Ω) : κ−1(w) ∈ H1(Ω) ∧ trγS(t)w ≤ 0}

and that κ−1(w) ∈ H1(Ω) entails κ−1(w) > uc, but certainly not conversely.
And even if uD(t) = κ(pD(t)) is “physically compatible” in this sense, we do
not have an equality in

κ(K0(t)) ⊂ K(t) = {v ∈ H1(Ω) : v ≥ uc ∧ trγD(t)v = uD(t) ∧ trγS(t)v ≤ 0} .

This does not change if we sharpen the condition v ≥ uc to v > uc in (1.5.19).
And even in this case it is easy to see that κ−1(u) does not need to be in
L1(Ω) for u ∈ K(t). On the other hand, with respect to our solution theory in
Chapter 2, it is not possible to consider the smaller transformed set

κ(K0(t)) = {v ∈ H1(Ω) : κ−1(v) ∈ H1(Ω) ∧ trγD(t)v = uD(t) ∧ trγS(t)v ≤ 0}

instead of K(t) because in general this set is not convex. Recall that for the
Brooks–Corey functions, κ : R → R is convex and, consequently, the inverse
κ−1 : (uc,∞)→ R is (strictly) concave (on (uc,−1]).

In case of kr ≥ c > 0, i.e. if the main part of the spatial derivative in the
Richards equation (1.5.1) is uniformly elliptic (see the nondegenerate case in
Subsection 1.4.3), we can deduce the unique solvability of (1.5.38) from the
unique solvability of (1.5.21) if γS(t) = ∅. In the next chapter we prove the
unique solvability of a time discretized version of (1.5.21) for general boundary
conditions. In this context, we will come back to the variational inequality for
the physical pressure in Remark 2.5.14. Furthermore, this inequality serves as
a crucial starting point for the treatment of the Richards equation in heteroge-
neous soil in Section 3.2

Concluding Remarks 1.5.20. One can consider the connection between the
variational inequalities (1.5.38) and (1.5.21) in Theorem 1.5.18 as the main re-
sult of this subsection. However, for the proof of Theorem 1.5.18 one needs to
apply results which are of interest in themselves, such as the weak chain rule
(1.5.22) in H1(Ω), Proposition 1.5.12 and, finally, the commutativity (1.5.33)
in order to deal with the situation on the Dirichlet and the Signorini-type
boundary. Although at first glance, the property (1.5.33) of the Kirchhoff
transformation on trace functions seems to be quite natural, a strong result
(Theorem 1.5.15) from the theory of superposition operators was required to
prove it. From this perspective one might be surprised about how long and
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deep the proof of Theorem 1.5.18 turned out to be. On the other hand, the
solution theory in Chapter 2 focusses on the (time-discretized) variational in-
equality (1.5.21) rather than (1.5.38) such that this theorem and also a version
of it for the time-discretized variational inequalities can be regarded as a basis
for this approach (see Subsection 2.5.4 and in particular Remark 2.5.14).

Moreover, the theory on the Kirchhoff transformation as a superposition opera-
tor in Sobolev spaces on domains and their boundaries, in particular the commu-
tativity (1.5.33) and the continuity (Theorem 1.5.15 and Proposition 1.5.17) will
be an essential ingredient in Chapter 3 where we deal with the (time-discretized)
Richards equation in heterogeneous soil and related problems. Since in that
chapter, too, we will mainly examine the treatment of Kirchhoff–transformed
problems rather than the original ones, the theory in this subsection will serve
both as a starting point (see Remark 3.3.2 and Proposition 3.4.1) and as an
endpoint (see Proposition 3.3.8 and Theorem 3.4.23) in order to obtain the
desired results for the original problems.

If (1.5.38) does not have a physical meaning, one might think of variational
formulations in other (possibly bigger) solution spaces or sets for p(t) which
we do not further investigate here. However, one often ignores this question
and only deals with the generalized pressure rather than the physical one. This
can be seen in the following section, where we consider time-integrated ver-
sions of (1.5.21), i.e. weak initial boundary value problems for the Kirchhoff–
transformed Richards equation (with and without Signorini-type conditions) on
the time cylinder Q = Ω× (0, T ), for which unique solvability is known.

1.6 Overview of analytical results for the Richards
equation

In the following, we give some insight into results that have been obtained
so far in the analysis of initial boundary value problems (Cauchy problems)
for the Richards equation on a time cylinder Q = Ω × (0, T ). Our overview
covers a one-dimensional result by van Duyn and Peletier in Subsection 1.6.1
and the elaborate theory due to Alt, Luckhaus, Visintin and Otto in Subsec-
tion 1.6.2. As far as the technicalities of the solution spaces for the considered
problems are concerned, we refer to the appendix, pages 252–254. In the litera-
ture, (initial) boundary value problems for saturated-unsaturated groundwater
flow are often presented as (evolution) dam problems, and quite a lot can be
found on their analysis, see e.g. Gilardi [43], Alt [2], Carrillo and Chipot [23] or
Chipot and Lyaghfouri [26]. However, these problems often assume the physi-
cal water pressure p ≥ 0 and the saturation θ to be a step function with θ(0) = 0
and θ(p) = 1 for p > 0. We do not consider these degenerate cases here.

Obviously, whether boundary conditions of Signorini’s type are included or not,
the analysis of (initial) boundary value problems for the Richards equation has
to deal with considerable difficulties. This is certainly due to the nonlinearities
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involved, but also due to the changing type of the equation, which is elliptic
in the saturated and parabolic in the unsaturated regime with the water table
constituting a free boundary between the two regimes.

1.6.1 One-dimensional theory of van Duyn and Peletier

One of the first papers dealing intensively with the free boundary problem from
an analytical point of view seems to be of van Duyn and Peletier [90]. But
here already, a simplified problem is considered only. More concretely, in the
1D-setting Ω = (0, 1) and ignoring gravity, the Cauchy–Dirichlet problem for
the Kirchhoff–transformed Richards equation





M(u)t = uxx in Ω× (0, T )

u(0, t) = −1, u(1, t) = 1 for 0 < t ≤ T
M(u(x, 0)) = M(u0(x)) for x ∈ Ω

(1.6.1)

is investigated in a straightforward weak formulation which we note below.
Here, M : [uc,∞)→ [0, 1], with uc ≤ −1, is assumed to be Lipschitz continuous
and strictly increasing on [uc, 0] and M(s) = 1 for s ∈ [0,∞). An initial value
u0 : [0, 1]→ R is assumed to exist as a Lipschitz continuous function respecting
the boundary values u0(0) = −1 and u0(1) = 1 as well as u0(x) ≥ uc on [0, 1].

We define the function ū : [0, 1]→ R as

ū(x) = 2x− 1 ∀x ∈ [0, 1] (1.6.2)

which is obviously a stationary solution of (1.6.1).

A measurable function u : Q → R is called a weak solution of (1.6.1) if we
have u ∈ ū+ L2(0, T ;H1

0 (Ω)) and M(u) ∈ C(Q) (with u possibly altered on a
Lebesgue nullset) such that

∫ T

0

∫ 1

0
uxvx −M(u)vt dx dt =

∫ 1

0
M(u0)v(x, 0) dx

holds for all test functions v ∈ C1(Q) vanishing on ∂Q\(Ω × {0}).
The authors prove the existence and the uniqueness of such a weak solution.
Moreover, a maximum principle for M(u) is obtained, i.e. for weak solutions u1

and u2 corresponding to initial conditions u01 and u02 with u01 ≥ u02, we have
M(u1) ≥ M(u2). As far as the regularity is concerned, u ∈ L2(0, T ;H2(Ω))
can be proved without assuming further conditions, and u is a classical solution
on the unsaturated part of Q if M|[uc,0] ∈ C2([uc, 0]). Finally, results on the
continuity of the function g : [0, T ] → (0, 1) determining the free boundary
between the saturated and the unsaturated regime are obtained as well as the
convergence of c(u(x, t)) → c(ū) as t → ∞ with the stationary solution ū
in (1.6.2).
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We point out that these results do not apply to the parameter functions ac-
cording to Brooks–Corey since in this case, M is not Lipschitz continuous but
rather behaving like a root function, see (1.3.25) or (1.4.1).

1.6.2 Theory of Alt, Luckhaus, Visintin and Otto

A more general approach is pursued in the pioneering paper by Alt and Luck-
haus [4] for a large class of quasilinear elliptic-parabolic equations. The Richards
equation does not fit into this framework except in case of uniform ellipticity, i.e.
if kr(θ) ≥ c ∀θ ∈ [θm, θM ] holds for a c > 0. However, the results apply to the
Kirchhoff–transformed Richards equation if M is a function on the whole real
line. More concretely, starting with (1.5.4)–(1.5.6) and γS(t) = ∅ ∀t ∈ [0, T ],
we consider the initial boundary value problem

M(u)t − div
(
∇u− kr(M(u))ez

)
= 0 on Ω× (0, T ) (1.6.3)

u = uD(t) on γD × (0, T ) (1.6.4)

−(∇u− kr(M(u))ez) · n = 0 on γN × (0, T ) (1.6.5)

M(u) = M0 on Ω× {0} (1.6.6)

on an open bounded and connected Lipschitz domain Ω with fixed γD ⊂ ∂Ω of
positive Hausdorff measure and γN = ∂Ω\γD. M : R → R is assumed to be
monotonically increasing and continuous and kr : M(R) → R to be bounded
and continuous. With regard to the data, let uD(t) ∈ H1/2(γD) be the trace
of a function uD ∈ L2(0, T ;H1(Ω)) ∩ L∞(Ω × (0, T )) for t ∈ (0, T ) (almost
everywhere). Furthermore, let M0 ∈ L1(Ω) with M0 mapping into the range
of M . Then the existence of a measurable function u0 on Ω with M(u0) = M0

can be proved.

Now, u ∈ uD + L2(0, T ;H1
γD

(Ω)) is called a weak solution of (1.6.3)–(1.6.6) if
the following two conditions hold.

a) M(u) ∈ L∞(0, T ;L1(Ω)) and M(u)t ∈ L2(0, T ;H1
γD

(Ω)′) and the initial
values M0 are attained in the sense

∫ T

0
〈M(u)t, v〉 dt +

∫ T

0

∫

Ω
(M(u) −M0)vt dx dt = 0 (1.6.7)

tested with all functions v ∈ L2(0, T ;H1
γD

(Ω)) ∩W 1,1(0, T ;L∞(Ω)) satis-
fying v(T ) = 0.

b) ∇u− kr(M(u))ez ∈ L2(Ω× (0, T )) and u satisfies

∫ T

0
〈M(u)t, v〉 dt +

∫ T

0

∫

Ω
(∇u− kr(M(u))ez)∇v dx dt = 0 (1.6.8)

for all test functions v ∈ L2(0, T ;H1
γD

(Ω)).
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In (1.6.7) and (1.6.8) the expression 〈 · , · 〉 stands for the duality pairing of
H1

γD
(Ω) and H1

γD
(Ω)′. We can replace the corresponding term in these vari-

ational equalities by
∫
ΩM(u)t v dx if M(u)t ∈ L2(Ω). Then integration by

parts applied to (1.6.8) gives (1.6.3)–(1.6.5) if the regularity of the terms in-
volved allows for the application of Green’s formula (1.5.9) or its weak coun-
terpart (A.2.12). With regard to how the initial condition is required to be
respected, observe that partial time-integration applied to (1.6.7), if allowed,
provides ∫

Ω
(M(u(x, 0)) −M0)v(x, 0) dx = 0 ∀v ∈ L∞(Ω) ,

i.e. M(u(x, 0)) = M0 in L1(Ω).

Amongst others, the following results are obtained in Alt and Luckhaus [4]. Via
a priori estimates with respect to certain energy integrals involving the Legendre
transform of the primitive of M (see [34, pp. 16–20] and [72]), the existence of
a weak solution in the sense given above is proved. Moreover, using backward
Euler time-discretization, Galerkin approximations converge strongly to a weak
solution in the topology given by these energy integrals. In general, M(u)t is not
a function. However, if M and kr are both Lipschitz continuous and the data
are sufficiently regular, i.e. if uD ∈ H1(0, T ;H1(Ω)) (→֒ C([0, T ];H1(Ω)) !) and
M0 = M(u0) for a u0 ∈ uD( · , 0)+H1

γD
(Ω), then there is a weak solution u with

u ∈ L2(Ω × (0, T )). In fact, with these assumptions the solution constructed
by the Galerkin approximations has this property. Finally, using a maximum
principle, the authors prove the uniqueness of such a solution assuming these
regularity conditions.

Observe here, again, that the latter assumptions are not satisfied for the param-
eter functions according to Brooks–Corey where M is not Lipschitz continuous.
Furthermore, it is unclear whether the existence result holds in this case since
M : (uc,∞) → R is not a function on the whole real line and we have the
additional obstacle condition u > uc.

As regards these objections, we refer to the paper of Alt, Luckhaus and Visin-
tin [5] in which the results from Alt and Luckhaus [4] have been further general-
ized, first to the situation of Brooks–Corey parameter functions and secondly to
boundary conditions of Signorini’s type. More concretely, an initial boundary
value problem for the Kirchhoff–transformed Richards equation (1.6.3)–(1.6.6)
with nonnegative uD(t) and additional Signorini-type boundary conditions

u ≤ 0 , v · n ≥ 0 , u · (v · n) = 0 on γS × (0, T )

with v = −(∇u − kr(M(u))ez) is considered. The functions M : [uc,∞)→ R
as well as kr : M([uc,∞)) → R are supposed to be continuous and monoton-
ically increasing. A weak formulation (P ) of this problem is given in terms
of a variational inequality that (in contrast to (1.6.7) and (1.6.8)) involves
dual convex functions (see [34, pp. 16–20]). Here, the data need to satisfy
uD ∈ H1(Q) ∩ C(0, T ;H1(Ω)) and M0 ∈ L∞(Ω). The solution u is required to
be in the convex set K = {v ∈ L2(0, T ;H1(Ω)) : u = uD(t) on γD ∩ (0, T )}
with M(u) ∈ L∞(Q) ∩H1(0, T ;H1

γD
(Ω)′).
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The main result in Alt, Luckhaus and Visintin [5] is: There is at least one
solution to the problem (P ). Furthermore, (P ) is considered in the limit case
where M degenerates into a step function on the whole real line or, more pre-
cisely, to a maximal monotone multifunction. Here, an existence result for a
very weak notion of a solution is established which is proved to have a physical
meaning in one space dimension.

Finally, we point out that in the papers of Otto [72] and [73] L1-contraction and
uniqueness of the solutions in the setting of [4] and [5], respectively, is proved
without assuming further regularity of the parameter functions or assuming
that M(u)t is a function.

The papers [5] and [73] seem to provide the most general analytical results
obtained so far on weak solutions to initial boundary value problems for the
Richards equation with Signorini-type boundary conditions that also cover the
case of Brooks–Corey parameter functions.

However, it should be emphasized that in order to obtain a semilinear, uniformly
elliptic operator in the main part of the spatial derivative, the whole analysis
in [5] and [73] is carried out after having applied the Kirchhoff transformation
to the Richards equation. That includes the Galerkin approximations to the
solution of the transformed equation. We point that out since we will pursue
the same approach for our space discretization of the Richards equation in
Section 2.5, which is applied to the Kirchhoff–transformed version only.

Unfortunately, it is not possible to treat heterogeneous versions of the Richards
equation with this approach. In general, the hydraulic conductivity Kc(x, θ)
can not be decomposed multiplicatively in a space-dependent function Kh(x)
and a factor depending only on the saturation as in (1.2.6). More concretely,
in the Brooks–Corey permeability function

p 7→ kr(θ(p)) =

[
p

pb

]−λe(λ)

given in (1.2.11), the soil parameters pb and λ can be space-dependent if the soil
is not homogeneous. Now, as noted in Remark 1.3.1, the Kirchhoff transfor-
mation (1.3.1) applied to space-dependent relative permeabilities kr does not
provide semilinear transformed equations in general.

In Chapter 3 we will investigate analytically heterogeneous boundary value
problems for the nondegenerate time-discretized Richards equation involving
discontinuous soil parameters. To our knowledge, so far no analytical results on
(initial) boundary value problems for the Richards equation in a heterogeneous
case have been presented in the literature.
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Chapter 2

Numerical treatment of the
Richards equation without
gravity in homogeneous soil

2.1 Introduction

In this chapter we introduce our approach for the numerical treatment of the
Richards equation in homogeneous soil which was introduced in Chapter 1.
Our ansatz aims at separating the difficulties contained in the structure of the
Richards equation and treating them independently in different steps. First,
the nonlinearity in the spatial derivative is addressed by the Kirchhoff trans-
formation, which has been done in Section 1.3. Secondly, by a suitable time
discretization in which the gravitational term in the equation is treated explic-
itly, the influence of this term onto the arising spatial problems is minor and
easily dealt with. Thirdly, the difficulty coming from the convective part due to
gravity can be addressed by an upwind technique, independently from solving
the spatial problems. This will be done in Chapter 4. The spatial problems
arising after the time discretization and their solution are the main topic of
this section. They will be treated in full generality for the Richards equation
with gravity. Nevertheless, the performance of the solution method for the spa-
tial problems can already be demonstrated for the Richards equation without
gravity.

We start the presentation in Section 2.2 by giving some overview of the nu-
merics that has been done so far for the Richards equation. This will contrast
with our approach which is presented in the following sections beginning with
our implicit–explicit time discretization of the Kirchhoff–transformed Richards
equation in Section 2.3. With this discretization each of the arising spatial
problems is a variational inequality in a convex subset of a Sobolev space.
Equivalently, such a variational inequality can be regarded as a convex mini-
mization problem for which we give analytical results including existence and

57



uniqueness of a solution in that same Section 2.3. A generalization and refor-
mulations of this continuous problem are discussed in terms of variational in-
clusions and further variational inequalities in Section 2.4. Equipped with these
results, we introduce our finite element discretization of the continuous prob-
lem in Section 2.5, in which we also prove convergence of the finite dimensional
solution to the continuous solution. The finite dimensional spatial problem is
treated, without using further regularization, by convex minimization, the ba-
sis of which is a nonlinear Gauss–Seidel method presented in Section 2.6. This
method serves as a smoother for the monotone multigrid that provides a non-
linear solver for the discrete problem and that will be described in Section 2.7.
Finally, in Section 2.8 we give numerical results for the solution of the Richards
equation without gravity which demonstrate the efficiency and the robustness
of our solver for the spatial problem.

2.2 Previous numerical approaches to the Richards
equation

A lot of work has been done in recent years on the numerical analysis and the
numerical solution of the Richards equation. In the literature dealing with this
topic the time discretization is mostly based on the full backward Euler method.
This avoids time step restrictions regarding the stability of the numerical scheme
which arise due to the convective (gravitational) term in the equation.

As far as the space discretization is concerned, intensive research has been
done on the finite volume method in Fuhrmann [40], Fuhrmann and Lang-
mach [41], Eymard et al. [37], [36] and on the mixed finite element method
in Soucie [88], Schneid et al. [84], Radu et al. [76]. In Bastian et al. [10] dis-
continuous Galerkin schemes are used before the time discretization is carried
out such that ordinary differential equations are obtained. A finite element
method applied to the Richards equation in the physical form is investigated
in Forsyth and Kropinski [38] concerning monotonicity of the discretization.
Earlier works by Hornung [48], [49] contain a longitudinal line method and a
finite element method, respectively, for the Richards equation without gravity,
which can be regarded as a degenerate Fokker–Planck equation. A mixed finite
element method for an equation similar to the Richards equation, in which the
physical pressure can be written as a function of the saturation (in contrast
to (1.2.9)), is presented in Arbogast et al. [7].

The numerical results in Fuhrmann [39] and [40] are obtained by the appli-
cation of an algebraic Newton multigrid applied to a nonlinear finite element
and finite volume scheme, respectively, for the Richards equation in its phys-
ical form (1.5.1). Stability and existence of solutions for the latter is proved
in Fuhrmann and Langmach [41] under smoothness conditions on the param-
eter functions p 7→ θ(p) and θ 7→ kr(θ). Of course, smoothness together with
Lipschitz continuity of the parameter functions is also required for a successful
application of Newton’s method. With Regard to these regularity conditions,
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we note that in Fuhrmann [39] and [40] as well as in Wagner et al. [96] and
in Knabner and Schneid [53], the parameter functions are chosen according to
van Genuchten [91].

An advantage of the finite volume scheme for the physical Richards equation is
that it provides discrete mass conservation which reflects the mass conservation
in the continuous case. In addition, this approach is flexible with respect to vari-
ations of the conductivity and the soil parameters in the relative permeability
function kr and can therefore be successfully applied in case of heterogeneous
soil, too. This is done in Fuhrmann [39] and Fuhrmann and Langmach [41].
On the other hand, the performance of the Newton method is not robust in the
case of deteriorating slopes of the parameter functions.

High flexibility and lack of robustness also apply to the finite volume approach
persued in Wagner et al. [96] for a regularized and a transformed version of
the physical Richards equation. Here, a Schur complement multigrid is used
as a solver for the linear systems obtained by the Newton method. This was
particularly designed for problems with strong variations of the hydraulic con-
ductivity Kh(x).

Convergence of finite volume schemes is proved in Eymard et al. [37] and [36].
In [36] the Kirchhoff–transformed Richards equation (1.5.2) is treated, how-
ever, assuming M to be Lipschitz continuous. In [37] the physical Richards
equation (1.5.1) with the piezometric head p/(̺g) − z as the unknown is con-
sidered, but here, the nondegeneracy condition kr ≥ c > 0 is required.

Also assuming nondegeneracy kr ≥ c > 0, convergence of a linearization scheme
for the Richards equation is proved in Slodička [87]. The linearization is applied
to the implicitly time-discretized Richards equation in physical form without a
discretization in space.

A priori error estimates for mixed finite element discretizations of the Richards
equation are proved in Soucie [88], Schneid et al. [84] and Radu et al. [76].
It seems that error estimates for the Richards equation with the physical pres-
sure as the unknown can only be found in Soucie [88]. Here, however, gravity
is ignored and a model with slight compressibility of the water is used. In ad-
dition, except for the derivation of estimates for the H−1-norm, boundedness
of θ(p)t or ellipticity kr ≥ c > 0 is required.

In Schneid et al. [84] and Radu et al. [76] the Kirchhoff–transformed Richards
equation is considered in a time-integrated form. Error estimates are proved
for the semidiscrete and the discrete scheme. But to obtain this, M needs to be
continuously differentiable and Lipschitz continuous. As in Fuhrmann [40] and
Wagner et al. [96], the resulting equations are solved with Newton’s method
(see also Knabner and Schneid [53]).

Despite the many results in the literature presented so far on the numerical
treatment of the Richards equation, no robust solver of the spatial problems
occurring after time discretization seems to be at hand. In the next section, we
present a time discretization of the Kirchhoff–transformed Richards equation
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that — in case of a homogeneous soil — can be treated by convex minimization
rather than regularization. The resulting spatial problems can then be solved
robustly by a monotone multigrid method.

2.3 Time discretization and convex minimization

In this section, we present our special time discretization of the Richards equa-
tion and our approach to solve the corresponding spatial problems using convex
analysis. The basis for our numerical solution of the Richards equation is the
variational inequality (1.5.21) which for any t ∈ (0, T ] is a weak formulation of
the Signorini-type problem (1.5.4)–(1.5.7) for the Kirchhoff–transformed version
of the equation with the Brooks–Corey model. For reasons of notation, we set
fN (t) = 0 ∀t ∈ (0, T ] without loss of generality and we obtain the variational
formulation to find u(t) ∈ K(t) with

∫

Ω
M(u(t))t (v − u(t)) dx+

∫

Ω
∇u(t)∇(v − u(t)) dx ≥

∫

Ω
kr(M(u(t)))ez∇(v − u(t)) dx ∀v ∈ K(t) (2.3.1)

in the convex set K(t) introduced in (1.5.19).

Remark 2.3.1. We point out at this stage that our further treatment of the
variational inequality (2.3.1) does not depend on the special form of the func-
tions M and kr in the Brooks–Corey model but on their basic properties. In
what is to come in this section and in the following sections, we will make clear
where these properties are required and often keep the presentation as general
as possible. Therefore, the results can also be applied to the Richards equation
with other parameter functions like in the van Genuchten model [91]. (Recall
that an advantage of the Brooks–Corey model is that the Kirchhoff transfor-
mation and the transformed parameter functions can be given explicitly, see
Section 1.3.) Moreover, our results are open to generalizations which will be
essential in the treatment of the Robin method for the Richards equation that
we address in Section 3.4.

2.3.1 Implicit–explicit time discretization

With regard to our aim to apply convex minimization rather than regular-
ization to the spatial problems arising from the discretization, we choose our
time discretization to be implicit in the main part of the equation and ex-
plicit in the convective part coming from the gravitation. This is already in-
dicated in how the variational inequality (2.3.1) is formulated. For a partition
0 = t0 < t1 < . . . < tN = T of [0, T ] and τn := tn − tn−1 for n ∈ {1, . . . ,N}, we
discretize M(u(tn))t in (2.3.1) by the backward Euler differential quotient

M(u(tn))−M(u(tn−1))

τn
,
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setting ∇u(t) on the left hand side implicitly ∇u(tn) and kr(M(u(t))) on the
right hand side explicitly kr(M(u(tn−1))). Thus, with a given u(0) = u0 and
denoting the corresponding approximation of u(tn) by un for n ∈ {1, . . . ,N},
the discrete version of (2.3.1) reads: Find un ∈ K(tn) with
∫

Ω
M(un) (v − un) dx+ τn

∫

Ω
∇un∇(v − un) dx ≥ (2.3.2)

∫

Ω
M(un−1) (v − un) dx+ τn

∫

Ω
kr(M(un−1))ez∇(v − un) dx ∀v ∈ K(tn) .

In order to proceed from here, we need to take a close look at the structure
of this variational inequality. Since in the following we only consider spatial
problems, we introduce some abbreviations. Given some n ∈ {1, . . . ,N}, we set
K := K(tn) ⊂ H1(Ω) and also γD := γD(tn), γS := γS(tn) and γN := γN (tn) as
well as uD := uD(tn), i.e. we can write

K = {v ∈ H1(Ω) : v ≥ uc ∧ trγD
v = uD ∧ trγS

v ≤ 0} . (2.3.3)

Recall from Proposition 1.5.5 that, with an appropriate choice of uD ∈ H1/2(γD)
compatible to the Signorini-type boundary conditions and the constraint uc, the
set K is a nonempty, closed and convex subset of H1(Ω).

We define the symmetric bilinear form a(·, ·) on H1(Ω) by

a(v,w) := τn

∫

Ω
∇v∇w dx ∀v,w ∈ H1(Ω) . (2.3.4)

Of course, a(·, ·) is continuous on H1(Ω), i.e. there is a C > 0 such that

a(v,w) ≤ C‖v‖1‖w‖1 ∀v,w ∈ H1(Ω) . (2.3.5)

It is well known that a(·, ·) is coercive on the subspace H1
γD

(Ω) for any γD ⊂ ∂Ω
with a positive Hausdorff measure (see Theorem A.2.5), which we assume here,
i.e. there is a c > 0 such that

a(v, v) ≥ c‖v‖21 ∀v ∈ H1
γD

(Ω) . (2.3.6)

This inequality leads to the following property of a(·, ·) on an affine space PD

in H1(Ω) containing K which can be regarded as a more general notion of
coercivity, see Proposition 2.3.15.

Lemma 2.3.2. Let w ∈ H1(Ω) with trγD
w = uD and PD := w+H1

γD
(Ω). Then

we have K ⊂ PD, and with the constant c from (2.3.6) and certain positive c1
and c2 we obtain

a(v, v) ≥ c‖v‖21 − c1‖v‖1 − c2 ∀v ∈ PD .

Proof. K ⊂ PD is obvious from K−w ⊂ H1
γD

(Ω). Now, setting v = w+ ṽ ∈ PD

with ṽ ∈ H1
γD

(Ω) and using (2.3.5) and (2.3.6), we obtain

a(v, v) = a(ṽ, ṽ) + 2a(w, ṽ) + a(w,w) ≥ c‖ṽ‖21 − 2C‖w‖1‖ṽ‖1 − C‖w‖21 ,
which can be further estimated from below by

c‖v‖21 − 2(C + c)‖w‖1‖v‖1 − (3C + c)‖w‖21 .
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If M : [uc,∞)→ R and kr : M([uc,∞))→ R are monotonically increasing and
bounded functions, the linear form ℓ on K ⊂ H1(Ω) defined by

ℓ(v) :=

∫

Ω
M(un−1) v dx+ τn

∫

Ω
kr(M(un−1))ez∇v dx ∀v ∈ H1(Ω) (2.3.7)

is continuous, i.e. an element of H1(Ω)′. Now, replacing un by u, we can write
(2.3.2) more compactly as the variational inequality

u ∈ K :

∫

Ω
M(u)(v − u) dx+ a(u, v − u)− ℓ(v − u) ≥ 0 ∀v ∈ K . (2.3.8)

2.3.2 The convex function Φ and its properties

With regard to the first integral on the left hand side of (2.3.8), we define the
function Φ : [uc,∞)→ R as the integral

Φ(z) :=

∫ z

0
M(s) ds ∀z ∈ [uc,∞) (2.3.9)

which turns out to be a convex function if M is monotonically increasing. Con-
cerning the Richards equation with parameter functions according to Brooks
and Corey, we have calculated Φ in (1.3.27). In general we need to assume
uc < 0 in the definition (2.3.9).

For what is to come we recall the definition of convex functionals and some of
their properties (see [56, pp. 144–156] and [80, pp. 45–47] for details).

Definition 2.3.3. Let V be a real vector space and K ⊂ V a convex set, i.e.
for y, z ∈ K and λ ∈ (0, 1) we have (1 − λ)y + λz ∈ K. F : K → R is called a
convex functional if

F ((1 − λ)y + λz) ≤ (1− λ)F (y) + λF (z) ∀y, z ∈ K .

If the inequality is strict in all cases where y 6= z, F is called strictly convex.

The next lemma points to the one-dimensional nature of convex functionals and
is easy to prove.

Lemma 2.3.4. Let V be a real vector space and K ⊂ V a convex set. If
the functional F : K → R is convex and u, v ∈ K, then the real function
g : [0, 1]→ R defined by

g(λ) = F (u+ λ(v − u)) ∀λ ∈ [0, 1]

is also convex.

In the following we note a criterion for the convexity of real functions and a
fundamental property of real convex functions. Both facts will be very helpful
in the sequel.
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Lemma 2.3.5. Let I ⊂ R be an interval. Then for f : I → R the following
holds.

a) f is convex if and only if the inequality

f(z)− f(z1)

z − z1
≤ f(z2)− f(z)

z2 − z
holds for any z1, z, z2 ∈ I with z1 < z < z2.

b) If f is convex, then for any z ∈ I the difference quotient

∆z(y) :=
f(y)− f(z)

y − z

is a monotonically increasing function of y ∈ I\{z}.

These monotonicity properties of slopes of convex functions are well known and
easy to derive from the definition.

Now we can relate basic properties of Φ in (2.3.9) to properties of M .

Lemma 2.3.6. Let M : [uc,∞) → R be monotonically increasing. Then Φ in
(2.3.9) is convex. Φ is differentiable (from the right) in uc, and, in addition, we
have Φ′(uc) = M(uc) if M is continuous in uc. Furthermore, Φ is differentiable
in z ∈ (uc,∞) if and only if M is continuous in z, which is true for all but
countably many points, and in this case Φ′(z) = M(z) holds. If M is bounded,
then Φ is Lipschitz continuous with Lipschitz constant ‖M‖∞.

Proof. Since M is monotonically increasing we can estimate

M(z1) ≤
∫ z
z1
M(s) ds

z − z1
≤ lim

y↑z
M(y) ≤M(z) ≤ lim

y↓z
M(y) ≤

∫ z2

z M(s) ds

z2 − z
≤M(z2)

for z1, z, z2 ∈ [uc,∞) with z1 < z < z2. Then, with

Φ(z)− Φ(z1)

z − z1
=

∫ z
z1
M(s) ds

z − z1
and

∫ z2

z M(s) ds

z2 − z
=

Φ(z2)− Φ(z)

z2 − z
we immediately obtain the convexity of Φ from Lemma 2.3.5 a).

The same estimates show the one-sided differentiability of Φ on [uc,∞). Fur-
thermore, we obtain Φ′(z) = M(z) if and only if M is continuous in z, which is
the case in all but countably many points z ∈ [uc,∞) due to the monotonicity
of M (see [56, p. 103]).

The assertion about the Lipschitz continuity of Φ follows in the same way.

We remark that, except for an additive constant, every convex function on an
open interval has a representation as in (2.3.9) (see [56, p. 156] and [98, p. 488]).
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Observe that Lemma 2.3.6 then states that differentiable convex functions are
immediately continuously differentiable. We emphasize that the special situa-
tion in the endpoint uc is crucial for our further analysis and the main result
of this section, Theorem 2.3.16. We refer to the Sections 1.4 and 2.4 for the
situation of a discontinuity of M in uc with regard to the Richards equation.

2.3.3 The convex functional φ and its properties

Now the function Φ gives rise to a functional φ : K → R by

φ(v) :=

∫

Ω
Φ(v(x)) dx ∀v ∈ K (2.3.10)

which is well-defined if Φ is Lipschitz continuous. Convex functionals arising
from this definition are investigated in a more general setting in Kornhuber [59].
Here we note their basic properties in our case.

Proposition 2.3.7. If Φ is a convex function, then φ : K → R is a convex func-
tional. In addition, if Φ is Lipschitz continuous, then φ is Lipschitz continuous,
and, with a C > 0, satisfies

|φ(v)| ≤ C‖v‖1 ∀v ∈ K . (2.3.11)

Proof. The convexity of φ follows directly from the convexity of the function Φ.
Also, Lipschitz continuity of φ follows directly from the Lipschitz continuity
of Φ since the Lipschitz constant L of Φ and the Cauchy–Schwarz inequality in
L2(Ω) provide C = L ‖1‖L2(Ω) with

|φ(v)− φ(w)| ≤
∫

Ω
|Φ(v(x)) − Φ(w(x))| dx ≤ C‖v −w‖L2(Ω) ≤ C‖v − w‖1

for all v,w ∈ K. In particular, this leads to (2.3.11) since w = 0 ∈ K and
φ(0) = 0.

In order to see how φ is related to the first integral on the left hand side of (2.3.8)
we recall definitions of different notions of derivatives (consult e.g. [34, p. 23]
and [98, p. 113]). We use the duality brackets 〈·, ·〉 for the duality (V ′, V ).

Definition 2.3.8. Let F : S → R on a subset S ⊂ V of a normed space V ,
u ∈ S and v ∈ V .

a) If there is an ε > 0 such that u+ λv ∈ S for all λ ∈ [0, ε], we call

∂vF (u) := lim
λ↓0

F (u+ λv)− F (u)

λ
(2.3.12)

the directional derivative of F at u in the direction of v if the one-sided
limit in (2.3.12) exists.
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b) If, in addition to a), there is a u′ ∈ V ′ such that

∂vF (u) = 〈u′, v〉 ∀v ∈ V ,

then F is called Gâteaux–differentiable at the point u with the Gâteaux–
derivative F ′(u) := u′.

c) If u is an interior point of S and, in addition to b), the convergence
in (2.3.12) is uniform with respect to the elements in the unit ball of V ,
then F is said to be Fréchet–differentiable and F ′(u) is called the Fréchet–
derivative of F at u.

Proposition 2.3.9. Let Φ : [uc,∞) → R be convex and differentiable. Then,
for any u, v ∈ K the directional derivative ∂v−uφ(u) exists and can be written
as

∂v−uφ(u) =

∫

Ω
Φ′(u(x))(v(x) − u(x)) dx =

∫

Ω
M(u(x))(v(x) − u(x)) dx .

(2.3.13)

Proof. If u, v ∈ K, we obviously have u+ λ(v − u) ∈ K for λ ∈ [0, 1] since K is
convex. We set w := v − u and consider the difference quotient

φ(u+ λw)− φ(u)

λ
=

∫

Ω

Φ(u(x) + λw(x)) − Φ(u(x))

λ
dx (2.3.14)

as λ ↓ 0. In light of Lemma 2.3.5 b) we obtain

Φ(u(x) + λw(x)) −Φ(u(x))

λ
≤ Φ(u(x) + w(x))− Φ(u(x))

1
=: G(x)

for w(x) ≥ 0 and λ ∈ (0, 1] and

H(x) :=
Φ(u(x)− w(x)) − Φ(u(x))

1
≤ Φ(u(x) + λw(x)) − Φ(u(x))

λ

for w(x) ≥ 0 and λ ∈ (0, 1]. Altogether, the integrands in (2.3.14) are bounded
by the integrable function max(|H(·)|, |G(·)|) on Ω independently of λ ∈ (0, 1].

Due to the differentiability of Φ, the pointwise values of the integrands

Φ(u(x) + λw(x)) − Φ(u(x))

λ

converge to Φ′(u(x))w(x) almost everywhere in Ω as λ ↓ 0, even as a mono-
tonically increasing sequence for w(x) < 0 and as a monotonically decreasing
sequence for w(x) ≥ 0 due to Lemma 2.3.5 b).

Consequently, by the theorems of Lebesgue or of Beppo Levi (see [98, p. 492]),
we get the convergence of the integral in (2.3.14) and the assertion (2.3.13) with
Φ′ = M from Lemma 2.3.6.
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Remark 2.3.10. Note that the proof only uses the convexity of Φ : [uc,∞)→ R
besides its differentiability. Of course, applying the mean value theorem, bound-
edness of Φ′ = M also leads to (2.3.13) without assuming convexity.

Observe that if M : [uc,∞)→ R is monotonically increasing and bounded and
u ∈ K, then the map

w 7→
∫

Ω
M(u(x))w(x) dx ∀w ∈ H1(Ω)

defines a bounded linear functional onH1(Ω), i.e. we obtain Gâteaux–differenti-
ability of φ in H1(Ω).

We remark that one obtains analogous results for φ defined on the whole space
H1(Ω) in (2.3.10) if M is defined on the whole real line or if M : [uc,∞) → R
is extended by M(uc) on (−∞, uc). In this case, if M is uniformly con-
tinuous and bounded, one can show that the Gâteaux–derivative mapping
φ′ : H1(Ω)→ H1(Ω)′ is continuous (with respect to u ∈ H1(Ω)). It is even
Hölder continuous with a Hölder exponent α ∈ (0, 1] if M is Hölder continu-
ous with the same exponent. For these two results consult Propositions 2.5.11
and 2.5.12. Note that in the Brooks–Corey case (1.3.8), M is Hölder con-
tinuous. Now, continuity of φ′ : H1(Ω) → H1(Ω)′ guarantees the Fréchet–
differentiability of φ on H1(Ω), see [98, p. 120].

2.3.4 From the variational inequality to a convex minimization
problem with a unique solution

With Proposition 2.3.9 and our notation in (2.3.4) and (2.3.7), assuming con-
tinuity of M , the variational inequality (2.3.8) for the solution u ∈ K reads

∂v−uφ(u) + a(u, v − u)− ℓ(v − u) ≥ 0 ∀v ∈ K . (2.3.15)

Now, it is well known that the quadratic functional J : H1(Ω)→ R defined by

J (v) :=
1

2
a(v, v) − ℓ(v) ∀v ∈ H1(Ω) (2.3.16)

is strictly convex (see [34, p. 36]) and continuous if kr and M are monotoni-
cally increasing and bounded (see (2.3.5) and (2.3.7)), with the bilinear form
in (2.3.4) which is coercive on H1

γD
(Ω) and satisfies Lemma 2.3.2. Furthermore,

its Fréchet–differentiability in u ∈ H1(Ω) with the derivative

J ′(u)(v) = ∂vJ (u) = a(u, v) − ℓ(v) ∀v ∈ H1(Ω) (2.3.17)

is easy to see, too (cf. [60, p. 4]).

Consequently, the functional F : K → R defined by

F (v) := φ(v) + J (v) ∀v ∈ K (2.3.18)
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is strictly convex with existing ∂v−uF (u) for any u, v ∈ K, and (2.3.8) has the
following form: Find u ∈ K such that

∂v−uF (u) ≥ 0 ∀v ∈ K . (2.3.19)

Now, this variational inequality can be regarded as a convex minimization
problem. For this equivalence we refer to [34, p. 37], however, we state it in
a more general form using only directional derivatives.

Proposition 2.3.11. Let V be a real vector space, K ⊂ V a convex set and
F : K → R a convex functional whose directional derivative ∂v−uF (u) exists
for all u, v ∈ K. Then

u ∈ K : ∂v−uF (u) ≥ 0 ∀v ∈ K (2.3.20)

is equivalent to
u ∈ K : F (u) ≤ F (v) ∀v ∈ K . (2.3.21)

Proof. Assuming (2.3.20), for any v ∈ K and λ ∈ (0, 1] we can estimate

F (v)− F (u) =
F (u+ (v − u))− F (u)

1
≥ F (u+ λ(v − u))− F (u)

λ

if we consider Lemma 2.3.4 and Lemma 2.3.5 b). Passing to the limit λ ↓ 0, we
obtain

F (v) − F (u) ≥ ∂v−uF (u) ≥ 0 .

Conversely, if (2.3.21) is satisfied, for any λ ∈ (0, 1] we have

F (u+ λ(v − u)) ≥ F (u) ∀v ∈ K

and consequently

F (u+ λ(v − u))− F (u)

λ
≥ 0 ∀v ∈ K

which leads to (2.3.20) for λ ↓ 0.

Remark 2.3.12. In general the inequality (2.3.20) does not only account for
the fact that u could be an element of the boundary ∂K. Strict inequalities can
occur in such a case, but they can also occur for an inner point u of K, e.g. in
case of the absolute value function F : x 7→ |x| on K = [−1, 1]. If, however,
u is an inner point of K (which is always true if K = V for example) and F is
Gâteaux–differentiable in u, then (2.3.20) is always an equality and is in fact
equivalent to

∂vF (u) = 0 ∀v ∈ V or F ′(u) = 0 . (2.3.22)

Let Bε(u) = {v ∈ V : ‖v − u‖ < ε} ⊂ intK with a certain ε > 0. Then for any
ṽ ∈ Bε(u) we can insert v = u + ṽ ∈ K in (2.3.20) to obtain ∂wF (u) ≥ 0 for
w = ±ṽ and conclude (2.3.22).
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In the following, we cite the well-known general existence and uniqueness re-
sult for convex minimization problems (2.3.21) in reflexive Banach spaces, the
proof of which can be found in Ekeland and Temam [34, p. 35]. We recall two
important terms (cf. [34, pp. 8–10, 34]).

Definition 2.3.13. Let V be a topological space and K ⊂ V nonempty, closed
and convex. A functional F : K → R∪{+∞} is called lower semicontinuous if
lim infw→v F (w) ≥ F (v) holds for all v ∈ K (with w ∈ K). A convex functional
F : K → R ∪ {+∞} is called proper if it is not identically +∞. In this case
domF := {v ∈ K : F (v) <∞} is called the domain of F .

Remark 2.3.14. As in [34] one often prefers to work with the canonical exten-
sion F̃ : V → R ∪ {+∞} of F : K → R ∪ {+∞} which is given by F̃ (z) = +∞
for all z ∈ V \K. Then, since K is nonempty, closed and convex, F̃ is lower
semicontinuous and proper if and only if F is, and the minimization problem
(2.3.21) for F on K is equivalent to the corresponding minimization problem
for F̃ on V .

Proposition 2.3.15. Let V be a reflexive Banach space, K ⊂ V a nonempty,
closed and convex subset of V and F : K → R ∪ {+∞} a convex, lower semi-
continuous and proper functional. Furthermore, let F be coercive, i.e. for any
sequence (un) ⊂ K with ‖un‖ → ∞ we have F (un)→∞. Then the minimiza-
tion problem (2.3.21) has a solution. It is unique if F is strictly convex.

Now we can state the main result of this section.

Theorem 2.3.16. Let K ⊂ H1(Ω), a(·, ·) and ℓ(·) in (2.3.8) be defined as at
the beginning of this section. If M : [uc,∞) → R is monotonically increasing,
bounded and continuous and kr : M(R) → R is monotonically increasing and
bounded, then the variational inequality (2.3.8) has a unique solution. More
specifically, it is equivalent to the minimization problem

u ∈ K : J (u) + φ(u) ≤ J (v) + φ(v) ∀v ∈ K (2.3.23)

with J and φ as defined in (2.3.16) and in (2.3.10), respectively.

Proof. We only need to check that F = J + φ on K satisfies the condi-
tions required in Proposition 2.3.15. The Hilbert space H1(Ω) is reflexive and
K ⊂ H1(Ω) is nonempty, closed and convex. F : K → R is strictly convex
since J is strictly convex and φ is convex, and F is proper. Furthermore, F is
lower semicontinuous since it is continuous as J and φ are, see (2.3.16) and
Proposition 2.3.7. This latter proposition and Proposition 2.3.2 provide the
coerciveness of F by

|J (v)+φ(v)| ≥ 1

2
a(v, v)−|ℓ(v)|−|φ(v)| ≥ 1

2
c‖v‖21−(c1+‖ℓ‖+C)‖v‖1−c2 →∞

for ‖v‖1 →∞, v ∈ K.
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Remark 2.3.17. Note that, to guarantee coerciveness of a(·, ·), we always
assume γD to be a subset of ∂Ω with a positive Hausdorff measure. Also note
that we can admit fN 6= 0 and still obtain the result in Theorem 2.3.16 since
fN contributes to the linear functional ℓ(·) only. By the trace theorem A.2.3,
continuity of the corresponding expression given by the integral in (1.5.21) with
respect to v − u ∈ H1

γD
(Ω) is given for any fN ∈ L2(γN ).

As a further generalization, we can easily extend our theory to space-dependent
functions n(·) for the porosity and Kh(·) for the hydraulic conductivity as given
in the original Richards equation (1.3.17) or (1.3.18). As long as n(·) is a non-
negative and bounded function, our results above can be carried over without
further change if we replace Φ(v(x)) by n(x)Φ(v(x)) in (2.3.10) and M(u(x))
by n(x)M(u(x)) in Propositions 2.3.7 and 2.3.9 and in Remark 2.3.10. With
regard to the hydraulic conductivity, it is clear that we need to impose bound-
edness of Kh(·) and Kh(·) ≥ c for a c > 0 in order to preserve the continuity
and the coerciveness of a(·, ·).
We point out that Theorem 2.3.16 also holds for monotonically increasing,
bounded and continuous functions M : R → R defined on the whole real line.
In fact, this leads to an easier problem (2.3.8), in which φ is defined and
Gâteaux–differentiable on the whole space H1(Ω). To reduce it further, assume
that γS = ∅ and uD = 0 on γD. Then (2.3.8) is equivalent to the variational
equality

u ∈ H1
γD

(Ω) :

∫

Ω
M(u) v dx+ a(u, v) − ℓ(v) = 0 ∀v ∈ H1

γD
(Ω) (2.3.24)

according to Remark 2.3.22. For uD 6= 0, too, we obtain a variational equality
in H1

γD
(Ω) from (2.3.8) by replacing u = w+ũ with w ∈ H1(Ω) and trγD

w = uD

as well as ũ ∈ H1
γD

(Ω) in (2.3.24) (compare what follows (2.4.11) in Section 2.4).
Recall from Section 1.4 that M : R → R occurs for the Richards equation if
kr is replaced by a krα which is uniformly bounded away from 0 and, as a
discontinuous function, in certain hydrologically reasonable limit cases.

Finally, we remark that boundedness of M is not necessary for Theorem 2.3.16
to hold. For example, one could replace boundedness of M by

Hölder continuity of M outside of an interval [−R,R] (2.3.25)

for an R > 0, leading to an affine estimate on the right hand side of (2.3.11)
which is not hard to see (consult e.g. Kornhuber [59, pp. 22–26]). In the next
section we give a generalization of Theorem 2.3.16 for K = H1

γD
(Ω) in which we

can even omit the requirement for M to be continuous, thus addressing limit
cases for the Richards equation as discussed in Section 1.4. Note that conti-
nuity of M is only needed (in Proposition 2.3.9) for the equivalence of (2.3.8)
and (2.3.23), and that monotonicity and boundedness (or (2.3.25) instead) of M
is enough to ensure the coercivity of J + φ and therefore guarantee unique
solvability of (2.3.23).
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2.4 Variational inclusions and further variational in-
equalities

The purpose of this section is first to generalize and secondly to reformulate
(2.3.8) or equivalently (2.3.23) in terms of further variational inequalities and
also in terms of variational inclusions. Some of these reformulations are of
interest in themselves (e.g. leading to a straightforward proof that (2.4.11) is
well-posed at the end of this section), and some of them will be helpful in the
analysis of our space discretization which will be carried out in the next section.
Besides, they will serve as a starting point for the numerical solution method
that we apply to the spatially discretized problem in Section 2.6 and Section 2.7.

2.4.1 Subdifferentials and a variational inclusion for the limit
cases

We proceed by giving a generalization of Theorem 2.3.16 to monotonically in-
creasing but possibly unbounded and, moreover, discontinuousM : [uc,∞)→ R
or M : R → R in case of K = H1

γD
(Ω). Even though such a situation does not

occur for the Richards equation with continuous parameter functions as intro-
duced in Section 1.2, one might think of it as a limit case of the Brooks–Corey
model (1.2.9) and (1.2.10) for deteriorating soil parameters pb and λ where the
parameter functions degenerate into step functions. A detailed discussion of the
limit cases for the Brooks–Corey model and also of the nondegenerate case can
be found in Section 1.4. Recall that in hydrological applications M might be
close to a step function, see Figure 1.11. In the limit cases for the Brooks–Corey
model (see (1.4.6) and (1.4.7) or (1.4.13) and (1.4.15), respectively), M is dis-
continuous in uc (and constant otherwise). However, the exact value of M in uc

is “less important” than the argument uc itself whose role is to just represent
the unsaturated regime in these cases. This phenomenon is already reflected
by (1.4.9) or (1.4.14), respectively, and a wider mathematical basis for it is
developed further in the following.

Observe in the proof of Lemma 2.3.6 that for any point z0 ∈ (uc,∞) we still
have

Φ(z)− Φ(z0) ≥ mz0(z − z0) ∀z ∈ R (2.4.1)

for all
mz0 ∈ [lim

y↑z0

M(y), lim
y↓z0

M(y)] =: Iz0 (2.4.2)

even if M is not continuous in z0, and certainly with Iz0 = {Φ′(z0)} = {M(z0)}
if M is continuous. More generally, the proof of Proposition 2.3.11 shows that
for convex F : K → R we have

F (v)− F (v0) ≥ ∂v−v0F (v0) ∀v ∈ K (2.4.3)

wherever ∂v−v0F (v0) exists. This remains true for all v ∈ H1(Ω) if we extend F
according to Remark 2.3.14. The following definition contains the well-known
generalization of this phenomenon.
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Definition 2.4.1. Let V be a normed space, F : V → R ∪ {+∞} a convex
functional and v0 ∈ domF . Any element g ∈ V ′ with

F (v)− F (v0) ≥ 〈g, v − v0〉 ∀v ∈ V

is called a subgradient of F at v0. The set ∂F (v0) of all subgradients is called
the subdifferential of F at v0 and dom ∂F := {v ∈ domF : ∂F (v) 6= ∅}.

Obviously, the subdifferential ∂F is a multivalued function ∂F : dom ∂F → 2V ′
.

Now, let the scalar convex function Φ defined in (2.3.9) be canonically extended
by +∞ on (−∞, uc) as in Remark 2.3.14. Furthermore, for M : [uc,∞) → R
as above and the definition in (2.4.2), we define the corresponding multivalued
function M̃ : [uc,∞)→ 2R by

M̃(z0) := Iz0 ∀z0 ∈ (uc,∞) and M̃(uc) := (−∞, lim
u↓uc

M(u)] . (2.4.4)

Then, in light of Lemma 2.3.6, we obtain ∂Φ = M̃ and dom∂Φ = [uc,∞). This
scalar multifunction is maximal monotone which means that if

(mz −mz0)(z − z0) ≥ 0 ∀z ∈ dom ∂Φ ∀mz ∈ ∂Φ(z)

holds, then we have z0 ∈ dom ∂Φ and mz0 ∈ ∂Φ(z0) (see Kornhuber [59, p. 33]).

It is clear that for the definition of M̃ we only need M to be monotonically
increasing. In addition, we point out that the above considerations can anal-
ogously be carried out for any function M : R → R defined on the whole real
line instead of on [uc,∞) as long as it is monotonically increasing.

In either case, however, we now want to restrict ourselves on monotonically
increasing functions M for which

Φ(v) ∈ L2(Ω) ∀v ∈ H1(Ω)

holds and (2.3.23) is uniquely solvable for the corresponding convex function Φ
in (2.3.9) with ∂Φ = M̃ . This is of course satisfied for any hydrologically inter-
esting M (see Section 1.4), which is bounded, but also for certain unbounded
M as in (2.3.25). With the notation

∂Φ(v0) := {w ∈ L2(Ω) : w(x) ∈ ∂Φ(v0(x)) a.e. on Ω} (2.4.5)

for a v0 ∈ H1(Ω) we write (∂Φ(v0), ·)L2(Ω) to indicate the corresponding sub-
set of all bounded linear functionals on H1(Ω) arising, by application of the
L2-scalar product, from elements of the subdifferential M̃ = ∂Φ of the scalar
convex function Φ. Observe that for any w ∈ ∂Φ(v0) we have

∫

Ω
w(x)(v(x) − v0(x)) dx ≤

∫

Ω
Φ(v(x)) − Φ(v0(x)) dx (2.4.6)

which provides the inclusion (∂Φ(v0), ·)L2(Ω) ⊂ ∂φ(v0). In fact, (∂Φ(v0), ·)L2(Ω)

is the subset of all elements in ∂φ(v0) ⊂ H1(Ω)′ which are also functionals
on L2(Ω), see Barbu [9, pp. 61/62].
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For the following very general existence result we assume γS = ∅ and homo-
geneous Dirichlet conditions on γD. Neumann conditions on γN can be cho-
sen according to Remark 2.3.17. In order to motivate what is to come, we
first assume that we have a monotonically increasing and continuous function
M : R→ R which is bounded or else satisfies property (2.3.25). Then we obtain
K = H1

γD
(Ω) and the variational equality (2.3.24) as an equivalent formulation

of (2.3.8). Now, in the general case of monotonically increasing and possibly dis-
continuousM : R→ R as in the limit (1.4.25) of the nondegenerate case (1.4.18)
for the Richards equation, we replace M by the multifunction M̃ = ∂Φ. Then,
while taking (2.4.5) into account, we can consider the variational inclusion

u ∈ H1
γD

(Ω) : 0 ∈ (M̃(u), v)L2(Ω) + a(u, v)− ℓ(v) ∀v ∈ H1
γD

(Ω) (2.4.7)

as a generalization of (2.3.24). More precisely, (2.4.7) has to be understood as
the inclusion of the 0-functional on H1

γD
(Ω) in the subset

(∂Φ(u), ·)L2(Ω) + a(u, ·) − ℓ(·)

ofH1
γD

(Ω)′. A solution u of (2.4.7) is therefore accompanied with an L2-function
wu ∈ ∂Φ(u) such that

(wu, v)L2(Ω) + a(u, v) − ℓ(v) = 0 ∀v ∈ H1
γD

(Ω) (2.4.8)

holds, and since H1
γD

(Ω) is dense in L2(Ω), it is clear that wu is uniquely defined
for any solution u of (2.4.7). The existence of a solution is guaranteed in a very
general setting, and the following theorem can be found in a more general form
in Jerome [51, pp. 91–94].

Theorem 2.4.2. For monotonically increasing M : R→ R or M : [uc,∞)→ R
for uc < 0 with a coercive and continuous a(·, ·) and ℓ ∈ H1

γD
(Ω)′, the variational

inclusion (2.4.7) has a solution.

Remark 2.4.3. Note that the theorem is not restricted to functions M de-
fined on the whole real line, in fact one can apply it to M : I → R on any
interval I ⊂ R with 0 in its interior. In particular, the range of the solution
u is contained in this interval. Moreover, the translated M̃(· + u0) is also an
admissible maximal monotone multifunction if u0 > uc. Therefore, the theorem
covers at least constant Dirichlet boundary conditions u0 (see Remark 2.3.17).
The question how far this result can be extended to more general boundary
conditions shall not be further discussed here.

Since we are particularly interested in hydrologically relevant M and we want to
have a unique solution of (2.3.23), we assume M to be monotonically increasing
and bounded from now on and still assume Φ as given in (2.3.9). For discontin-
uous M we cannot relate the variational inequality (2.3.8) to the convex mini-
mization problem (2.3.23) as done in Propositions 2.3.9 and 2.3.11. However, it
will turn out later (see Proposition 2.4.8) that a variational inclusion (2.4.7) is
related to the corresponding convex minimization problem (2.3.23) in the sense
that every solution of (2.4.7) solves (2.3.23), too. But since (2.3.23) is uniquely
solvable, we obtain the following
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Proposition 2.4.4. For monotonically increasing and bounded M : R→ R or
M : [uc,∞)→ R the solution of (2.4.7) given in Theorem 2.4.2 is unique.

Observe that wu in (2.4.8) is defined almost everywhere in the set

Ωc := {x ∈ Ω : u(x) = ũc a.e.} (2.4.9)

for any discontinuity ũc of M . Theorem 2.4.2 does not give any further infor-
mation on the values of wu in ũc, but since u is unique, the variational equality
(2.3.24) cannot be solvable for a discontinuous M if Ωc has a positive Lebesgue
measure and the value M(ũc) is incompatible to the values of wu on Ωc.

Remark 2.4.5. With regard to the hydrological limit case given by the step
function M0 : [uc,∞) → R in (1.4.6) and (1.4.7) and the corresponding mono-
tone multifunction in (1.4.9), we consider the constant function M : u 7→ θM

on [uc,∞) as in the limit case (1.4.13) with some uc < 0. In order to motivate
with the help of Theorem 2.4.2 that both cases could be interpreted as a similar
problem, we still assume γS = ∅ and uD = 0. Note that for the discontinuous
function M0 we can neither show the equivalence of the corresponding varia-
tional inequality (2.3.8) and a convex minimization problem (2.3.23), nor do we
obtain a variational equality in this case for these relaxed boundary conditions
(see Remark 2.3.22). The latter is also true for the constant function M . But
we can still consider the minimization problem (2.3.23) for M0 which is, how-
ever, the same as the one for M and in this sense not reflecting the different
variational inequalities (2.3.8) generated by M0 and M . Since M is continuous,
the solution

u ∈ K = {v ∈ H1
γD

(Ω) : v ≥ uc a.e.}
of (2.3.23) solves (2.3.8) according to Theorem 2.3.16. In the variational in-
clusion (2.4.7), which u solves due to Theorem 2.4.2 and Proposition 2.4.8,
the (constant) function M(u) in (2.3.8) is replaced by a wu ∈ M̃(u), i.e. with
wu ≤ M(u) almost everywhere. If u is an inner point of K, the variational
inequality (2.3.8) is equivalent to the variational equality (2.3.24) due to Re-
mark 2.3.22. Then, we conclude M(u) = M0(u) = wu = θM almost every-
where. However, we can have strict inequality in (2.3.8) if Ωc in (2.4.9), with
uc = ũc, has a positive Lebesgue measure and we have a test function v ∈ K
with v(x) > u(x) = uc almost everywhere on Ωc. In such a case we obtain

(M(uc)− wu, v − u)L2(Ωc) > 0

if we subtract (2.4.8) from (2.3.8). Therefore, we necessarily have

wu(x) < M(uc) = θM on Ω′
c ⊂ Ωc

with an Ω′
c of positive Lebesgue measure. Even though we do not know the

values of wu on Ω, we can interpret wu ∈ M̃ (u) = M̃0(u) as a generalized satu-
ration which is the same for both limit cases M0 and M and which constitutes
an unsaturated region Ω′

c. (Note, however, that the same considerations apply
in the regular case where M : [uc,∞) → R is continuous and uc is regarded
as a singular generalized pressure associated to physical pressure p = −∞.)
We come back to this topic at the end of Section 2.5.
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2.4.2 Reformulations of the convex minimization problem

The rest of this section is devoted to further reformulations of the minimiza-
tion problem (2.3.23). For example, there is an equivalent variational inclusion
formulation of (2.3.23) that will lead to Proposition 2.4.8 which was already
addressed above. In order to establish these results we assume the conditions
imposed on M and kr in Theorem 2.3.16 except for the continuity of M . Prob-
lems like (2.3.23) or variational versions like (2.3.8) are often considered in the
form of minimization problems, variational inclusions or variational inequalities
on a (reflexive) Banach space rather than on a closed and convex subset of a
(reflexive) Banach space, see e.g. Ekeland and Temam [34, p. 34] or Kornhu-
ber [59]. As indicated in Remark 2.3.14, this could be achieved by adding the
characteristic functional χK of the convex set K ⊂ H1(Ω) defined by

χK : x 7→
{

0 for x ∈ K
+∞ for x ∈ H1(Ω)\K

to the functional φ on H1(Ω). However, for transparency and further analysis
(see e.g. Section 2.5), we treat the three constraints in K separately. Moreover,
we deal with the Dirichlet boundary conditions differently but in a well-known
way by introducing a translated problem.

As above and as done in Kornhuber [59], we consider the scalar convex function
Φ : [uc,∞) → R to be extended by +∞ on (−∞, uc). This corresponds to
extending M : [uc,∞)→ R to a maximal monotone multifunction M̃ by (2.4.4)
and (2.4.2), such that ∂Φ = M̃ . Consequently, φ : K → R naturally extends to
a lower semicontinuous and proper convex functional φ : H1(Ω) → R ∪ {+∞}
by definition (2.3.10). For the extended Φ we still use the same notation. As a
consequence, with the definition

Kb := {v ∈ H1(Ω) : trγD
v = uD ∧ trγS

v ≤ 0} ,

the minimization problem (2.3.23) is equivalent to the minimization problem

u ∈ Kb : J (u) + φ(u) ≤ J (v) + φ(v) ∀v ∈ Kb (2.4.10)

in which the constraints constituting the nonempty, closed and convex set
Kb ⊂ H1(Ω) only concern boundary conditions.

In order to obtain a variational inclusion formulation of (2.4.10), we also need
to encode the boundary conditions in the convex functional and construct an
equivalent minimization problem on some suitable Hilbert space rather than on
a closed and convex subset of a Hilbert space. This is done by translation of
the Dirichlet values and by the introduction of an additional functional refer-
ring to the boundary conditions of Signorini’s type. Therefore, analogously to
Lemma 2.3.2, we first choose a fixed

w ∈ H1(Ω) with trγD
w = uD , (2.4.11)

74



set u = w + ũ and v = w + ṽ in (2.4.10) and find (2.4.10) to be equivalent to

ũ ∈ Kb − w : J (w + ũ) + φ(w + ũ) ≤ J (w + ṽ) + φ(w + ṽ) ∀ṽ ∈ Kb − w

with

Kb − w = {v ∈ H1(Ω) : trγD
v = 0 ∧ trγS

v ≤ −trγS
w} ⊂ H1

γD
(Ω) .

Furthermore, the characteristic function

χ
R
−
0

: x 7→
{

0 for x ≤ 0

+∞ for x > 0

of the nonempty, closed and convex subset R−
0 of R induces a convex, lower

semicontinuous and proper functional ψS : H1(Ω)→ R ∪ {+∞} defined by

ψS(v) =

∫

γS

χ
R
−
0
(v(x)) dσ(x) ∀v ∈ H1(Ω) . (2.4.12)

Obviously, ψS is just the characteristic functional χC of the closed and convex
subset C := {v ∈ H1(Ω) : trγS

v ≤ 0} of H1(Ω). With the definition

Fw(·) := F (w + ·) (2.4.13)

for translated mappings F : V → W between vector spaces V and W , the
functional Jw + φw + ψS

w is still convex, lower semicontinuous and proper on
the Hilbert space H1

γD
(Ω), and ψS

w is the characteristic functional of the subset
Kb−w ofH1

γD
(Ω). In light of our considerations so far and using these notations,

the following proposition is straightforward.

Proposition 2.4.6. The minimization problem (2.3.23) is equivalent to

ũ ∈ H1
γD

(Ω) : Jw(ũ)+φw(ũ)+ψS
w(ũ) ≤ Jw(v)+φw(v)+ψS

w(v) ∀v ∈ H1
γD

(Ω)
(2.4.14)

in the sense that the solution u of (2.3.23) equals w + ũ.

In the following, a variational inclusion is found to be a reformulation of (2.4.14)
in terms of the subdifferentials of φ(w+ ũ) and ψS(w+ ũ) as subsets of H1

γD
(Ω)′.

Proposition 2.4.7. The minimization problem (2.4.14) is equivalent to the
variational inclusion

ũ ∈ H1
γD

(Ω) : 0 ∈ a(w + ũ, ·)− ℓ(·) + ∂φ(w + ũ) + ∂ψS(w + ũ) (2.4.15)

in H1
γD

(Ω)′.

Proof. Considering (2.3.17), it is easy to see that first,

∂(Jw)(v0)(v) = (Jw)′(v0)(v) = J ′(w + v0)(v) = a(w + v0, v)− ℓ(v)
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and secondly,

∂(Jw + φw + ψS
w)(v0)(v) = a(w + v0, v)− ℓ(v) + (∂φ)w(v0)(v) + (∂ψS)w(v0)(v)

holds for all v ∈ H1
γD

(Ω) and v0 ∈ dom(φw + ψS
w) ⊂ H1

γD
(Ω). Now, if

ũ ∈ H1
γD

(Ω) solves the minimization problem (2.4.14), i.e.

(Jw(v)+φw(v)+ψS
w(v))−(Jw(ũ)+φw(ũ)+ψS

w(ũ)) ≥ 0 ∀v ∈ H1
γD

(Ω) , (2.4.16)

we obviously have

0 ∈ a(w + ũ, ·)− ℓ(·) + (∂φ)w(ũ) + (∂ψS)w(ũ)

in H1
γD

(Ω)′ by Definition 2.4.1 of the subdifferential. Conversely, if (2.4.15)
holds then, with the same reasoning, we obtain (2.4.16).

Now we are in a position to establish the connection between variational inclu-
sions (2.4.7) and convex minimization problems (2.3.23) which we announced
above. Since we have (∂Φ(u), ·)L2(Ω) ⊂ ∂φ(u) as already seen in (2.4.6), the
following consequence of Proposition 2.4.7 is straightforward.

Proposition 2.4.8. Every solution of the variational inclusion (2.4.7) is a
solution of the corresponding convex minimization problem (2.3.23).

Observe that the converse of the assertion in Proposition 2.4.8 is not true and we
cannot replace ∂φ(ũ+w)(·) in Proposition (2.4.7) by (∂Φ(ũ+w), ·)L2(Ω) since,
for w = 0 already, we have ∂φ(u) 6= (∂Φ(u), ·)L2(Ω) as mentioned in (2.4.6).
However, an analogous reformulation of ∂φ(u) in terms of ∂Φ(u(x)) can be ob-
tained in the space-discretized version of (2.3.23) or (2.4.14) which we consider
in the following section. We remark that a contribution to the convex functional
coming from the boundary will also play an important role in the treatment of
Robin boundary conditions which we discuss in Section 3.4.

Finally, instead of considering the subdifferentials of the nondifferentiable parts
φw and ψS

w of the convex functional considered in (2.4.14), one can also restrict
oneself to differentiating Jw as done in (2.4.15) while maintaining the convex
contributions of φw and ψS

w as they are. In this way, one arrives at another
variational inequality that follows from a generalization of Proposition 2.3.11
which we note here.

Proposition 2.4.9. In addition to the assumptions in Proposition 2.3.11 let
G : K → R ∪ {+∞} be convex. Then

u ∈ K : ∂v−uF (u) +G(v)−G(u) ≥ 0 ∀v ∈ K (2.4.17)

is equivalent to

u ∈ K : (F +G)(u) ≤ (F +G)(v) ∀v ∈ K .
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The proof can be easily obtained by adapting the proof of the earlier result
and exploiting the convexity of G, see also [34, p. 38]. It is a convention in the
literature (see [34, p. 7]) to treat the inequality in (2.4.17) as a valid assertion
only if the left hand side is defined, i.e. in this case only if G(v) and G(u) are
not both equal to +∞.

For the second statement in the following proposition, we define the translation
of our convex set K (see (2.3.3)) by w onto a subset of H1

γD
(Ω) as

KγD
:= K − w = {v ∈ H1

γD
(Ω) : v ≥ uc − w ∧ trγS

v ≤ −trγS
w} . (2.4.18)

With regard to the first statement of the proposition, observe that the sum of
the functionals φw and ψS

w is just the characteristic functional of KγD
.

Proposition 2.4.10. The minimization problem (2.4.14) is equivalent to the
variational inequality

ũ ∈ H1
γD

(Ω) : a(w + ũ, v − ũ)− ℓ(v − ũ)
+ φw(v)− φw(ũ) + ψS

w(v)− ψS
w(ũ) ≥ 0 ∀v ∈ H1

γD
(Ω) (2.4.19)

and to the variational inequality

ũ ∈ KγD
: a(w + ũ, v − ũ)− ℓ(v − ũ)

+ φ(w + v)− φ(w + ũ) ≥ 0 ∀v ∈ KγD
. (2.4.20)

Proof. First, setting K = V = H1
γD

(Ω) and F = Jw with (2.3.17) as well as

G = φw + ψS
w, we get the variational inequality (2.4.19) from Proposition 2.4.9.

Setting instead K = KγD
⊂ H1

γD
(Ω) and G = φw, we obtain (2.4.20) as a

variational formulation of the translated minimization problem

ũ ∈ KγD
: J (w + ũ) + φ(w + ũ) ≤ J (w + v) + φ(w + v) ∀v ∈ KγD

(2.4.21)

which is certainly equivalent to the untranslated problem (2.3.23).

Although φ(w + ·) is differentiable on KγD
, it is useful not to compute the cor-

responding directional derivative for the variational formulation (2.4.20). This
formulation will be crucial in the analysis of the finite element discretization
which we present in the next section. Another advantage of the variational
inequality (2.4.20) is that it allows an easy proof for the well-posedness of the
convex minimization problem (2.3.23) whose solution even depends Lipschitz
continuously on the linear functional ℓ.

Proposition 2.4.11. Assume that the conditions in Theorem 2.3.16 are sat-
isfied (and possibly the boundedness of M replaced by (2.3.25)). Furthermore,
for i = 1, 2 let ℓi ∈ H1(Ω)′ and let ui be the unique solutions of

ui ∈ K :
1

2
a(ui, ui)−ℓi(ui)+φ(ui) ≤

1

2
a(v, v)−ℓi(v)+φ(v) ∀v ∈ K . (2.4.22)
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Then we have
‖u1 − u2‖1 ≤ c−1‖ℓ1 − ℓ2‖ (2.4.23)

where c is the coercivity constant of a(·, ·) in (2.3.6).

Proof. With (2.4.18), (2.4.20) and Proposition 2.4.6 we can write (2.4.22) in
the form

ui ∈ K : a(ui, v − ui) + φ(v) − φ(ui) ≥ ℓi(v − ui) ∀v ∈ K , i = 1, 2 .

Now, setting v = u2 for i = 1 and v = u1 for i = 2 we obtain

a(−u1, u2 − u1)− φ(u2) + φ(u1) ≤ ℓ1(u1 − u2) (2.4.24)

and
a(u2, u2 − u1)− φ(u1) + φ(u2) ≤ −ℓ2(u1 − u2) . (2.4.25)

Adding (2.4.24) and (2.4.25) gives

a(u2 − u1, u2 − u1) ≤ (ℓ1 − ℓ2)(u1 − u2) (2.4.26)

which provides (2.4.23) with the coercivity constant c in (2.3.6).

Using the differentiability of φ, one can establish the well-posedness (2.4.23)
of the minimization problem (2.3.23) with the variational inequality (2.3.15)
in the same way as done in the proof with the variational inequality (2.4.20).
Then the contributions of φ(u1) and φ(u2) do not cancel each other out but
appear as an additional term

∂u1−u2φ(u1)− ∂u1−u2φ(u2)

on the left hand side (2.4.26). But this term is nonnegative due to the convexity
of φ which can easily be derived by (2.4.3). In fact, (2.4.3) shows that if
the directional derivative of a convex functional on K exists, it is a monotone
operator on K (compare also (2.3.13)). We will turn to further monotonicity
considerations in Chapter 3 where we apply Proposition 2.4.11 in the proof of
Theorem 3.4.23.

2.5 Finite element discretization

In this section we present our finite element discretization of (2.3.23) or (2.4.14),
respectively, following ideas and the notation in Kornhuber [59, pp. 36–43]
(see also Glowinski [45, pp. 12–15]). As stated in Remark 2.3.1, we keep our
assumptions on the problem as general as possible (see e.g. the conditions on
the unique solvability of (2.3.23)) in order to make clear what properties of the
problem are really needed. We bear in mind that these properties are satisfied
in case of the Richards equation with the Brooks–Corey parameter functions
but also for the limit cases as given in Section 1.4 where M is monotonically
increasing and bounded but not continuous.
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2.5.1 The discrete problem: properties and reformulations

For the sake of presentation we consider the two-dimensional case of a polygonal
domain Ω ⊂ R2. At the same time we emphasize that the convergence results
for our discretization can be obtained analogously for polyhedral domains in
higher and lower dimensions. Let Tj, j ∈ N0, be a partition of Ω into triangles
t ∈ Tj with minimal diameter of order O(2−j). We assume the triangulation Tj
to be regular in the sense that the intersection of two different triangles in Tj
is either empty or consists of a common edge or a common vertex. The set of
all vertices of the triangles in Tj is denoted by Nj.

For a consistent discretization, the set Nj ∩ ∂Ω should resolve the parts of the
boundary corresponding to different boundary conditions properly. Therefore,
we require that each intersection point of two closures (in R2) of the subsets γD,
γN and γS of the boundary ∂Ω is contained in Nj . Furthermore, we assume γD

and γS∪γD to be closed and we define ND
j := Nj∩γD as well as N S

j := Nj∩γS .

We choose the finite element space Sj ⊂ H1(Ω) as the subspace of all continuous
functions in H1(Ω) which are linear on each triangle t ∈ Tj. Analogously, we
define SD

j ⊂ H1
γD

(Ω). Sj and SD
j are spanned by the nodal bases

Λj := {λ(j)
p : p ∈ Nj} and ΛD

j := {λ(j)
p : p ∈ Nj\ND

j } ,

respectively, where the latter is only guaranteed because of our special choice
of ND

j containing all intersection points of parts of ∂Ω adjacent to γD.

Note that Nj and Sj, j ≥ 0, should not be confused with the corresponding
notation in Kornhuber [59] for the homogeneous case where Nj is the set of
all vertices in Tj which are interior points of Ω and Sj ⊂ H1

0 (Ω) is defined
accordingly. Of course this also applies to K and Kj which we define now.

For the definition of the finite dimensional analogue of K we assume that the
Dirichlet boundary condition uD is continuous in each node p ∈ ND

j such that
writing uD(p) makes sense in these nodes. Then it is natural to define this
convex set Kj ⊂ Sj by

Kj := {v ∈ Sj : v(p) ≥ uc ∀p ∈ Nj ∧ v(p) = uD(p)∀p ∈ ND
j ∧ v(p) ≤ 0∀p ∈ N S

j }
(2.5.1)

which, as a subset of the finite dimensional space Sj, is clearly nonempty and
closed.

Remark 2.5.1. Obviously, Kj is the set of all piecewise linear interpolations
of functions in K on the triangulation Tj. However, Kj ⊂ K is false in general
because the Dirichlet boundary values in Kj differ from those in K in general.
Observe that, as a consequence of the piecewise linearity of v ∈ Sj, the two
properties v(x) ≥ uc ∀x ∈ Ω and v(x) ≤ 0 ∀x ∈ γS if v ∈ Kj , valid in the
continuous case, are preserved in the discretization. The second property is
due to our choice of N S

j which contains all intersection points of the closures
of γS and γN while the intersection points of the closure of γS and γD are
contained in ND

j . But in such points p the Dirichlet boundary condition uD is
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supposed to be continuous, which entails uD(p) ≤ 0 because uD is chosen to be
compatible with the Signorini-type boundary condition, see (1.5.18).

Furthermore, we approximate the integral in the definition (2.3.10) of φ by a
quadrature formula arising from Sj-interpolation of the integrand Φ(v). In this
way, we arrive at the discrete functional φj : Sj → R ∪ {+∞} defined by

φj(v) :=
∑

p∈Nj

Φ(v(p))hp ∀v ∈ Sj (2.5.2)

with the positive weights

hp :=

∫

Ω
λ(j)

p (x) dx .

Of course, the properties of functionals in the continuous case (see Proposi-
tion 2.3.7) should be preserved by the discretized functionals, preferably in
a uniform way. With regard to the convergence result for our discretization
in Theorem 2.5.9, the following properties of the discrete functionals φj and,
in particular, their relation to the continuous counterpart φ in (2.5.5) will be
crucial.

Lemma 2.5.2. Provided M in (2.3.9) is monotonically increasing and bounded,
the functional φj is convex and Lipschitz continuous on its domain

domφj = {v ∈ Sj : v(p) ≥ uc ∀p ∈ Nj} (2.5.3)

with a Lipschitz constant independent of j ≥ 0. Furthermore, φj is lower semi-
continuous and proper and it admits an estimate

φj(v) ≥ C‖v‖1 ∀v ∈ Sj (2.5.4)

with a constant C ∈ R independent of j ≥ 0. Moreover, for vj ∈ Sj , j ≥ 0, and
v ∈ H1(Ω) we have

vj ⇀ v, j →∞ =⇒ lim inf
j→∞

φj(vj) ≥ φ(v) (2.5.5)

where vj ⇀ v denotes the weak convergence of vj to v in H1(Ω).

Proof. Since the function Φ is convex on [uc,∞) and the weights hp are positive,
the functional φj is convex on its domain

domφj = {v ∈ Sj : v(p) ≥ uc ∀p ∈ Nj}

which is closed and compact in Sj . Next, let L = ‖M‖∞ be the Lipschitz
constant of Φ according to Lemma 2.3.6 and v, v̄ ∈ domφj. Then, due to the
nonnegativity of the nodal basis functions λp, p ∈ Nj , we have

|φj(v)− φj(v̄)| ≤ L
∑

p∈Nj

|v(p)− v̄(p)|hp ≤ L
∑

p∈Nj

∫

supp λ
(j)
p

|v(x) − v̄(x)| dx

(2.5.6)
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where the last estimate is a consequence of the linearity of v and v̄ on each
triangle t ∈ Tj. Since each triangle is contained in the support of the three
nodal basis functions corresponding to its vertices, we can go on estimating

|φj(v)− φj(v̄)| ≤ 3L

∫

Ω
|v(x) − v̄(x)| dx ≤ 3L ‖1‖L2(Ω)‖v − v̄‖1

where the last estimate follows from the Cauchy–Schwarz inequality in L2(Ω).
This shows the Lipschitz continuity of φj , with a Lipschitz constant independent
of j ≥ 0. Of course, φj : Sj → R ∪ {+∞} is lower semicontinuous and proper.

With regard to (2.5.4) and (2.5.5), observe that

φj(v) =

∫

Ω

∑

p∈Nj

Φ(v(p))λ(j)
p (x) dx ≥

∫

Ω
Φ
(∑

p∈Nj

v(p)λ(j)
p (x)

)
dx = φ(v) ∀v ∈ Sj

(2.5.7)

because
∑

p∈Nj
λ

(j)
p (x) = 1 and λ

(j)
p (x) ≥ 0 holds for all x ∈ Ω and the scalar

function Φ is convex. Now, (2.5.4) follows from (2.3.11). Furthermore, since
the convex functional φ : H1(Ω) → R ∪ {+∞} is lower semicontinuous, it is
weakly lower semicontinuous (see [34, p. 11]) such that (2.5.7) provides

lim inf
j→∞

φj(vj) ≥ lim inf
j→∞

φ(vj) ≥ φ(v) (2.5.8)

for vj ⇀ v, j →∞, as given above.

Remark 2.5.3. Observe that the above proof depends heavily on our choice of
linear finite elements. Although we only need the positivity of the weights hp

to show the convexity of φj , we also take into account the special shape of
the nodal basis functions and their nonnegativity in order to obtain (2.5.6).

For (2.5.7), too, we need the nonnegativity of λ
(j)
p in each point x ∈ Ω. It is

therefore unclear if one can derive some variant of Lemma (2.5.2) for elements
of higher order (whose nodal basis functions are in general not nonnegative on
their domain) which can be used to obtain analogous results as we do below in
our convergence analysis.

Now, our discrete version of the minimization problem (2.3.23) reads

uj ∈ Kj : J (uj) + φj(uj) ≤ J (v) + φj(v) ∀v ∈ Kj . (2.5.9)

Since Kj , J and φj satisfy the required properties of Theorem 2.3.16, now in
the subspace Sj of the Hilbert space H1(Ω), we obtain

Theorem 2.5.4. The discrete minimization problem (2.5.9) has a unique so-
lution.

As in the continuous case above, we can reformulate the discrete minimization
problem in the convex set as a discrete minimization problem in a finite dimen-
sional Hilbert space and rewrite the latter as a discrete variational inclusion.
To this end, we choose

wj ∈ Sj with wj(p) = uD(p) ∀p ∈ ND
j (2.5.10)
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and consider the characteristic functional ψS = χC in (2.4.12) restricted on SD
j .

Then, again with the notation (2.4.13) and carrying over the considerations,
which led to Propositions 2.4.6 and 2.4.7, on the discrete level, the following
can be proved analogously.

Proposition 2.5.5. The minimization problem (2.5.9) is equivalent to

ũj ∈ SD
j : Jwj(ũj)+(φj)wj (ũj)+ψ

S
wj

(ũj) ≤ Jwj(v)+(φj)wj(v)+ψ
S
wj

(v) ∀v ∈ SD
j

(2.5.11)
in the sense that the solution uj of (2.5.9) equals wj + ũj. Furthermore, it is
equivalent to the variational inclusion

ũj ∈ SD
j : 0 ∈ a(wj + ũj , ·)− ℓ(·) + ∂φj(wj + ũj) + ∂ψS(wj + ũj) (2.5.12)

in (SD
j )′.

Remark 2.5.6. Observe that the characteristic functional ψS = χC restricted
to Sj is the characteristic functional χCj of the subset

Cj := {v ∈ SD
j : v(p) ≤ 0 ∀p ∈ N S

j }

of SD
j . This is due to the piecewise linearity of the functions in SD

j and the

definition of N S
j as a subset of γS including all intersection points with adjacent

parts of the boundary except those contained in γD. Therefore, instead of
considering the integral in (2.4.12), we can equivalently compute

ψS(v) =
∑

p∈NS
j

χ
R
−
0
(v(p)) ∀v ∈ SD

j .

While in the continuous case in the previous section it was not possible to
interchange integration with taking the subdifferential, in the discrete case we
have dom ∂φj = domφj with

∂φj(v0)(v) =
∑

p∈Nj

∂Φ(v0(p))v(p)hp ∀v ∈ SD
j (2.5.13)

for all v0 ∈ dom ∂φj and dom ∂ψS = domψS ⊂ SD
j with

∂ψS(v0)(v) =
∑

p∈NS
j

∂χ
R
−
0
(v0(p))v(p) ∀v ∈ SD

j (2.5.14)

for all v0 ∈ domψS ⊂ SD
j . This is due to a general result stating a summation

rule for subdifferentials of convex, lower semincontinuous and proper functionals
which are continuous on their domains, see [34, p. 26] or [59, pp. 35, 38].

Finally, we turn to the discrete analogue of Proposition 2.4.10. Therefore, we
define the translation of our discrete convex set Kj (see (2.5.1)) by wj onto a
subset of SD

j as

KD
j : = Kj − wj (2.5.15)

= {v ∈ SD
j : v(p) ≥ uc − wj(p) ∀p ∈ Nj ∧ v(p) ≤ −wj(p) ∀p ∈ N S

j }

82



analogously as in the continuous case KγD
in (2.4.18). As for Kj and K, observe

that KD
j is the set of all piecewise linear interpolations of the functions in KγD

on the triangulation Tj if we choose w in (2.4.11) to be continuous and wj in
(2.5.10) as its piecewise linear interpolation in Sj. However, the constraints in
the continuous and the discrete case may differ such that we have KD

j * KγD

in general.

Proposition 2.5.7. The minimization problem (2.5.9) is equivalent to the vari-
ational inequality

ũj ∈ SD
j : a(wj + ũj, v − ũj)− ℓ(v − ũj)

+ (φj)wj (v)− (φj)wj (ũj) + ψS
wj

(v) − ψS
wj

(ũj) ≥ 0 ∀v ∈ SD
j (2.5.16)

and to the variational inequality

ũj ∈ KD
j : a(wj + ũj, v − ũj)− ℓ(v − ũj)

+ φj(wj + v)− φj(wj + ũj) ≥ 0 ∀v ∈ KD
j (2.5.17)

in the sense that the solution uj of (2.5.9) equals wj + ũj.

The proof is the same as for Proposition 2.4.10 if one replaces H1
γD

(Ω) by SD
j ,

KγD
by KD

j and φ by φj for the application of Proposition 2.4.9. Again, observe
that (2.5.17) can be regarded as a variational formulation of the translated
minimization problem

ũj ∈ KD
j : J (wj + ũj) + φj(wj + ũj) ≤ J (wj + v) + φj(wj + v) ∀v ∈ KD

j

(2.5.18)
which is equivalent to the untranslated problem (2.5.9). Finally, note that an
analogous well-posedness result as in Proposition 3.3.8 in the continuous case
also holds for the discrete problem (2.5.9) with the same proof.

2.5.2 A classical convergence result

Now, we deal with the convergence of our finite element solutions from (2.5.9)
to the solution of the continuous problem (2.3.23) for which the variational
inequalities (2.4.20) and (2.5.17) will play a central role. The derivation of our
results is largely based on the arguments given in Kornhuber [59, pp. 38–42] for
the case of homogeneous Dirichlet boundary conditions on all of ∂Ω. We need to
take special care of the inhomogeneous Dirichlet values and the Signorini-type
boundary conditions defined only on parts of ∂Ω.

As in Kornhuber [59, pp. 38–42], the convergence results depend on the as-
sumption that the corresponding sequence of triangulations has a decreasing
mesh size

hj = max
t∈Tj

diam t→ 0 for j →∞ . (2.5.19)
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In addition, we assume that the sequence of triangulations

(Tj)j≥0 is shape regular (2.5.20)

which denotes the well-known property that the minimal interior angle of all
triangles contained in ∪j≥0Tj is bounded from below by a positive constant.

For further discussion, we introduce the piecewise linear interpolation operator

ISj : H1(Ω) ∩ C(Ω)→ Sj

defined by (ISjv)(p) = v(p) ∀p ∈ Nj for v ∈ H1(Ω) ∩ C(Ω).

It will turn out that we can only guarantee convergence if the Dirichlet boundary
condition uD on γD is the trace of a uniformly continuous function w ∈ H1(Ω),
i.e. if we have

uD = trγD
w for a w ∈ H1(Ω) ∩C(Ω) . (2.5.21)

It is well known that if uD is continuous on γD (which we assumed to be
closed), then it can be extended to a continuous function on the closure of Ω
(see [98, p. 498]). We require that there exists such an extension in H1(Ω).
Moreover, for the proof of convergence we will assume wj to be the piecewise
linear interpolations of w in Sj approximating w in H1(Ω), i.e. we require

wj = ISjw with wj → w for j →∞ in H1(Ω). (2.5.22)

In general, according to the interpolation theory in Ciarlet [27, pp. 122–124], the
latter can only be guaranteed if w is regular enough. To check the assumptions
stated there, we recall that the Sobolev embedding theorem (see [21, p. 1.52])
provides the compact embedding

Hk(t) →֒ C(t) ⇐⇒ k >
d

2

for polyhedra t ⊂ Rd and k ∈ N. Now, with t ∈ Tj and d = 2 in our case
we obtain (2.5.22) (with the order O(hj)) for w ∈ H2(Ω) from the results in
[27, pp. 122–124], provided (2.5.19) and also (2.5.20) hold. Consequently, we
could also replace (2.5.21) and (2.5.22) by uD = trγD

w with the condition
w ∈ H2(Ω) or a corresponding condition for d > 2.

In Kornhuber [59, pp. 38/39] it is proved that for K̃ = {v ∈ H1
0 (Ω) : v ≥ uc}

the subset C∞
0 (Ω)∩ K̃ is dense in K̃. Since C∞

0 (Ω) is dense in H1
0 (Ω), for given

v ∈ K̃ there is always a sequence (vk)k≥0 ⊂ C∞
0 (Ω) with vk → v for k → ∞.

In order to ensure vk ∈ K̃, however, regularizations of v with mollifiers are
considered. It is by far a nontrivial task to extend this result to more general
settings like our convex set KγD

in H1
γD

(Ω). The technique can be refined (see

Glowinski [45, pp. 36–38]) to generalize the result to continuous obstacles on Ω
which are nonnegative in a neighbourhood of γD = ∂Ω as uc −w is in our case
(2.4.18) with the property (2.5.21). Furthermore, an exercise in [45, pp. 38/39]
suggests that the latter result can be extended to H1

γD
(Ω) for sufficiently smooth

γD ⊂ ∂Ω if one applies the density of

C∞
γD

(Ω) := {v ∈ C∞(Ω) : v = 0 in a neighbourhood of γD} (2.5.23)
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in H1
γD

(Ω). As to the boundary conditions of Signorini’s type one finds a proof

for the density of C∞(Ω) ∩ K̄ in the convex set K̄ = {v ∈ H1(Ω) : tr∂Ω v ≥ 0}
in [45, p. 61]. Since we do not want to go into more details here, it seems to be
in order to require

C∞
γD

(Ω) ∩ KγD
is dense in KγD

(2.5.24)

as an additional condition for our translated convex set KγD
defined in (2.4.18).

Property (2.5.24) will provide an essential density argument in the proof of the
convergence result in Theorem 2.5.9.

As a necessary ingredient for convergence, the following lemma provides the
consistency of the discrete functionals φj . The proof is essentially the same as
in Kornhuber [59, pp. 38–40] for the homogeneous case. However, we state it
here in order to make clear where we need the assumptions on the extension w
of uD and the interpolating wj.

Lemma 2.5.8. We assume (2.5.19), (2.5.20) and M in (2.3.9) to be bounded
and monotonically increasing. If v ∈ C∞(Ω) and vj = ISjv ∈ Sj for j ≥ 0,
then we have the convergence

vj → v in H1(Ω) and φj(vj)→ φ(v) for j →∞ . (2.5.25)

Assuming in addition (2.5.21) and (2.5.22), the assertion (2.5.25) also holds
for v = w + ṽ ∈ w + C∞(Ω) and vj = ISjv = ISjw + ISj ṽ = wj + ṽj , j ≥ 0.

Proof. Since C∞(Ω) is dense in all Hk(Ω), k ≥ 0, (see Ciarlet [27, p. 114]) we
obtain vj → v by applying the results in [27, pp. 122–124] under the assump-
tions (2.5.19) and (2.5.20). The same applies for v = w + ṽ ∈ w + C∞(Ω) and
vj = ISjv because of (2.5.22).

Now, we show φj(vj) → φ(v) if vj → v and if v is uniformly continuous which
is true for v ∈ C∞(Ω) and for v ∈ w + C∞(Ω) due to (2.5.21). If φ(v) = ∞,
then there is an open subset Ω′ ⊂ Ω with v(x) < uc ∀x ∈ Ω′. Due to (2.5.19)
we obtain Nj ∩ Ω′ 6= ∅ for all j ≥ j0 with a suitable j0 ≥ 0. This provides
φj(vj)→∞ for j →∞.

If φ(v) < 0, i.e. v(x) ≥ uc ∀x ∈ Ω, then the function Φ(v(·)) is uniformly contin-
uous on Ω since v : Ω→ [uc,∞) is uniformly continuous and Φ : [uc,∞)→ R is
Lipschitz continuous (see Lemma 2.3.6). Let p1, p2, p3 ∈ Nj denote the vertices

of t ∈ Tj. Then we have
∑3

i=1 λ
(j)
pi = 1 on t and therefore altogether

|φ(v) − φj(vj)| ≤
∑

t∈Tj

∫

t

(
3∑

i=1

λ(j)
pi

(x)|Φ(v(x)) − Φ(v(pi))|
)
dx

≤ |Ω| max
{x,ξ∈Ω, |x−ξ|≤hj}

|Φ(v(x)) −Φ(v(ξ))| → 0 (2.5.26)

for j →∞.
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Now, with the consistency result in Lemma 2.5.8 and the further properties of
φj in Lemma 2.5.2 we can prove convergence, adapting the ideas in Kornhuber
[59, pp. 41/42] to our inhomogeneous case.

Theorem 2.5.9. We assume (2.5.19)–(2.5.24) and the conditions imposed in
Theorem 2.3.16 except for the continuity of M . Then the solutions uj of the
discrete minimization problem (2.5.9) converge to the solution u of (2.3.23) in
the sense that

uj → u in H1(Ω) and φj(uj)→ φ(u) for j →∞ . (2.5.27)

Proof. As in [59, pp. 41/42], the proof is carried out in three steps. For the
argumentation we consider the translated minimization problems (2.4.21) and
(2.5.18) and the corresponding variational inequalities in the form (2.4.20) and
(2.5.17), respectively. Since we assume wj → w, we can mainly concentrate on
the functions ũj ∈ KD

j ⊂ SD
j ⊂ H1

γD
(Ω) instead of uj = wj + ũj ∈ wj + SD

j

and ũ ∈ KγD
⊂ H1

γD
(Ω) instead of u = w + ũ ∈ w + H1

γD
(Ω). Indeed, this is

necessary in the first and in the third step where we need to exploit the fact
that due to (2.3.5) and (2.3.6), a(·, ·) induces an equivalent norm on H1

γD
(Ω)

defined by
|v|a := a(v, v)1/2 ∀v ∈ H1

γD
(Ω) .

First, we prove that (ũj)j≥0 is bounded in H1
γD

(Ω). Using (2.5.24) we choose a

v ∈ C∞(Ω) ∩ KγD
and define vj = ISjv ∈ KD

j for j ≥ 0. This is well-defined

since ISj(KγD
) = KD

j because of wj = ISjw, see (2.5.15). Since ũj satisfies the
variational inequality (2.5.17), we have

|ũj |2a = a(ũj , ũj) ≤ a(wj+ũj , vj)−a(wj , ũj)+φj(wj+vj)−φj(wj+ũj)−ℓ(vj−ũj) .

Lemma 2.5.8 provides uniform upper bounds for ‖vj‖1 and |φj(wj + vj)|, and
we have the uniform lower estimate (2.5.4). Using this, the continuity (2.3.5)
of a(·, ·) and ℓ(·) as well as the equivalence (2.3.6) of | · |a and ‖ · ‖1, then, with
some C > 0, we can go on estimating

c‖ũ‖21 ≤ C(‖wj‖1 + ‖ũj‖1 + ‖wj‖1‖ũj‖1) + C(‖wj‖1 + ‖ũj‖1) + C‖ũj‖1 + C

≤ C̃‖ũj‖1 + C̃

where C̃ > 0 is sufficiently large, taking into account that (w̃j)j≥0 is bounded
due to (2.5.22).

Therefore, (ũj)j≥0 must be bounded in H1
γD

(Ω).

In the second step, we prove the weak convergence of (ũj)j≥0 to ũ in H1
γD

(Ω).
Since H1

γD
(Ω) is a Hilbert space, i.e. reflexive, there is a weakly convergent

subsequence (ũjk
)k≥0 with a limit ũ∗ ∈ H1

γD
(Ω) due to the boundedness of

(ũj)j≥0 (see e.g. [98, p. 107]). In order to prove ũ = ũ∗, it is enough to show
that ũ∗ is a solution of (2.4.20), since (for fixed w) (2.4.20) is uniquely solvable
due to Proposition 2.4.10 and Theorem 2.3.16.
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We need to make clear that ũ∗ ∈ KγD
holds in the first place. As we have

wjk
+ ũjk

∈ Ka := {v ∈ H1(Ω) : v ≥ uc ∧ trγS
v ≤ 0} ∀k ≥ 0

in the closed and convex set Ka ⊂ H1(Ω) and wjk
→ w, i.e. wjk

+ ũjk
⇀ w+ ũ∗,

this leads to w + ũ∗ ∈ Ka since Ka is also weakly closed (see e.g. [98, p. 108]).
Due to trγD

w = uD and ũ∗ ∈ H1
γD

(Ω) we get w+ũ∗ ∈ K and therefore ũ∗ ∈ KγD
.

To show that ũ∗ ∈ KγD
satisfies the variational inequality (2.4.20), assume

v ∈ C∞(Ω) ∩ KγD
and let vj = ISjv ∈ KD

j for j ≥ 0 as in the first step. With
these discrete test functions in the discrete variational inequality (2.5.17) we
obtain

a(ũjk
, ũjk

) + φjk
(wjk

+ ũjk
) ≤ a(wjk

+ ũjk
, vjk

)− a(wjk
, ũjk

)

+ φjk
(wjk

+ vjk
)− ℓ(vjk

− ũjk
)

as above. Since we have wjk
→ w, ũjk

⇀ ũ∗ and vjk
→ v (by Lemma 2.5.8),

passing to the limit while using the consistency (2.5.25) of φj gives

lim inf
k→∞

(a(ũjk
, ũjk

) + φjk
(wjk

+ ũjk
)) ≤ a(w + ũ∗, v)− a(w, ũ∗)

+ φ(w + v)− ℓ(v − ũ∗) . (2.5.28)

Now, using the elementary estimate

0 ≤ a(ũ∗ − ũjk
, ũ∗ − ũjk

) = a(ũ∗, ũ∗)− 2a(ũ∗, ũjk
) + a(ũjk

, ũjk
)

and the weak convergence of ũjk
, we get

a(ũ∗, ũ∗) ≤ lim inf
k→∞

(a(ũjk
, ũjk

)) .

In connection with (2.5.5) in Lemma 2.5.2, this provides

a(ũ∗, ũ∗) + φ(w + ũ∗) ≤ lim inf
k→∞

(a(ũjk
, ũjk

) + φjk
(wjk

+ ũjk
)) .

Combining this estimate with (2.5.28) we conclude

a(w+ ũ∗, v− ũ∗)− ℓ(v− ũ∗) + φ(w+ v)− φ(w+ ũ∗) ≥ 0 ∀v ∈ C∞(Ω)∩KγD
.

(2.5.29)

Now, the density assumption (2.5.24) comes into play to extend (2.5.29) to
all v ∈ KγD

. For any v ∈ KγD
assumption (2.5.24) provides a sequence (vk)k≥0

in C∞(Ω) ∩ KγD
converging to v. Since (2.5.29) is satisfied for all vk, k ≥ 0,

and the functionals on the left hand side of (2.5.24) acting on vk are continuous
in this argument on KγD

(in particular φ, see Proposition 2.3.7), (2.5.24) is
satisfied for v.

We have proved that ũ∗ = ũ is the solution of (2.4.20). The uniqueness of the
solution entails ũj ⇀ ũ for j →∞.
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In the final step, we show the strong convergence of (ũj)j≥0. Again, we consider
a v ∈ C∞(Ω) ∩ KγD

with vj = ISjv ∈ KD
j for j ≥ 0. And again, using the

discrete variational inequality (2.5.17) we compute

|ũ− ũj|2a + φj(wj + ũj)

= a(ũ, ũ)− 2a(ũ, ũj) + a(ũj , ũj) + φj(wj + ũj)

≤ a(ũ, ũ)− 2a(ũ, ũj) + a(wj + ũj , vj)− a(wj , ũj) + φj(wj + vj)− ℓ(vj − ũj) .

(2.5.30)

With the same arguments as used above, the right-hand side in the estimate
(2.5.30) converges to a(w + ũ, v − ũ) + φ(w + v) − ℓ(v − ũ) as j → ∞. Hence,
we can estimate

lim inf
j→∞

φj(wj + ũj)

≤ lim inf
j→∞

(|ũ− ũj |2a + φj(wj + ũj))

≤ lim sup
j→∞

(|ũ− ũj |2a + φj(wj + ũj))

≤ a(w + ũ, v − ũ) + φ(w + v)− ℓ(v − ũ) ∀v ∈ C∞(Ω) ∩ KγD
. (2.5.31)

Again, applying (2.5.24) and using the same density argument as above, we
obtain (2.5.31) for all v ∈ KγD

. Then, inserting v = ũ in (2.5.31) and using
(2.5.5) we deduce

φ(w + ũ) ≤ lim inf
j→∞

φj(wj + ũj) ≤ lim sup
j→∞

(|ũ− ũj |2a + φj(wj + ũj)) ≤ φ(w + ũ) .

From this we conclude φj(wj + ũj) → φ(w + ũ) as well as |ũj − ũ|a → 0, i.e.
‖ũj − ũ‖1 → 0 due to the equivalence of these norms in H1

γD
(Ω) and therefore

uj = wj + ũj → u = w + ũ in H1(Ω). This completes the proof.

Remark 2.5.10. With regard to the structure of the proof and in comparison
to the homogeneous case given in Kornhuber [59, pp. 41/42], several notes seem
to be in order.

Concerning the first step of the proof, observe the following: Since the Dirichlet
value uD is taken out of the set given in (1.5.18), it obviously has an exten-
sion w in the convex set K in (1.5.19) or (2.3.3). Now, if there is such an
extension w also satisfying (2.5.21) and (2.5.22), which is certainly true for ho-
mogeneous Dirichlet boundary conditions for instance, we can choose it for our
argumentation in here. Consequently, we can choose v = 0 ∈ KγD

= K−w and
vj = ISjv = 0 ∈ KD

j = Kj −wj as the test functions above, which simplifies the
first step considerably.

Furthermore, we note that in the second step we do not get ũ∗ ∈ KγD
immedi-

ately from the weak convergence ũjk
⇀ ũ∗, since although

ũjk
∈ KD

jk
= ISjk

(KγD
) ∀k ≥ 0 ,
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we have KD
jk

* KγD
in general (see (2.5.15)). We rather need to deal with

the solutions ujk
= wjk

+ ũjk
of (2.5.9) which we consider as elements of Ka

since the discrete and the continuous Dirichlet values differ in general. Observe,
however, that w+ ũ∗ ≥ 0 also follows from (2.5.29) which gives φ(w+ ũ∗) <∞.

It does not seem possible to relax our density assumption (2.5.24) (e.g. to the
well-known density (2.5.23) of C∞

γD
(Ω) ∩ H1

γD
(Ω) in H1

γD
(Ω)) by applying the

variational inequality (2.4.19) and its discrete counterpart (2.5.16) in the proof.
Although the latter is feasible by establishing a straightforward analogue of
Lemma 2.5.8 and (2.5.5) for ψS , the density argument in the second and in
the third step cannot be carried out if for a v ∈ KγD

there is only a sequence
(vk)k≥0 ⊂ C∞

γD
(Ω)∩ (H1

γD
(Ω)\KγD

) converging to v. Since dom(φ+ψS) = KγD
,

we would have (φ + ψS)(vk) = ∞ for all k ≥ 0 although (φ + ψS)(v) < 0 in
such a case (see also [59, p. 42]).

In order not to confuse our notation with the one chosen in (2.4.20) and (2.5.17),
wj + ũj and w+ ũ are not abbreviated by uj and u, respectively, in this proof.
However, the assertions about (ũj)j≥0 and its limit correspond to the analogous
ones for (uj)j≥0 and its limit, and the proof, as well as (2.4.20) and (2.5.17),
could be reformulated accordingly.

It is clear that the conditions (2.5.21) and (2.5.22) on w and wj only need to
be satisfied for a single w ∈ H1(Ω) with trγD

w = uD in order to obtain the
convergence result. For the assertion of Theorem 2.5.9 to hold, it is certainly
irrelevant how the function wj satisfying (2.5.10) is chosen to compute the solu-
tion uj of (2.5.9) since uj does not depend on a special choice of wj . However,
the iterates ũj , j ≥ 0, do not converge unless the interpolants wj , j ≥ 0, do.

2.5.3 Generalizations of the convergence result

With regard to the continuous setting discussed in Remark 2.3.17 it is natural to
ask to what extent the convergence results for our finite element discretization of
(2.3.23) can be generalized. The hydraulic conductivity Kh(·) can be chosen to
be space-dependent because it is included in the bilinear form a(·, ·) which is just
restricted to Sj ×Sj in the discretization and of which only the continuity and
the coerciveness are used. Therefore, Kh(·) can be chosen as in the continuous
case.

The question how a space-dependent porosity n(·) can be treated in the dis-
cretization seems to be more interesting, since φ is not evaluated exactly on Sj .
Keeping in mind how n(·) is included in the continuous case (see Remark 2.3.17),
we replace the weights hp in (2.5.2) by

h̃p :=

∫

Ω
n(x)λp(x) dx (2.5.32)

which provides a natural discretization φ̃j of the generalized convex functional

φ : v 7→
∫

Ω
n(x)Φ(v(x)) dx ∀v ∈ K (2.5.33)
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instead of (2.3.10). We choose n(·) to be positive in order to obtain posi-
tive weights and the same domain dom φ̃j as in (2.5.3). Furthermore, n(·)
should be bounded as in the continuous setting. Then the proofs of the crucial
Lemmas 2.5.2 and 2.5.8 can be easily carried over to the general case.

Possible generalizations of the convergence results above to approximations of
a(·, ·) by aj(·, ·) and ℓ(·) by ℓj(·), respectively, e.g. obtained by quadrature, shall
not be considered here. Nevertheless, it is tempting to replace the generalized
φ in (2.5.33) by a “full” Sj-interpolation of the integrand which results in a
discretization φj with the weights

hp := n(p)

∫

Ω
λp(x) dx = n(p)hp

instead of (2.5.32). Then Φ(v(·)) in (2.5.26) has to be replaced by n(·)Φ(v(·))
such that n(·) needs to be uniformly continuous on Ω (or equivalently on Ω)
if we want to preserve the argument in (2.5.26) for the consistency result in
Lemma 2.5.8. Unfortunately, although the rest of the proof of Lemma 2.5.2 can
be carried out analogously, the crucial property (2.5.5) seems to be unclear or
at least more difficult to derive since the estimate in (2.5.7) might no longer be
true for space-dependent n(·). The integrands in (2.5.7) can be multiplied with
n(x), which provides

φ̃j(v) ≥ φ(v) ∀v ∈ Sj ,

but n(x) cannot be replaced by n(p) in general in the sum on the left hand side
of the inequality in (2.5.7). (We remark that one could instead replace n(x) by
max{n(x) : x ∈ suppλp} in order to obtain this and all the other assertions to
be checked here.) However, one could hope that if n(·) is regular enough, this
replacement “is allowed in the limit” j → ∞ such that the essential assertion
(2.5.8) is still satisfied. This would require to prove

|φ̃j(vj)− φj(vj)| → 0 for vj ⇀ v, j →∞ , (2.5.34)

which does not seem to be straightforward. With a glance at (2.5.26), we can
estimate

|φ̃j(vj)− φj(vj)| ≤ |Ω| max
{x,ξ∈Ω, |x−ξ|≤hj}

|n(x)− n(ξ)| sup
j≥0, p∈Nj

|Φ(vj(p))|

in which
sup

j≥0, p∈Nj

|Φ(vj(p))| <∞ (2.5.35)

does not seem to be satisfied in general. Due to the weak convergence of (vj)j≥0,
we only have the uniform bound ‖vj‖1 ≤ C ∀j ≥ 0 with a C > 0. Therefore, we
can guarantee (2.5.35) at least in one space dimension because of the well-known
continuous Sobolev embedding

H1(Ω) →֒ C(Ω) (2.5.36)

for bounded intervals Ω ⊂ R (see for example [1, p. 98] for a version of it
including also unbounded Ω). In this case at least, the uniform continuity of
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n(·) and (2.5.35) provide (2.5.34) and therefore (2.5.8) in Lemma 2.5.2. We
close these considerations by noting that our numerical method for the solution
of (2.5.9), which we present in the following two sections, is not affected by the
special choice of the weights hp as long as they are nonnegative.

With regard to the properties of M , it is clear that the same convergence
results as above can be obtained for M : R → R defined on the whole real
line, thus accounting for the nondegenerate case and corresponding limit cases
concerning the Richards equation (see Section 1.4). In Kornhuber [59] one finds
analogue versions of Lemmas 2.5.2 and 2.5.8 for an even more general situation
including property (2.3.25) (note for example that Lipschitz continuity of Φ is
not necessary in the proof of Lemma 2.5.8).

2.5.4 Convergence of the discrete saturation and the physical
pressure for the Brooks–Corey functions

One can consider the convergence result φj(uj) → φ(u) in Theorem 2.5.9 as
unsatisfactory from the point of view of our original problem, the variational
inequality (2.3.8). With the hydrological background from the first chapter one
might be more interested in the convergence of the saturation M(uj)→M(u).
To address this issue we note the following general convergence results in L2(Ω)
which can be formulated in the framework of superposition operators introduced
in Definition 1.5.9.

Proposition 2.5.11. Let Ω ⊂ Rd be bounded and M : R → R uniformly
continuous and bounded. Then the superposition operator MΩ acts on L2(Ω)
and is continuous.

Sketch of the proof. MΩ acts on L2(Ω) because Ω and M are bounded. For the
proof of continuity let (un)n≥0 ⊂ L2(Ω) with un → u for n → ∞ in L2(Ω).
Now, we can argue similarly as in the proof of Proposition 1.5.14. One can
split Ω in

Ωn
>ε = {x ∈ Ω : |u(x)− un(x)|2 > ε}

and Ωn
≤ε = Ω\Ωn

>ε for an ε > 0 and derive |Ωn
>ε| → 0 for n → ∞ with the

Lebesgue measure | · | from the convergence un → u in L2(Ω). Using the
uniform continuity of M on Ωn

≤ε and its boundedness on Ωn
>ε, one can show

M(un)→M(u) in L2(Ω).

If M is more regular we obtain more.

Proposition 2.5.12. Let Ω ⊂ Rd be bounded. If M : R → R is Hölder con-
tinuous with respect to the exponent α ∈ (0, 1], then M induces a superposition
operator

Mα : L2(Ω)→ L2/α(Ω)

which is also Hölder continuous with respect to α.
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Sketch of the proof. One can show that |M(u(·))|2/α is integrable by consider-
ing |M(u(·))| ≤ |M(u(·)) −M(u(x0))| + |M(u(x0))| for an x0 ∈ Ω, using the
inequality

(a+ b)q ≤ 2q−1(aq + bq) (2.5.37)

for a, b ≥ 0 and q ≥ 1 (consult e.g. [54, p. 161]) with q = 2/α and then the
Hölder continuity of M . The claimed Hölder continuity of Mα is straightfor-
ward.

With the continuous embedding i : L2/α(Ω) →֒ L2(Ω) for bounded Ω ⊂ Rd, it
follows easily that i ◦Mα : L2(Ω) → L2(Ω) is Hölder continuous with respect
to α which improves the convergence result in Proposition 2.5.11 for Hölder
continuous M . Recall that the generalized saturation M in (1.3.25) from the
Brooks–Corey parameter functions for the Richards equation is Hölder contin-
uous. Of course, we can apply the results to uj → u from Theorem 2.5.9. Note
that in order to obtain

M(uj)→M(u) in L2(Ω) for j →∞ , (2.5.38)

it is enough to assume the properties of M (in Propositions 2.5.11 or 2.5.12)
only on the union of the ranges of the functions uj , j ≥ 0, and u. Otherwise,
one can think of M : [uc,∞) → R to be extended on R by the value M(uc).
Furthermore, it is clear that Propositions 2.5.11 or 2.5.12 hold for any Lp(Ω)
with p ≥ 1 instead of p = 2.

For practical purposes one might be even more interested in the Sj-interpolation
of M(uj) rather than in the exact function M(uj), see (2.7.36) and (2.7.37).
With regard to the convergence of this inexact evaluation of M(uj), we state
the following result.

Theorem 2.5.13. Let M : R → R be Hölder continuous with respect to the
exponent α ∈ (0, 1]. Then, for linear finite element functions uj ∈ Sj, j ≥ 0,
satisfying uj → u in H1(Ω) for j →∞, we have

M(uj)− ISjM(uj)→ 0 in L2(Ω) for j →∞ .

Proof. For any point x contained in a triangle t ∈ Tj with the vertices p1, p2, p3

there are λi ∈ [0, 1], i = 1, 2, 3, with
∑3

i=1 λi = 1 such that

ISjM(uj)(x) =

3∑

i=1

λiM(u(pi)) .

Therefore, using binomial formulas (as (2.5.37)) and the Hölder continuity of M
with the Hölder constant Cα, we can estimate

|M(uj(x))− ISjM(uj)(x)|2 ≤
(

3∑

i=1

λi |M(uj(x))−M(uj(pi))|
)2

≤ 3
3∑

i=1

|M(uj(x))−M(uj(pi))|2 ≤ 3C2
α

3∑

i=1

|uj(x)− uj(pi)|2α . (2.5.39)

92



Using the mean value theorem

|uj(x)− uj(pi)| ≤ |∇uj ||x− pi|

on the triangle t (with the Euclidean norm | · | on Rd) while considering that
|∇uj| is constant on t, we can go on estimating the last term in (2.5.39) by

9C2
α |∇uj |2α h2α

j

with hj as in (2.5.19). Now, integration over Ω provides
∫

Ω
|M(uj(x))− ISjM(uj)(x)|2 dx ≤

∑

t∈Tj

∫

t
|M(uj(x))− ISjM(uj)(x)|2 dx

≤ 9C2
α h

2α
j

∫

Ω
(|∇uj |2 + 1) dx .

Since (uj)j≥0 converges in H1(Ω), the last integral is uniformly bounded and
therefore this whole last term tends to 0 as j →∞ due to (2.5.19).

Note that due to the Sobolev embedding (2.5.36), Propositions 2.5.11 and 2.5.12
as well as Theorem 2.5.13 also hold in one space dimension if L2(Ω) and
L2/α(Ω) are replaced by (C(Ω), ‖ · ‖∞). In this case the assertions of Proposi-
tion 2.5.11 and Theorem 2.5.13 are already satisfied for any uniformly continu-
ous M : R→ R. Again, Theorem 2.5.13 can also be applied to M : [uc,∞)→ R
for our uj ∈ Kj , j ≥ 0, and u ∈ K. Note that with the continuous embedding
L2(Ω) →֒ Lp(Ω) for all p ∈ [1, 2] and (2.5.37), the proof can be generalized to
these Lp(Ω), in particular to p = 1. Furthermore, with the Cauchy–Schwarz
inequality we obtain

M(uj)vj →M(u)v in L1(Ω) for j →∞ (2.5.40)

from (2.5.38) for

vj ∈ Sj , j ≥ 0 , with vj → v in H1(Ω) for j →∞ . (2.5.41)

Now, it is not hard to adapt the proof of Theorem 2.5.13 in order to guarantee

M(uj)vj − ISj (M(uj)vj)→ 0 in L1(Ω) for j →∞ (2.5.42)

for Hölder continuous M and these functions uj , vj and u, v. This is interesting
because (2.5.40)–(2.5.42) entail

∑

p∈Nj

M(uj(p)) (vj(p)−uj(p))hp −→
∫

Ω
M(u) (v−u) dx for j →∞ . (2.5.43)

With a glance at (2.5.12) and (2.5.13), an application of Proposition 2.3.11
shows that the discretization

uj ∈ Kj :
∑

p∈Nj

M(uj(p)) (v(p)−uj(p))hp+a(uj , v−uj)−ℓ(v−uj) ≥ 0 ∀v ∈ Kj

(2.5.44)
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of the original variational inequality (2.3.8) is equivalent to the discretization
(2.5.9) on the level of our convex functional if M : [uc,∞) → R is continuous.
We can rewrite (2.5.43) as the convergence

∂vj−ujφj(uj)→ ∂v−uφ(u) for j →∞

on the level of the variational inequality (2.3.8) and its discretization for our
solutions uj of (2.5.44) and u of (2.3.8) with vj, v as in (2.5.41). Note that for
any v ∈ K there is a sequence (vj)j≥0 satisfying (2.5.41) because of condition
(2.5.24) and Lemma 2.5.8.

It turns out that via the definition (2.3.9) and the analysis on the convex min-
imization problem (2.3.23), we obtain all the desirable results concerning the
variational inequality (2.3.8) and the saturation M which are closer to our orig-
inal hydrological problem. The same strategy will be further pursued in the
following Sections 2.6 and 2.7 in which we deal with the numerical treatment
of (2.5.9) or (2.5.44), respectively. However, at the end (see e.g. Figure 2.1),
we also come back again to the derivative M of Φ. In particular, we will never
need to evaluate Φ (as given in (2.3.9)) in the whole numerical process.

Remark 2.5.14. The above discussion was mainly motivated by the fact that
a hydrological situation is much better reflected by the saturation M(u) than
the value of the functional φ(u). But the same can be said in such a case
for the physical pressure p = κ−1(u) as compared to the generalized pressure
u ∈ K with the Kirchhoff transformation (1.3.1). It was already indicated in
Remark 1.5.19 that we are limited in answering this question for the Brooks–
Corey parametrization. For example, we do not know the regularity of the
function p which is given almost everywhere on Ω by pointwise application
κ−1(u(x)) of the inverse transformation on the values of u, say, in the Lebesgue
points x of u in Ω (see Rudin [82, p. 140]). Depending on the range of u in
[uc,∞) and the singularity of κ−1 : (uc,∞) → R (see (1.3.24) or Figure 1.9)
one might not even have p ∈ L1(Ω).

However, if there is a physically meaningful interpretation of (2.3.8) which is
given by the corresponding variational inequality in the physical pressure p
analogously to (1.5.38), then as derived in Remark 1.5.19 from Theorem 1.5.18,
this variational inequality is uniquely solvable by p = κ−1(u) ∈ H1(Ω). But
even then it is unclear if the iterates pj := κ−1(uj), j ≥ 0, converge to p because
of the singularity of κ−1 in uc.

It seems that a nontrivial result can only be obtained if the ranges of u and
uj, j ≥ 0, are uniformly bounded from below by a constant a > uc. In this
case κ−1 can be regarded as a Lipschitz continuous function on these ranges
as in the nondegenerate case kr ≥ c for a c > 0 in Lemma 1.5.7. Still, these
situations can be considered as somewhat natural in a realistic physical setting
where one does not expect deteriorating physical pressure values. In these cases
κ−1 : (a,∞) → R can be extended to a Lipschitz continuous function on the
real line and the strong result in Theorem 1.5.15 provides the convergence

pj = κ−1(uj)→ p = κ−1(u) in H1(Ω) for j →∞ .
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For the interpolants Theorem 2.5.13 guarantees

ISjpj → p in L2(Ω) for j →∞ .

Again, in one space dimension the Sobolev embedding theorem (2.5.36) allows
us to replace the spaces in these convergence results by (C(Ω), ‖ · ‖∞). Note
that the Lipschitz continuity of κ−1 on compact subsets of (uc,∞) provides the
same convergence speed of pj → p as uj → u in L2(Ω) or (C(Ω), ‖ · ‖∞) due to
Lemma 1.5.10.

We cannot close these considerations without mentioning that of course we also
obtain

M(uj)→M(u) in H1(Ω) for j →∞
for the saturation iterates in these nondegenerate cases by Theorem 1.5.15 since
M : (a,∞) → R as in (1.3.25) can be extended to a Lipschitz continuous
function on the real line, too.

2.5.5 Weak∗ convergence of the discrete generalized saturation
in the limit cases

We finally want to address the situation of discontinuous saturation M , in par-
ticular the limit cases in (1.4.25) and in Remark 2.4.5, whereM is interpreted in
terms of a maximal monotone multifunction M̃ = ∂Φ. As in Remark 2.4.5, but
now in the discretized case for general boundary conditions, we can naturally
associate uj ∈ Kj , j ≥ 0, to a generalized discrete saturation muj ∈ Sj which
satisfies

muj(p) = M(uj(p)) on {p ∈ Nj : uj(p) 6= uc} (2.5.45)

where M̃ is single-valued. The definition is motivated by the equivalent formu-
lation (2.5.12) with (2.5.13) of our discretization and reads

muj(p) := h−1
p (ℓ(λp)− a(uj , λp)) ∀p ∈ Nj\ND

j , (2.5.46)

thus extending (2.5.45) to the singular case uj(p) = uc for p ∈ Nj\ND
j .

Of course, muj can be prescribed on the Dirichlet nodes by choosing values

muj(p) ∈ M̃(uD(p)) for p ∈ ND
j . Analogously as in Remark 2.4.5, and again

for general boundary conditions, definition (2.5.46) leads to M(uj(p)) < θM

for the limit case discussed in Remark 2.4.5 if uj(p) = uc and the variational
inequality (2.5.44) is strict for the test function v = uj + λp. Thus, the set of
nodes with this property gives rise to a discrete generalized unsaturated region
for the discretization of this limit case. (Note that as in Remark 2.4.5 these
considerations are not restricted to the limit case, but that uc is a singular value
in the case of continuous M : [uc,∞)→ R where the unsaturated regime can be
represented by hydrologically sensible generalized pressure values in (uc,−1).)

On the other hand, as in Theorem 2.4.2, i.e. assuming γS = ∅ with homogeneous
Dirichlet boundary conditions now, the general result in Jerome [51, p. 93] also
guarantees the existence of

ūj ∈ SD
j and wūj ∈ ∂Φ(ūj) (2.5.47)
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(see definition (2.4.5)) such that

(wūj , v)L2(Ω) + a(ūj , v)− ℓ(v) = 0 ∀v ∈ SD
j (2.5.48)

is satisfied. Of course, wūj ∈ L2(Ω) does not have to be unique or accessible in
discrete terms. Instead, one might consider ISj w̃ūj for some pointwise evaluable
L2-approximation w̃ūj of wūj (see [82, p. 140]) or the discrete variational equal-
ity (2.5.48) in which wūj is replaced by its L2-projection w̄ūj on SD

j . w̄ūj is
uniquely determined but does not need to fulfill w̄ūj ∈ ∂Φ(ūj) or the pointwise
discrete variant w̄ūj (p) ∈ ∂Φ(ūj(p)) for p ∈ Nj\ND

j . The latter, however, holds
for muj which satisfies the analogue

uj ∈ SD
j and muj(p) ∈ ∂Φ(uj(p)) for p ∈ Nj\ND

j (2.5.49)

with the property

(muj , v)j + a(uj , v) − ℓ(v) = 0 ∀v ∈ SD
j (2.5.50)

of (2.5.47) and (2.5.48). Here, the lumped L2-scalar product (·, ·)j instead of
(·, ·)L2(Ω) on SD

j occurs which is given according to (2.5.12) and (2.5.13) by the
definition

(u, v)j :=

∫

Ω
ISj (u · v) dx =

∑

p∈Nj

u(p)v(p)hp ∀u, v ∈ Sj . (2.5.51)

There is a crucial observation with regard to the variational equality (2.5.48)
which can be derived with analogous arguments as Proposition 2.4.8.

Proposition 2.5.15. The solution ūj of (2.5.48) is the unique solution of the
convex minimization problem

ūj ∈ SD
j : J (ūj) + φ(ūj) ≤ J (v) + φ(v) ∀v ∈ SD

j . (2.5.52)

Proof. It is easy to see that an analogous version of Proposition 2.4.7 holds
for the minimization problem (2.5.52) in terms of a variational inclusion with
the subdifferential ∂φ of φ on SD

j . Now, (2.4.6) shows that the restrictions

of the elements in (∂Φ(ūj), ·)L2(Ω) onto SD
j form a subset of ∂φ(ūj). There-

fore, ūj in (2.5.48) solves (2.5.52). Finally, (2.5.52) is uniquely solvable due to
Theorem 2.3.16.

It seems obvious that (2.5.52) provides a better approximation to the solution
of (2.3.23) than (2.5.9) in which φ is not exactly evaluated on SD

j . Therefore,
it is not surprising that we have the following result.

Proposition 2.5.16. If the conditions of Theorem 2.5.9 hold, then the solutions
ūj, j ≥ 0, of (2.5.48) converge in H1

γD
(Ω) to the solution u of (2.3.23).
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The proof can be carried out analogously as above for the convergence result
in Theorem 2.5.9. It is just easier.

Equipped with Proposition 2.5.16 we can also ask if convergence of wūj → wu

or w̄ūj → wu for j →∞ in some sense can be established. It turns out that the
variational equalities (2.4.8) and (2.5.48) together with the inclusion conditions
on the functions wu and wūj do not seem to provide more than poor results if
one does not want to impose unacceptable regularity or stability conditions on
these functions. For example, one obtains w̄ūj → wu in L2(Ω) for j →∞ if w̄ūj ,
j ≥ 0, and wu are uniformly bounded in H1

γD
(Ω). If ‖wūj‖L∞(Ω) ≤ C is satisfied

for j ≥ 0 and a C > 0, which can be regarded as the only situation in which a
physically interpretable generalized saturation is given for ūj , j ≥ 0, and which
is certainly fulfilled in the case (1.4.25), one can show that a subsequence of
(wūj )j≥0 converges in the weak∗ sense in L∞(Ω) to wu and a subsequence of
(w̄ūj )j≥0 converges weakly in L2(Ω) to wu.

A more interesting result, which requires no further assumptions on wūj , j ≥ 0,
and wu, can be obtained in the dual space H1

γD
(Ω)′. Still, for the obstacle

problem in the limit case of Remark (2.4.5) we can only prove it in one space
dimension where the Sobolev embedding (2.5.36) is valid.

Proposition 2.5.17. Let Ω be a bounded interval in case of M : [uc,∞)→ R
with a uc < 0 and Ω ⊂ Rd as at the beginning of this section in case of
M : R→ R. In both cases M is assumed to be monotonically increasing and
bounded. Furthermore, let u, wu as well as ūj, wūj , j ≥ 0, be given according
to (2.4.8) as well as (2.5.48), respectively. Then the sequence ((wūj , ·)L2(Ω))j≥0

of functionals on H1
γD

(Ω) converges in the weak∗ sense in H1
γD

(Ω)′ to the func-
tional (wu, ·)L2(Ω).

Proof. First, the uniform boundedness

‖wūj‖L∞(Ω) ≤ C ′
0 ∀j ≥ 0

with a C ′
0 > 0 and therefore

|(wūj , v)L2(Ω)| ≤ ‖wūj‖L∞(Ω)‖v‖L2(Ω) ≤ C ′‖v‖1 ∀v ∈ H1
γD

(Ω) (2.5.53)

with a C ′ > 1 is clear for M : R→ R.

The case M : [uc,∞) → R, where M̃(uc) is unbounded, is more interesting.
Here, we have at least the uniform boundedness

‖wūj‖L1(Ω) ≤ C0 ∀j ≥ 0 (2.5.54)

for a C0 > 0, which can be shown in the following way.

Testing (2.5.48) with v = ūj and considering the convergence ūj → u in H1
γD

(Ω)
for j →∞ due to Theorem 2.5.9, one obtains the uniform bound

∣∣∣∣
∫

Ω
wūj ūj dx

∣∣∣∣ ≤ C1 ∀j ≥ 0 (2.5.55)
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for a C1 > 0. Furthermore, with Ωc as in (2.4.9), but now dependent on j ≥ 0,
we have ∫

Ω
wūj ūj dx = uc

∫

Ωc

wūj dx+

∫

Ω\Ωc

wūj ūj dx . (2.5.56)

Since M : [uc,∞)→ R is bounded, so is the corresponding maximal monotone
multifunction M̃(·) on (uc,∞). Together with (2.5.47), the convergence of
(ūj)j≥0 and the boundedness of Ω this leads to

∣∣∣∣∣

∫

Ω\Ωc

wūj ūj dx

∣∣∣∣∣ ≤ C2 ∀j ≥ 0 (2.5.57)

for a C2 > 0. Since the range of wūj , j ≥ 0, is uniformly bounded from above
due to the boundedness of M , we obtain (2.5.54) from (2.5.55)–(2.5.57).

Furthermore, the uniform bound (2.5.54) and the Sobolev embedding (2.5.36)
provide a C > 0 such that we have

|(wūj , v)L2(Ω)| ≤ ‖wūj‖L1(Ω)‖v‖L∞(Ω) ≤ C‖v‖1 ∀v ∈ H1
γD

(Ω) (2.5.58)

and also C ≥ C ′ in (2.5.53). Consequently, in both cases considered, the se-
quence ((wūj , ·)L2(Ω))j≥0 of linear functionals on H1

γD
(Ω) is uniformly bounded

by C. The function wu ∈ L2(Ω) also induces a linear functional on H1
γD

(Ω) in
the canonical way

|(w, v)L2(Ω)| ≤ ‖w‖L2(Ω)‖v‖L2(Ω) ≤ ‖wu‖L2(Ω)‖v‖1 ∀v ∈ H1
γD

(Ω)

with a norm bounded by ‖wu‖L2(Ω). Let v ∈ H1
γD

(Ω). Using (2.5.24) and

Lemma 2.5.8 we have vj ∈ SD
j , j ≥ 0, with vj → v in H1

γD
(Ω) for j →∞. With

these test functions the variational equalities (2.4.8) and (2.5.48) lead to

(wu − wūj , vj)L2(Ω) = a(u− ūj , vj) ∀j ≥ 0

such that, with a Ca > 0, we can estimate

|(wu − wūj , v)L2(Ω)| ≤ |a(u− ūj , vj)|+ |(wu −wūj , v − vj)L2(Ω)|

≤ Ca ‖u− ūj‖1 ‖vj‖1 + (‖wu‖L2(Ω) + C)‖v − vj‖1

where the last sum converges to 0 because of the convergence ‖u − ūj‖1 → 0
(Proposition 2.5.16) and ‖v − vj‖1 → 0 for j →∞.

The last estimate in the proof shows that a strong convergence of (wūj , ·)L2(Ω),
j ≥ 0, to (wu, ·)L2(Ω) in H1

γD
(Ω)′ seems to require a uniform approximation

property of (SD
j )j≥0 in H1

γD
(Ω).

The rest of this subsection is devoted to find a connection between wuj which
satisfies the continuous inclusion in (2.5.47) with muj which satisfies the cor-
responding discrete inclusion in (2.5.49) for j → ∞. This will be achieved in
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(2.5.62) in the proof of the next proposition. Observe that our discrete gener-
alized saturation muj , j ≥ 0, in (2.5.46) gives rise to a linear functional at least
on a dense subset of H1

γD
(Ω) via the lumped scalar product

v 7→ (muj , v)j ∀v ∈ C∞
γD

(Ω) (2.5.59)

given in (2.5.51) and according to (2.5.23). Due to (2.5.50) and Theorem 2.5.9
the norm of these functionals (muj , ·)j on SD

j is uniformly bounded for j ≥ 0.

The following result shows that they are uniformly bounded on C∞
γD

(Ω) and
therefore in H1

γD
(Ω)′ in one space dimension and how they are connected with

the generalized saturation wu of the infinite dimensional problem in this case.

Theorem 2.5.18. Let Ω ⊂ R be a bounded interval and M : [uc,∞) → R
with a uc < 0 or M : R→ R monotonically increasing and bounded. Let u, wu

and uj, muj , j ≥ 0, be given as in (2.4.8) and (2.5.46), respectively. Then both
the sequence ((muj , ·)j)j≥0 and the sequence ((muj , ·)L2(Ω))j≥0 of functionals
are contained in H1

γD
(Ω) and converge in the weak∗ sense in H1

γD
(Ω)′ to the

functional (wu, ·)L2(Ω).

Proof. With the same reasoning as in the continuous case (see (2.5.54)) in the
proof of Proposition 2.5.17 one can show the existence of a C0 > 0 such that

∑

p∈Nj

|muj(p)|hp ≤ C0 ∀j ≥ 0 (2.5.60)

is satisfied. Again, this is clear for M : R → R, where we even have an
analogous L∞(Ω)-bound, and it is more interesting for M : [uc,∞) → R. In
this case (2.5.60) is proved just as in the derivation of (2.5.54) by testing (2.5.50)
with the test function uj for each j ≥ 0 and using the convergence uj → u in
H1

γD
(Ω) for j → ∞. Focussing on the set of nodes N c

j (uj) where uj(p) = uc

holds and using (2.5.49), one can prove (2.5.60) with N c
j (uj) replaced by Nj

and thus (2.5.60) altogether.

Now, (2.5.60) shows that (muj , ·)j , j ≥ 0, according to (2.5.59) even give rise

to bounded linear functionals on (C(Ω), ‖ · ‖∞). Moreover, their norms are
uniformly bounded by C0 in this case. In one space dimension, the Sobolev
embedding (2.5.36) provides the corresponding statement for these functionals
considered on H1

γD
(Ω), i.e. there is a Cm > 0 independent of j ≥ 0 such that

we have
(muj , v)j ≤ Cm‖v‖1 ∀v ∈ H1

γD
(Ω) ∀j ≥ 0 . (2.5.61)

In view of Proposition 2.5.17 we only need to show

|(wūj , v)L2(Ω) − (muj , v)j | → 0 for j →∞ (2.5.62)

for all v ∈ H1
γD

(Ω) in order to obtain the weak∗ convergence of (muj , ·)j to
(wu, ·)L2(Ω) for j →∞. Now, for any v ∈ H1

γD
(Ω) we choose a sequence of func-

tions vj ∈ SD
j with vj → v in H1

γD
(Ω) according to (2.5.24) and Lemma 2.5.8.

Testing the variational equalities (2.5.48) and (2.5.50) with vj , we obtain

(wūj , vj)L2(Ω) − (muj , vj)j = a(ūj − uj, vj) ∀j ≥ 0 .
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Then, with C as in (2.5.58) and Cm as in (2.5.61), we can estimate

|(wūj , v)L2(Ω) − (muj , v)j |

≤ |(wūj , vj)L2(Ω) − (muj , vj)j |+ |(wūj , v − vj)L2(Ω) − (muj , v − vj)j |

≤ Ca ‖ūj − uj‖1 ‖vj‖1 + (C + Cm)‖v − vj‖1 .

The last term goes to 0 for j →∞ because ‖ūj−uj‖1 → 0 due to Theorem 2.5.9
and Proposition 2.5.16 and ‖v − vj‖1 → 0 holds by construction.

With the weak∗ convergence of (muj , ·)j to (wu, ·)L2(Ω) for j →∞ we can now
derive the weak∗ convergence of (muj , ·)L2(Ω) to (wu, ·)L2(Ω) for j → ∞ by
proving

|(muj , v)j − (muj , v)L2(Ω)| → 0 for j →∞ (2.5.63)

for all v ∈ H1
γD

(Ω). To see this, we need to use the uniform continuity of

v ∈ H1
γD

(Ω) ⊂ C(Ω) given by (2.5.36). The left hand side in (2.5.63) can be
written and estimated as

∣∣∣∣
∫

Ω

∑

p∈Nj

muj (p)v(p)λp(x)−
∑

p∈Nj

muj (p)λp(x)v(x) dx

∣∣∣∣ =

∣∣∣∣
∑

p∈Nj

muj (p)

∫

Ω
(v(p)−v(x))λp(x) dx

∣∣∣∣ ≤
∑

p∈Nj

|muj (p)|‖v(p)−v(x)‖C(supp λp) hp .

This last term tends to 0 for j → ∞ because of (2.5.60) and the uniform
continuity of v. The latter provides ‖v(p) − v(x)‖C(supp λp) → 0 for j → ∞
uniformly for p ∈ Nj since |p − x| ≤ hj holds for all x ∈ suppλp and p ∈ Nj

and we have hj → 0 for j →∞ due to (2.5.19).

Recall that according to Remark 2.4.3, our Propositions 2.5.15–2.5.17 and The-
orem 2.5.18 cover constant Dirichlet boundary conditions which is no restriction
in one space dimension if γD contains one point.

In contrast to Proposition 2.5.17 the situation in Theorem 2.5.18 appears more
complicated in higher dimensions for the case M : R → R . Although (2.5.60)
is always satisfied here with C0 = ‖M‖∞|Ω|, we do not have a Hölder-like
inequality

|(muj , v)j | ≤ ‖muj‖L∞(Ω)‖v‖L1(Ω) ∀v ∈ C∞
γD

(Ω)

for the lumped scalar product (with C∞
γD

(Ω) defined in (2.5.23)). Of course, one
would like to obtain something stronger like

|(muj , v)j | ≤ C‖muj‖L∞(Ω)‖v‖k ∀v ∈ C∞
γD

(Ω) ∀j ≥ 0 (2.5.64)

for a C > 0 and k = 1 with regard to (2.5.61) and in order to define (muj , ·)j
for j ≥ 0 on H1

γD
(Ω) in the first place (with the usual technique as described

in [98, p. 48]). Using the continuity of ISj : H2(Ω) → H2(Ω) for Ω ⊂ Rd,
d = 1, 2, 3, see Ciarlet [27, p. 123], one can prove (2.5.64) for k = 2 in two or
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three space dimensions (and similarly for arbitrary Rd with some k > 2 ). One
could derive (2.5.64) for k ∈ N by an interpolation error estimate of the form

∣∣∣∣
∫

Ω
m ·v− ISj(m ·v) dx

∣∣∣∣ ≤ Chj‖m‖L2(Ω)‖v‖k ∀m ∈ Sj ∀v ∈ C∞(Ω) (2.5.65)

with a C > 0 independent of j ≥ 0 and the mesh size hj from (2.5.19). For k = 1
the estimate is true for all m, v ∈ Sj according to Blowey and Elliot [17, p. 149],
and it is clear that a derivation of it for a triangle t ∈ Tj instead of Ω would
be enough to prove it. Again, using some interpolation theory to be found in
Ciarlet [27, pp. 122–124] for d = 1, 2, 3 (and with uniform refinement, see the
beginning of Subsection 2.7.3, to get C independent of j), we can only prove a
version of (2.5.65) where we have h2

j instead of hj but with L2(Ω) replaced by

W 2,∞(Ω) and k = 2 on the right hand side.

It is clear that (2.5.65) for k = 1 would prove (2.5.63), however, both (2.5.64)
and (2.5.65) are false for k = 1 in more than one space dimension because in
case of Ω ⊂ R2 already there are well-known examples of unbounded H1(Ω)-
functions, see for example [19, p. 30]. And one can consider a sequence of
small translations of such functions with the singularity around a node p with
muj(p) 6= 0 or m(p) 6= 0 (for a fixed j ≥ 0) in order to see that the left hand
side of (2.5.64) or (2.5.65), respectively, can be arbitrarily large while the right
hand side remains bounded.

Another interesting task in this context, which is not dealt with here, is an
asymptotic convergence analysis for the limit cases discussed in Section 1.4. In
concrete terms, one could investigate the behaviour of the solutions uλ or uλ,j

as well as u0 or u0,j of the problems (2.3.23) and (2.5.9), respectively, for the
continuous Brooks–Corey functions (or (1.4.21)) with the parameter λ > 0 and
the corresponding discontinuous limit case “λ = 0”. For example, uλ → u0 in
H1

γD
(Ω) for λ → 0 and (2.4.8) would entail strong convergence of (wuλ

, ·)L2(Ω)

to (wu, ·)L2(Ω) in H1
γD

(Ω)′ for λ → 0. On the discrete level uλ,j → u0,j in SD
j

for λ → 0 would provide muλ,j
→ mu0,j in SD

j for λ → 0 in view of (2.5.46)
(compare also Remark 2.7.5).

2.6 Nonlinear Gauss–Seidel relaxation

The purpose of this and the next section is to present a numerical solution
method for the finite dimensional problem (2.5.9). The presentation including
the notation is again based on Kornhuber [59], but also on Kornhuber [58]. As
indicated in the Introduction 2.1, our method is not based on regularization but
on minimization. Therefore, the scalar function Φ only needs to be piecewise
smooth on its domain, which it is in our case of the Brooks–Corey functions,
on which we will focus now, with the saturation M = Φ′ of the generalized
pressure as given in (1.3.25). Moreover, our method will turn out to be robust
with respect to the size of the slope of M . In fact, we can also use it to treat
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the degenerated situations as in the limit cases in Section 1.4 in which M turns
into a maximal monotone multifunction.

2.6.1 General setting and convergence result

To start with, we apply the nonlinear Gauss–Seidel relaxation to solve (2.5.9).
Although this well-known method (see Glowinski [45, 142–147] or Kornhuber
[59, pp. 45–50]) lacks efficiency, it already has the properties just mentioned for
solving (2.5.9). Therefore, it is used as a basic ingredient, a smoother, for the
monotone multigrid method which, in addition to the properties of the Gauss–
Seidel method, provides the desired efficiency of a solver for (2.5.9) and which
we present in the next section.

The nonlinear Gauss–Seidel method results from successive minimization of the
convex functional J +φj in the direction of the nodal basis functions λ

(j)
p ∈ Λj ,

p ∈ Nj, defined at the beginning of Section 2.5. Here, we chose some ordering
of the nodes p ∈ Nj , i.e. Nj = {pl}l=1,...,nj

with the cardinality nj = #Nj of Nj.
For a precise formulation, we introduce the splitting

Sj =

nj∑

l=1

Vl with Vl = span{λ(j)
pl
} ∀l = 1, . . . , nj

of Sj into one-dimensional subspaces Vl ⊂ Sj. Analogously, observe that the
special form of the convex set Kj defined in (2.5.1) allows for the splitting

Kj =

nj∑

l=1

Kjl (2.6.1)

in which we denote the one-dimensional “traces” as

Kjl := Kj ∩ Vl ∀l = 1, . . . , nj .

Moreover, for an element w ∈ Kj with w =
∑nj

l=1 vl, vl ∈ Kjl for l = 1, . . . , nj ,
the definition (2.5.2) of φj provides the decoupling property

φj(w) =

nj∑

l=1

Φ(vl(pl))hpl
. (2.6.2)

Now, with a given iterate wν
0 = uν

j ∈ Kj , ν ≥ 0, we compute a sequence
of intermediate iterates wν

l = wν
l−1 + v̄ν

l , l = 1, . . . , nj , by solving the one-
dimensional convex minimization problems of finding corrections

v̄ν
l ∈ Vl with wν

l−1 + v̄ν
l ∈ Kj : J (wν

l−1 + v̄ν
l ) + φj(w

ν
l−1 + v̄ν

l )

≤ J (wν
l−1 + v) + φj(w

ν
l−1 + v) ∀v ∈ Vl with wν

l−1 + v ∈ Kj . (2.6.3)

Then we define the next iterate by

uν+1
j =:Mju

ν
j = wν

nj
= uν

j +

nj∑

l=1

v̄ν
l . (2.6.4)
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Much has been done so far on this kind of relaxation methods. So the following
global convergence result is well known. Its proof is heavily based on the two
properties (2.6.1) and (2.6.2).

Theorem 2.6.1. We assume the conditions given in Theorem 2.3.16 apart
from the continuity of M . Then for any initial iterate u0

j ∈ Kj , the sequence
of iterates (uν

j )ν≥0 provided by the nonlinear Gauss–Seidel relaxation (2.6.4)
converges to the solution uj of the discrete problem (2.5.9).

A proof of a more general theorem can be found in Glowinski [45, 142–147].
However, one might find the approach in Kornhuber [59, pp. 47–49], based on
an idea in Mandel [68], more instructive. In order to understand the basic
ingredients of this proof, observe first that the corrections given by (2.6.3) are
unique and that we have

J (wν
l ) + φj(w

ν
l ) ≤ J (wν

l−1) + φj(w
ν
l−1) (2.6.5)

such that we get equality in (2.6.5) if and only if wν
l = wν

l−1. Therefore, we
obtain the property

J (Mjw) + φj(Mjw) ≤ J (w) + φj(w) (2.6.6)

for any fixed point w of Mj : Kj → Kj . Furthermore, we show below (see Re-
mark 2.6.3) thatMj is continuous on Kj . Finally, in light of Proposition 2.5.7,
the local problems (2.6.3) can be rewritten as the variational inequalities

v̄ν
l ∈ Vl with wν

l−1 + v̄ν
l ∈ Kj : a(wν

l−1 + v̄ν
l , v − v̄ν

l )− ℓ(v − v̄ν
l )

+ φj(w
ν
l−1 + v)− φj(w

ν
l−1 + v̄ν

l ) ≥ 0 ∀v ∈ Vl with wν
l−1 + v ∈ Kj

which by virtue of (2.6.2) are equivalent to

v̄ν
l ∈ Vl with wν

l−1 + v̄ν
l ∈ Kj : a(wν

l−1 + v̄ν
l , v − v̄ν

l )− ℓ(v − v̄ν
l )

+Φ(wν
l−1(pl) + v(pl))hpl

− Φ(wν
l−1(pl) + v̄ν

l (pl))hpl
≥ 0

∀v ∈ Vl with wν
l−1 + v ∈ Kj .

(2.6.7)

Now, the essential steps of the proof given in [59, pp. 47–49] for the homoge-
neous case can also be applied to our case without further technical problems.

Sketch of the proof for Theorem 2.6.1. Using to the coercivity of J + φj (see
Theorem 2.3.16) as well as the monotonicity (2.6.5), one obtains the bounded-
ness of the sequence (uν

j )ν≥0.

Let u∗ ∈ Kj be the limit of a subsequence (uνk
j )k≥0. The monotonicity (2.6.5)

provides

J (u
νk+1

j ) + φj(u
νk+1

j ) ≤ J (Mju
νk
j ) + φj(Mju

νk
j ) ≤ J (uνk

j ) + φj(u
νk
j ) .

With this estimate and the continuity ofMj and J + φj on Kj, one concludes
(2.6.6) for w = u∗, i.e. u∗ is a fixed point of Mj.
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Now, for any vj ∈ Kj , one adds up the inequalities (2.6.7) for wν
0 = wν

l−1 = u∗,
i.e. with v̄ν

l = 0, for l = 1, . . . , nj , tested with the one-dimensional interpolations
v = IVl

(vj − u∗). Thus the property (2.6.1) and the special structure (2.6.2)
of the functional φj show that any fixed point of Mj satisfies the variational
inequality (2.5.17) in the form

uj ∈ Kj : a(uj , vj − uj)− ℓ(vj − uj) + φj(vj)− φj(uj) ≥ 0 ∀vj ∈ Kj .

This variational inequality is uniquely solvable, i.e. u∗ = uj .

Finally, since any convergent subsequence of (uν
j )ν≥0 converges to uj , so does

the whole sequence (uν
j )ν≥0.

Remark 2.6.2. In order to keep the notation as simple as possible, nodes
pl ∈ ND

j also contribute corrections in (2.6.3), which are always vanishing of
course since we have Kjl = {uD(pl)} in these cases. In practical computations
the values of any iterate at these nodes are always kept fixed as the prescribed
Dirichlet values, such that any wν

l can be regarded as a suitable wj in the
variational inequality (2.5.17) cited in the proof. Note that these points also
contribute to (a constant part) of φj in (2.5.2).

Observe that we do not obtain global convergence in the sense that we can
start with any initial iterate u0

j ∈ Sj since in this case, the convex functional
in the one-dimensional minimization problem (2.6.3) for l = 1 might be identi-
cally +∞ (i.e. not proper), and so the problem is possibly not solvable (or not
uniquely solvable if we replace Kj by Sj). However, one can choose a canonical
candidate for a solution by replacing considering the problems (2.6.7) instead
of the equivalent ones given in (2.6.3) and replacing Kj by Sj in (2.6.7) (or
just by altering (2.6.3) accordingly). These latter subproblems are proper and
uniquely solvable for any initial iterate u0

j ∈ Sj and lead to u1
j ∈ Kj. In this

sense, we can defineMj : Sj → Kj and obtain global convergence on the whole
space Sj . This is reflected by the practical treatment of (2.6.3) to which we
turn now.

2.6.2 Practical realization of the method

Since we can assume wν
l−1 = uD(p) ∀p ∈ ND

j for l = 1 and ν = 0 and therefore
for all l = 1, . . . , nj and ν ≥ 0, in the following, we only consider points

pl ∈ Nj\ND
j .

In order to make clear how the corrections v̄ν
l ∈ Vl in (2.6.3) can be computed

practically, we observe that in light of Proposition 2.5.5, one Gauss–Seidel step
(2.6.3) is equivalent to

v̄ν
l ∈ Vl : 0 ∈ a(wν

l−1+v̄
ν
l , ·)−ℓ(·)+∂φj (w

ν
l−1+v̄

ν
l )(·)+∂ψS (wν

l−1+v̄
ν
l )(·) on V ′

l .
(2.6.8)

Of course, the subdifferential given on the right-hand side of this variational
inclusion is to be understood as a set of functionals on the subspace Vl ⊂ Sj .
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Equivalently (Hahn–Banach), it can be interpreted as the set of restrictions
of the given subgradients in S ′j on Vl. Since Vl is one-dimensional, this set is
uniquely determined as a set of numbers (which has to contain 0 ∈ R) provided

by (2.6.8) if we insert λ
(j)
pl with λ

(j)
pl (pl) = 1.

In this way we can reformulate (2.6.8) as a variational inclusion on the real line,
setting v̄ν

l ∈ Vl as

v̄ν
l := zlλ

(j)
pl

with the unknown correction factor zl ∈ R (while dropping the dependence on
ν for notational reasons). Furthermore, we define the real numbers

all := a(λ(j)
pl
, λ(j)

pl
) and rl := ℓ(λ(j)

pl
)− a(wν

l−1, λ
(j)
pl

) (2.6.9)

as well as the real convex functionals

Φl(z) := φj(w
ν
l−1 + zλ(j)

pl
) ∀z ∈ R and ΨS

l (z) := ψS(wν
l−1 + zλ(j)

pl
) ∀z ∈ R .

Applying the “chain rule” for subdifferentials (consult e.g. Ekeland and Temam
[34, pp. 27/28]) while considering (2.5.13) we obtain

∂Φl(z) = ∂φj(w
ν
l−1 + zλ(j)

pl
)(λ(j)

pl
) = ∂Φ(wν

l−1(pl) + z)hpl
∀z ≥ uc − wν

l−1(pl)

and (2.5.14) provides analogously

∂ΨS
l (z) = ∂ψS(wν

l−1 + zλ(j)
pl

)(λ(j)
pl

)

=

{
∂χ

R
−
0
(wν

l−1(pl) + z) ∀z ≥ −wν
l−1(pl) if pl ∈ N S

j

0 ∀z ∈ R if pl ∈ Nj\(ND
j ∪N S

j ) .

We recall from (2.4.2) and (2.4.4) that the maximal monotone multifunction
∂Φ : R→ 2R reads

∂Φ(y) =





∅ for y < uc

(−∞, limu↓uc M(u)] for y = uc

{M(y)} for y ≥ uc

(2.6.10)

with M(= M̂) calculated in (1.3.25). Furthermore, the subdifferential ∂χ
R
−
0

is

obviously given by

∂χ
R
−
0
(y) =





0 for y ∈ R−

[0,+∞) for y = 0

∅ for y ∈ R+ .

(2.6.11)

Altogether, inserting λ
(j)
pl in (2.6.8), we obtain the scalar inclusion

zl ∈ R : 0 ∈ all zl − rl + ∂Φl(zl) + ∂ΨS
l (zl) (2.6.12)

as a reformulation of (2.6.8). Of course, there is a version of (2.6.12) in terms
of classical derivatives which is given by

zl ∈ Il : 0 = all zl − rl + Φ′(wν
l−1(pl) + zl)hpl

(2.6.13)
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with Il := [uc − wν
l−1(pl),∞) for pl ∈ Nj\(ND

j ∪ N S
j ) and with the additional

constraint Il := [uc − wν
l−1(pl),−wν

l−1(pl)] for pl ∈ N S
j . This formulation could

have been derived with analogous arguments for classical derivatives using The-
orem 2.3.11.

In the following, we abbreviate

w̄l := wν
l−1(pl) ∈ R

for any pl ∈ Nj\ND
j . Interpreting the right-hand side of (2.6.12) as a maximal

monotone graph Γ ⊂ R2, solving (2.6.12) requires to find the x-coordinate of the
intersection point of Γ with the x-axis in R2. Equivalently, we can determine
the intersection point of the real linear function

G : x 7→ − all

hpl

x+
rl
hpl

(2.6.14)

with the real multifunction

x 7→
{
∂Φ(w̄l + x) for pl ∈ Nj\(ND

j ∪ N S
j )

∂Φ(w̄l + x) + ∂χ
R
−
0
(w̄l + x) for pl ∈ N S

j .

Instead, for simplicity, we introduce the translation

y := w̄l + x ,

now, with (2.6.10) and (2.6.11), considering the multifunction

Hl : y 7→
{
∂Φ(y) for pl ∈ Nj\(ND

j ∪N S
j )

∂Φ(y) + ∂χ
R
−
0
(y) for pl ∈ N S

j

(2.6.15)

and the translated linear function

G−w̄l
: y 7→ G(y − w̄l) .

Consequently, (2.6.12) can be written as

yl ∈ R : G−w̄l
(yl) = Hl(yl) (2.6.16)

with zl = yl − w̄l.

Observe that the linear functions G−w̄l
are strictly decreasing since both all and

hpl
are positive numbers. Now, Figure 2.1 shows the concrete solution of (2.6.16)

for pl ∈ Nj\(ND
j ∪ N S

j ) if we choose M according to our choice of parameter
functions due to Brooks and Corey, see (1.3.25) (and more concretely (1.4.1) or
Figure 1.12). The additional (vertical) constraint in y = 0 which would occur
for points pl ∈ N S

j on the Signorini-type boundary is clear.

We distinguish three cases:

1st case (bottom line gb): G−w̄l
(uc) = G(uc − w̄l) ≤ θm

=⇒ zl = uc − w̄l .
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Figure 2.1: Possible intersections of Hl and G−w̄l
∈ {gb, gm, gt}

2nd case (top line gt): G−w̄l
(−1) = G(−1− w̄l) ≥ θM

=⇒ zl =

{
a−1

ll (−hpl
θM + rl) if pl ∈ Nj\(ND

j ∪ N S
j )

min{a−1
ll (−hpl

θM + rl),−w̄l} if pl ∈ N S
j .

3rd case (middle line gm): “nontrivial” intersection of M and G−w̄l

=⇒ uc < yl = w̄l + zl < −1 .

Remark 2.6.3. We solve the third case numerically (up to machine precision)
using the bisection method. In order to increase the convergence speed, this can
be replaced by Newton’s method once an iterate obtained from the bisection is
smaller than yl. Alternatively, one could solve the third case inexactly in such
a way that a damped Gauss–Seidel method is obtained with ων

l v̄
ν
l for instead

of v̄ν
l in (2.6.3) with ων

l ∈ [ω0, 1] for some ω0 ∈ (0, 1]. Convergence of such an
inexact Gauss–Seidel relaxation is shown in Kornhuber [58, pp. 3/4].

With a glance at Figure 2.1, one can “see” that zl = yl−w̄l depends continuously
on w̄l, i.e. v̄ν

l depends continuously on wν
l−1 which shows the continuity of

Mj in (2.6.4). More precisely, one can interpret one Gauss–Seidel step as a
one-dimensional convex minimization problem in which the functional depends
linearly, via the residual, on the fixed coordinates of the unknown vector. Then
one can apply iteratively a one-dimensional version of Proposition 2.4.11 in
order to see the continuity ofMj .

Furthermore, we note that for φj = 0 and no constraints (apart from the Dirich-
let values on Nj) the above considerations reduce to the well-known Gauss–
Seidel method for the solution of a linear system Ax = b ∈ Rn with a sym-
metrical positive definite matrix A ∈ Rn2

and n = nj −#ND
j , see for example

Glowinski [45, pp. 147/148].
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2.7 Monotone multigrid methods

In this section, we present monotone multigrid methods including discrete con-
vergence results for the solution of (2.5.9) in our hydrological setting with
Brooks–Corey functions and their limit cases (see Subsection 1.4.2). As already
stated at the beginning of Section 2.6, nonlinear Gauss–Seidel relaxations alone
do not provide an efficient numerical method for solving problems like (2.5.9).

2.7.1 Monotone coarse grid corrections

In the linear case already, i.e. for φj = 0 and no constraints, convergence rates
of the Gauss–Seidel method deteriorate (exponentially with j) if one passes
to more and more refined (uniform) triangulations Tj, see e.g. Kornhuber and
Schütte [60, pp. 115–121]. The well-known reason for this fact is the small
support or “high frequency” of the nodal basis functions used for the successive
minimization on the (fine) grid. This restricts the information transport for the

computation of the correction v̄ν
l = zlλ

(j)
pl in one Gauss–Seidel step (2.6.3) to the

values of wν
l−1 at the neighbouring points of pl (see (2.6.12) and the definition

of the terms used therein). Therefore, the application of Mj to an iterate uν
j

only reduces the high frequency contribution of the error uν
j − uj . In order

to account for lower frequencies in the error and to accelerate the information
transport, one extends the set Λj by additional functions (or search directions)
with larger support. Therefore, we introduce the ordered subsets

Mν = (µν
1 , . . . , µ

ν
mν

j
)

of Sj for any ν ≥ 0 in which we assume that

µν
l = λ(j)

pl
, l = 1, . . . nj ,

are the fine grid functions and that µν
l , l = nj + 1, . . . ,mν

j , are suitably chosen
functions with larger support in general.

Now, (Mν)ν≥0 induces an extended relaxation method resulting from the suc-
cessive minimization of J + φj in the direction of µν

l ∈ Mν , l = 1, . . . ,mν
j , for

ν = 0, 1, . . . . Therefore, setting V ν
l = span{µν

l }, we can consider the problems

v̄ν
l ∈ V ν

l with wν
l := wν

l−1 + v̄ν
l ∈ Kj : J (wν

l−1 + v̄ν
l ) + φj(w

ν
l−1 + v̄ν

l )

≤ J (wν
l−1 + v) + φj(w

ν
l−1 + v) ∀v ∈ V ν

l with wν
l−1 + v ∈ Kj (2.7.1)

and define the next iterate by

uν+1
j = wν

mν
j

= wν
nj

+

mν
j∑

l=nj+1

v̄ν
l =: C̃ν

jMju
ν
j (2.7.2)

with the so-called smoothed iterate from (2.6.4) which we denote by

ūν
j := wν

nj
=Mju

ν
j .
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In general, due to the form of (the nonlinear) φj and the constraints in (2.7.1),
the exact evaluation of (2.7.1) for l = nj + 1, . . . ,mν

j , i.e. of the coarse grid

correction C̃ν
j ū

ν
j , is too costly for practical calculations. Therefore, much work

has been done on the construction of efficient approximations Cν
j of C̃ν

j . It turns
out that the only property such an approximation Cν

j has to satisfy in order
to maintain the global convergence result (Theorem 2.6.1) for the extended
relaxation method is the monotonicity condition

J (Cν
jw) + φj(Cν

j w) ≤ J (w) + φj(w) ∀w ∈ Kj . (2.7.3)

Theorem 2.7.1. Assume that C̃ν
j in (2.7.2) is replaced by any coarse grid

correction Cν
j satisfying (2.7.3). Then the iteration given by (2.7.2) is globally

convergent.

For the notion of global convergence see Theorem 2.6.1 and Remark 2.6.2. With
our knowledge gathered so far the proof of Theorem 2.7.1 is surprisingly easy
and unveils how powerful the monotonicity condition (2.7.3) is.

Proof. We only need to replace “monotonicity (2.6.5)” by “monotonicity (2.6.5)
and (2.7.3)” in the proof of Theorem 2.6.1. The rest is literally the same.

Often the monotonicity

J (wν
l ) + φj(w

ν
l ) ≤ J (wν

l−1) + φj(w
ν
l−1) ∀ν ≥ 0, l = 1, . . . ,mν

j

is enforced for every one-dimensional correction step such that

J (uν+1
j )+φj(u

ν+1
j ) ≤ J (wν

l )+φj(w
ν
l ) = J (uν

j )+φj(u
ν
j ) ∀ν ≥ 0, l = 1, . . . ,mν

j

together with the continuity of J + φj on Kj and the uniqueness of the limit
uj of uν

j provide the convergence

wν
l → uj for ν →∞, l = 1, . . . ,mν

j (2.7.4)

of the whole sequence (wν
l )ν≥0, l=1,...,mν

j
of intermediate iterates.

2.7.2 Constrained Newton linearization with local damping in
case of Brooks–Corey parametrization

It is well known that Newton’s method does not converge globally, consider for
instance finding the zero of the real (strictly increasing) function arctan : R→ R
or equivalently the minimum of a (strictly convex) primitive of arctan. How-
ever, since the coarse grid correction Cν

j alone does not need to provide a con-
vergent iteration and since our Φ is at least piecewise smooth, some lineariza-
tion of J + φj for an approximate solution of (2.7.1) seems feasible. Based on
Kornhuber [59] this idea is carried out in Kornhuber [58].
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We sketch this idea and the main results in [58] considering the example of
the convex function Φ : R → R ∪ {+∞} given by (1.3.27) due to our choice
of Brooks–Corey parameter functions and Φ(u) = +∞ for u < uc according to
(2.4.2) and (2.4.4). In order to incorporate the points in Nj located on the
Signorini-type boundary (as in (2.6.15)) or the Dirichlet boundary, we define
the point-dependent convex functions

Φp : u 7→





Φ(u) for p ∈ Nj\(ND
j ∪ N S

j )

Φ(u) + χ
R
−
0
(u) for p ∈ N S

j

χ{uD(p)} for p ∈ ND
j

with the subdifferentials

∂Φp : u 7→





∂Φ(u) for p ∈ Nj\(ND
j ∪ N S

j )

∂Φ(u) + ∂χ
R
−
0
(u) for p ∈ N S

j

∂χ{uD(p)} for p ∈ ND
j

where

∂χ{uD(p)} : u 7→
{

R if u = uD(p)

∅ if u 6= uD(p) .

For p ∈ Nj\ND
j the function Φp is infinitely times differentiable on

I1 := (uc,−1)

and on

I2 :=

{
(−1,∞) for p ∈ Nj\(ND

j ∪ N S
j )

(−1, 0) for p ∈ N S
j

(2.7.5)

where it is the identity. It is continuously differentiable on a neighbourhood
of −1 but not twice differentable in this point.

We call p ∈ Nj a critical node of v ∈ Kj if p ∈ ND
j or

v(p) ∈ Cp :=

{
{uc,−1} for p ∈ Nj\(ND

j ∪ N S
j )

{uc,−1, 0} for p ∈ N S
j

and define N •
j (v) as the set of critical nodes of v. We call the elements of Cp

critical values and the elements of R\Cp regular values for Φp. Accordingly, we
define N ◦

j (v) := Nj\N •
j (v) as the set of regular nodes of v.

We point out that the results given in [58] can be generalized to our situation of
point-dependent Φp and more than one critical value. In fact, the results in [59],
where finitely many critical values are treated for piecewise quadratic Φ, can be
merged with the ones in [58], where Φ is only required to be twice differentiable
on the interior of its domain with locally Lipschitz continuous Φ′′. According
to [59, p. 59], further classification of the regular nodes of v with respect to
connected subsets of regular values is helpful. Therefore, we define the discrete
phases of v by

N i
j (v) := {p ∈ Nj : v(p) ∈ Ii} , i = 1, 2 . (2.7.6)
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Now, for a given smoothed iterate ūν
j and each regular node p ∈ N ◦

j (ūν
j ), we

can find real numbers
ϕ

ūν
j
(p) < ūν

j (p) < ϕūν
j
(p)

such that on the neighbourhood [ϕ
ūν

j
(p), ϕūν

j
(p)] of ūν

j (p) the function Φp is

twice differentiable with

|Φ′′
p(z1)− Φ′′

p(z2)| ≤ Lν
p|z1 − z2| ∀z1, z2 ∈ [ϕ

ūν
j
(p), ϕūν

j
(p)] (2.7.7)

and a pointwise Lipschitz constant Lν
p > 0. More concretely, if p ∈ N 1

j (ūν
j ) we

set
[ϕ

ūν
j
(p), ϕūν

j
(p)] := [(uc + ūν

j (p))/2, (ū
ν
j (p)− 1)/2] (2.7.8)

and if p ∈ N 2
j (ūν

j ) we choose

[ϕ
ūν

j
(p), ϕūν

j
(p)] :=

{
[(−1 + ūν

j (p))/2, 2|ūν
j (p)|+ 1] for p ∈ Nj\(ND

j ∪ N S
j )

[(−1 + ūν
j (p))/2, ū

ν
j (p)/2] for p ∈ N S

j .

(2.7.9)
Setting in addition

ϕ
ūν

j
(p) = ϕūν

j
(p) = ūν

j (p)

for p ∈ N •
j (ūν

j ), we introduce the closed and convex set

Kūν
j

:= {w ∈ Sj : ϕ
ūν

j
(p) ≤ w(p) ≤ ϕūν

j
(p) ∀p ∈ Nj} . (2.7.10)

Then, due to the special form of φj given by (2.5.2), we obtain the representation

φj(w) = φūν
j
(w) + const . ∀w ∈ Kūν

j
(2.7.11)

with the smooth functional

φūν
j

: w 7→
∑

p∈N ◦
j (ūν

j )

Φ(w(p))hp ∀w ∈ Kūν
j
. (2.7.12)

Even though Kūν
j

is not a neighbourhood of ūν
j , we can regard φūν

j
as given on

an open neighbourhood of ūν
j since the critical nodes of ūν

j do not contribute
to φūν

j
.

Now, we consider the constrained minimization of the smooth energy J + φūν
j
:

uūν
j
∈ Kūν

j
: J (uūν

j
) + φūν

j
(uūν

j
) ≤ J (v) + φūν

j
(v) ∀v ∈ Kūν

j
. (2.7.13)

Replacing φūν
j

by a Taylor expansion of second order around ūν
j , one obtains

a functional Jūν
j

as the quadratic approximation of J + φūν
j

around ūν
j . The

quadratic obstacle problem

wūν
j
∈ Kūν

j
: Juūν

j
(wūν

j
) ≤ Jūν

j
(v) ∀v ∈ Kūν

j
(2.7.14)

can then be regarded as a constrained Newton linearization of (2.7.13).
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Now, we choose search directions µν
l , l = nj + 1, . . . ,mν

j , possibly depending
on Kūν

j
, and replace the nonlinear relaxation steps (2.7.1) by the constrained

one-dimensional linear problems

vν
l ∈ Dν

l : Jūν
j
(wν

l−1 + vν
l ) ≤ Jūν

j
(wν

l−1 + v) ∀v ∈ Dν
l (2.7.15)

with constraints Dν
l ⊂ V ν

l satisfying

0 ∈ Dν
l ⊂ {v ∈ V ν

l : wν
l−1 + v ∈ Kūν

j
} . (2.7.16)

Since Jūν
j

is a quadratic approximation of J +φūν
j

around ūν
j and φūν

j
is convex,

the following is clear for l = nj + 1, i.e. for wν
l−1 = ūν

j . If vν
l 6= 0 in (2.7.1), then

vν
l is a direction in which J + φūν

j
is (also) decreasing (at least) locally around

the iterate wν
l−1. Consequently, (2.7.1) holds if the next iterate

wν
l = wν

l−1 + ων
l v

ν
l (2.7.17)

is chosen with a suitable damping parameter ων
l ∈ (0, 1]. Of course this does

not have to be true for l > nj + 1. (Considering quadratic expansions of φūν
j

around all intermediate iterates wν
l , l = nj +1, . . . ,mν

j , would in general lead to
suboptimal numerical complexity, see also (2.7.26) and Kornhuber [58, p. 15].)
However, in [58, pp. 8, 10] an upper bound is available for wν

l ∈ [0, 1] and any
‖µν

l ‖∞ = 1, l = nj + 1, . . . ,mν
j , ν ≥ 0, which guarantees the monotonicity

(2.7.1) for the choice of wν
l according to (2.7.17). For the computation of a

suitable ων
l only (local) properties on suppµν

l are required and we have

ων
l → 0 for max

p∈int supp µν
l

Lp →∞ . (2.7.18)

Choosing the local damping parameters ων
l according to this bound, one obtains

a monotone coarse grid correction

Cν
j ū

ν
j = ūν

j +

mν
j∑

l=nj+1

ων
l v

ν
l (2.7.19)

with local damping which preserves global convergence due to Theorem 2.7.1.
Such a damped version of an extended relaxation is also called extended under-
relaxation.

2.7.3 Standard and truncated multigrid: asymptotic conver-
gence result

Monotone multigrid methods now provide realizations of coarse grid correc-
tions Cν

j , first with optimal numerical complexity, i.e. with O(nj) point opera-
tions for one iteration step

uν+1
j = Cν

jMju
ν
j

and secondly, with a considerable acceleration of the convergence uν
j → uj

for ν →∞.
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Again, we sketch the main definitions and results about monotone multigrid
methods for our special setting and refer to Kornhuber [59] and [58] for further
details. The only aspects of the method described above that still need to be
specified is the concrete choice of search directions µν

l and the corresponding
constraints Dν

l for l = nj + 1, . . . ,mν
j and ν ≥ 0.

For convenience assume that a sequence of (nested) triangulations T0, T1, . . . ,Tj
of Ω resulting from uniform refinement is at hand, i.e. each triangle t ∈ Tk is
subdivided into four congruent subtriangles constituting Tk+1, k = 0, . . . , j− 1.
This also gives nested sets of nodes N0 ⊂ · · · ⊂ Nj and a nested sequence
S0 ⊂ · · · ⊂ Sj of subspaces of Sj which correspond to the levels k = 0, · · · , j.
Let

ΛS := (λ(j)
p1
, . . . , λ(j)

pnj
, λ(j−1)

p1
, . . . , λ(j−1)

pnj−1
, . . . , λ(0)

p1
. . . , λ(0)

pn0
)

be the multilevel nodal basis consisting of all mS = nj + · · · + n0 nodal basis
functions from all refinement levels, ordered from fine to coarse, and set

µν
l = λ(kl)

pl
, l = nj + 1, . . . ,mν

j = nj +mS ,

also in an ordering from fine to coarse. Note that with this choice, the nodal
basis functions on the finest grid also enter the coarse grid correction. This is
reasonable due to the different nature of the problems (2.6.3) and (2.7.15) for
these search directions.

In order to obtain optimal numerical complexity, the resulting algorithm should
allow for an implementation as a multigrid V -cycle in which calculations of
corrections on a level k ∈ {0, . . . , j} should only require to access information
on nodes p ∈ Nk. Therefore, the fine grid obstacles

ϕ
ūν

j

− wν
l−1 ≤ v ≤ ϕūν

j
− wν

l−1

for an admissible correction v in (2.7.15) are enforced by approximated local
coarse grid obstacles ψν

l
, ψ

ν
l ∈ V ν

l which satisfy

ϕ
ūν

j
(p)− wν

l−1(p) ≤ ψν
l
(p) ≤ 0 ≤ ψν

l (p) ≤ ϕūν
j
(p)− wν

l−1(p) ∀p ∈ Nj .

We refer to [59, pp. 74–76] for inductive constructions of quasioptimal restric-
tions which provide such obstacles. Now, the local constraints Dν

l in the local
problems (2.7.15) are given by

Dν
l := {v ∈ V ν

l : ψν
l
≤ v ≤ ψν

l } , l = nj + 1, . . . ,mν
j .

Altogether, these selections of search directions µν
l and constraints Dν

l lead to
a ν-independent coarse grid correction Cstd

j = Cν
j of the standard monotone

multigrid method
uν+1

j = Cstd
j Mju

ν
j , ν ≥ 0 . (2.7.20)

A drawback of this method is that, due to the definition of Kūν
j
, any µν

l with

int suppµν
l ∩ N •

j (ūν
j ) 6= ∅ (2.7.21)
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gives a trivial correction vν
l = 0. This can exclude many coarse grid search direc-

tions and therefore affect the information transport provided by low-frequency
functions, which was the reason for setting up extended relaxations in the first
place. Therefore, truncated multilevel nodal bases Λ̃ν

S have been defined. They
depend on the set N •

j (ūν
j ), i.e. on ν ≥ 0, and are based on the idea of appro-

priately “cutting” any p ∈ N •
j (ūν

j ) “out” of int suppλ
(k)
p for any nodal basis

function λ
(k)
p ∈ ΛS . More concretely, for k = 0, . . . , j and ν ≥ 0, the modified

basis functions
λ̃(k)

p := T ν
j,kλ

(k)
p

on level k are defined for any p ∈ Nk with the truncation operators

T ν
j,k := ISν

j
◦ · · · ◦ ISν

k

arising from the interpolations ISν
k

: Sj → Sν
k on the reduced subspaces

Sν
k := {v ∈ Sk : v(p) = 0 ∀p ∈ N ν

k }

of Sk induced by the critical nodes N ν
k = Nk ∩ N •

j (ūν
j ) on level k. The modified

basis functions λ̃
(k)
p now constitute the truncated multilevel nodal basis

Λ̃ν
S := (λ̃(j)

p1
, . . . , λ̃(j)

pnj
, λ̃(j−1)

p1
, . . . , λ̃(j−1)

pnj−1
, . . . , λ̃(0)

p1
. . . , λ̃(0)

pn0
)

and vanish if and only if all nodes p ∈ int supp λ̃
(k)
p are critical nodes of ūν

j .

We point out that this also gives additional search directions for p ∈ ND
j if the

Dirichlet boundary γD is not resolved on the coarse grid given by N0 (as it is
the case in the numerical example in Section 4.3).

As above, we define the search directions

µν
l = λ̃(kl)

pl
, l = nj + 1, . . . ,mν

j = nj +mν
S ,

ordered again from fine to coarse. As in (2.6.4) for the search directions λp

with p ∈ ND
j , the elements of Λ̃ν

S which are equal to 0 can be skipped.

The local coarse grid constraints Dν
l , l = nj +1, . . . ,mν

j , ν ≥ 0, can be obtained
analogously as in the standard case by quasioptimal restrictions, see [59, p. 81].

As a result of these search directions µν
l and constraints Dν

l we obtain ν-depen-
dent coarse grid corrections Ctrc,ν

j = Cν
j and the truncated monotone multigrid

method
uν+1

j = Ctrc,ν
j Mju

ν
j , ν ≥ 0 . (2.7.22)

It is observed that truncated monotone multigrid usually converges more rapidly
than the standard one. Unfortunately, this is not yet reflected by the an-
alytical results which cannot guarantee better asymptotic convergence rates
for the truncated version, see Theorem 2.7.4 (or consult [58, pp. 17–19] and
[59, pp. 87–92] for more details). The difficulty for the analysis lies in the fact

that the truncated basis functions λ̃
(k)
p can have a rather strange shape and are

in general not contained in with Sk. Despite this, it may surprise that truncated
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monotone multigrid methods can be implemented as multigrid V -cycles with
only minor changes as compared to the standard ones, see [59, p. 82].

Asymptotic bounds of convergence rates demonstrating the fast convergence of
the monotone multigrid methods described above can be proved for problems
(2.5.9) whose solution uj satisfies the non-degeneracy condition

ℓ(λ(j)
p )− a(uj , λ

(j)
p ) ∈ int ∂φj(uj)(λ

(j)
p ) + ∂ψS(uj)(λ

(j)
p ) ∀p ∈ N •

j (uj)\ND
j .

(2.7.23)
This condition guarantees that all the critical nodes of uj and their (exact)
values are detected by the nonlinear Gauss–Seidel method after a finite number
of iterations. (The values on ND

j are known anyway.)

Lemma 2.7.2. Assume that the solution uj of the discrete minimization prob-
lem (2.5.9) is non-degenerate in the sense of (2.7.23). Then there is a ν0 ≥ 0
such that

wν
l (p) = uj(p) ∀p ∈ N •

j (uj) (2.7.24)

and
N i

j (w
ν
l ) = N i

j (uj) (2.7.25)

holds for all l = 1, . . . ,mν
j and ν ≥ ν0.

Remark 2.7.3. The proof of this result is based on continuity arguments and
the convergence (2.7.4) of the intermediate iterates. It is mainly a consequence
of the nonlinear Gauss–Seidel smoother Mj since critical nodes remain un-
touched in the coarse grid correction. Observe that the essential assertion of
Lemma 2.7.2 is (2.7.24) and that (2.7.25) follows from (2.7.4).

Figure 2.1 displays the abstract arguments of the proof and the relevance of
(2.7.23) for the example of the critical value uc: Small perturbations of the bot-
tom line gb do not change the x-coordinate uc of its intersection with int ∂Φ(uc).
With a glance at the coefficients constituting the line gb, one can see that this
demonstrates (2.7.23), on a scalar level, as a stability condition for critical
nodes N •

j (uj) with respect to small perturbations of uj (consider uj or small
perturbations of it as coming from a Gauss–Seidel iteration). Observe that if
(2.7.23) does not hold for the critical value 0 = uj(p) at a critical node p ∈ N S

j ,
then uj(p) assumes this value whether the obstacle condition uj(p) ≤ 0 at this
node is imposed or not. Finally, we remark that the condition in (2.7.23) can
obviously be never fulfilled in case of any critical point p in which uj assumes
the value −1 where Φ is differentiable but not “smooth enough”. We come back
to this phenomenon in more detail in Subsection 2.7.4.

As a consequence of Lemma 2.7.2, of our choice of the obstacles defining Kūν
j

in (2.7.10) and the convergence (2.7.4) we conclude that uj ∈ Kūν
j

holds for
all ν ≥ ν1 with some ν1 ≥ 0. Now, since uj minimizes J + φj on Kj and φūν

j

from (2.7.11) only differs by a constant from φj on Kūν
j
, which is contained

in Kj for all ν ≥ 0, the solution uj of the non-smooth problem (2.5.9) solves
the constrained smooth problem (2.7.13).
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With this crucial observation and the local Lipschitz continuity (2.7.7) of Φ′′

one can prove that there is a ν2 ≥ 0 such that the constrained Newton lin-
earization (2.7.14) is equivalent to classical Newton linearization of (2.7.13) at
ūν

j for ν ≥ ν2. The latter becomes a linear problem for which the local obstacle
problems (2.7.15) asymptotically (for ν ≥ ν3 and a ν3 ≥ 0) provide an extended
linear underrelaxation. This property can be guaranteed with the special choice
of the coarse grid constraints Dν

l described in [59, pp. 71–76, 81]. Now, with
the technical assumption that all non-zero corrections vν

l have the property

‖vν
k‖2∞ = o(‖vν

l ‖∞) for ν →∞ , k = nj + 1, . . . , l − 1 , (2.7.26)

there is a ν4 ≥ 0 such that the damping parameters wν
l in (2.7.19) satisfy

ων
l = 1 for all ν ≥ ν4. (2.7.26) accounts for the fact that derivatives of φūν

j
are

not evaluated at the intermediate iterates wν
l , ν ≥ 0, l = nj + 1, . . . ,mν

j .

Altogether, one concludes that our coarse grid corrections Cν
j asymptotically

become iterations of linear (Newton) multigrid methods or more generally linear
subspace correction methods for which convergence rates can be derived. These
results can be combined with an asymptotic error estimate for the nonlinear
Gauss–Seidel smoothing (2.6.4) for which (2.7.7) is exploited. The asymptotic
convergence rates are based on the local energy norm ‖ · ‖uj defined by

‖v‖2uj
:= a(v, v) + φ′′uj

(uj)(v, v) ∀v ∈ S◦j (2.7.27)

on the reduced space

S◦j := {v ∈ Sj : v(p) = 0 ∀p ∈ N •
j (uj)} .

Observe that by Lemma 2.7.2 the errors uj − uν
j are elements of S◦j for ν ≥ ν0.

We assume that
‖v‖uj ≤ γj‖v‖ ∀v ∈ S◦j (2.7.28)

is satisfied for the energy norm ‖ · ‖ given by

‖v‖2 := a(v, v) ∀v ∈ S◦j .

Theorem 2.7.4. Assume that the non-degeneracy condition (2.7.23) as well as
(2.7.26) and (2.7.28) is satisfied. Then there is a νj ≥ 0 such that the iterates
produced by the standard (2.7.20) or the truncated (2.7.22) monotone multigrid
method fulfill the error estimate

‖uj − uν+1
j ‖uj ≤ (1− cγ−1

j (j + 1)−4)‖uj − uν
j ‖uj ∀ν ≥ νj

with a positive constant c depending only on the ellipticity of a(·, ·) and on the
initial triangulation T0.

2.7.4 Practical treatment and nature of the critical values

We proceed with some further comments on the critical nodes which are also
of interest in the practical computation. As a matter of fact, the three possible
critical values uc, −1 and 0 for a Φp are quite different in nature.
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The critical value 0 is imposed as an obstacle condition for nodes on the
Signorini-type boundary whereas the critical value uc occurs as a singularity of
Φ′′ with Φ′′(u)→∞ and Φ′′′(u)→∞ for u ↓ uc. Therefore, the local Lipschitz
condition (2.7.7) deteriorates for regular nodes p with values ūν

j (p) in a small
neighbourhood of uc in the sense that Lν

p explodes. Now, due to (2.7.18), this
produces small damping parameters, i.e. hardly any contribution of search di-
rections µν

l with p ∈ int suppµν
l to the coarse grid correction of ūν

j . In this way,
such nodes play a similar role as critical nodes in (2.7.21). Therefore, it seems
reasonable to consider such nodes as critical, too, and leave their values ūν

j (p)
untouched in the coarse grid correction. Skipping all µν

l with p ∈ int suppµν
l

as the corresponding search directions obviously does not violate the global
convergence.

In concrete terms, given v ∈ Kj we define

N ∗
j (v) := {p ∈ Nj : p ∈ N •

j (v) ∧ Lν
p > L} (2.7.29)

with a threshold L > 0 as an extended set of critical nodes of v and replace
N •

j (ūν
j ) by N ∗

j (ūν
j ) for the definition (2.7.10) of Kūν

j
. If L is large enough, then

we have N ∗
j (uj) = N •

j (uj) and N ∗
j (wν

l ) = N •
j (wν

l ) = N •
j (uj) for l = nj, . . . ,m

ν
j

and ν ≥ ν̄0 with a ν̄0 ≥ 0 due to (2.7.4) and Lemma 2.7.2. Consequently, a suit-
able choice of L preserves the asymptotic convergence result in Theorem 2.7.4.

In our practical computations (as in Section 2.8), we determine the solution
ũc > uc of Φ′′′(u)− L = 0 (see (1.3.27)) and choose

ϕ
ūν

j
(p) := ũc

for any regular node p ∈ N 1
j (ūν

j ) instead of (2.7.8). As a consequence, (2.7.7)
holds with the global Lipschitz constant L := Φ′′′(ũc) = Lν

p, uniformly for all
regular nodes p ∈ Nj\N ∗

j (ūν
j ). Note that some balance has to be kept in the

choice of L versus ũc in order to get reasonable corrections. On the one hand, the
larger L (i.e. the smaller ũc) is, the smaller the damping parameters in (2.7.19)
are due to (2.7.18). On the other hand, the bigger ũc (i.e. the smaller L) is,
bigger damping parameters might be useless since in this case the constraints
Kūν

j
and Dν

l become more restrictive.

With regard to the other critical values observe that even though Φ′′ does not ex-
ist in −1, we still have existing one-sided limits Φ′′

−(−1) := limu↑−1 Φ′′(u) ∈ R+

and Φ′′
+(−1) := limu↓−1 Φ′′(u)(= 0) as well as Φ′′

−(0) := limu↑0 Φ′′(u)(= 0) in
contrast to limu↓uc Φ′′(u) =∞ for the singularity uc. Using these real one-sided
limits in the endpoints of the intervals in (2.7.9) we can simplify the choice of
these intervals altogether and

replace [ϕ
ūν

j
(p), ϕūν

j
(p)] by phase-dependent intervals (2.7.30)

as, for example, by [ũc,−1] if p ∈ N 1
j (ūν

j ), by [−1, 0] for p ∈ N 2
j (ūν

j ) ∩ N S
j and

by [−1,∞) for p ∈ N 2
j (ūν

j )\N S
j . With the definitions of Φ′′(u) as the suitable

one-sided limits of Φ′′ in the endpoints of these intervals, property (2.7.7) still
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holds and the analysis in Kornhuber [58] can be carried out analogously leading
to the same results. We use these modifications in our practical calculations in
Section 2.8.

Observe that there is no “naturally occurring” obstacle corresponding to the
value −1, which is critical just because Φ is not smooth enough in −1 (for our
analysis), even though Φ′ exists and is continuous in −1. Again, we point out
that this is a special feature of the Brooks–Corey parameter functions (1.2.9)
and (1.2.10) in which a “sharp” bubbling pressure pb is incorporated. Other
parameter functions, e.g. according to van Genuchten [91], do not have this
property and are hydrologically reasonable, too.

However, for the parametrization according to the Brooks–Corey functions, one
could argue that nodes referring to the critical value −1 (which corresponds
to the bubbling pressure pb in (1.2.9), see Section 1.3) mark the free bound-
ary of the waterfront separating the saturated from the unsaturated region.
By Lemma 2.7.2 the nodes on the free boundary of Signorini’s type are found
after a finite number of nonlinear Gauss–Seidel steps (guaranteeing the asymp-
totic error estimates) if the non-degeneracy condition (2.7.23) is satisfied. This
certainly applies to all critical nodes, but condition (2.7.23) cannot hold for
nodes p referring to the critical value −1 because Φ is “too regular” at this
point such that uj(p) is always unstable under small perturbations of uj (see
also Remark 2.7.3). So uj can only be non-degenerate in the sense of (2.7.23) if

uj(p) 6= −1 ∀p ∈ Nj\ND
j (2.7.31)

is satisfied, which is sensible from a numerical point of view. Nevertheless,
together with our considerations on (2.7.29) above, this motivates the defi-
nition of even more extended sets of critical nodes in order to “get rid” of
the non-degeneracy condition (and therefore (2.7.31)) by introducing an ε-non-
degeneracy.

For ε > 0 we define

N ε
j (v) := {p ∈ Nj : |v(p)− cp| ≤ ε for a cp ∈ Cp} (2.7.32)

with the set Cp of all critical values of Φp. As Cp is finite, cp is unique in (2.7.32)
if ε is sufficiently small. We call the solution uj of (2.5.9) ε-non-degenerate if

N ε
j (uj) = N •

j (uj) . (2.7.33)

Since uj is an element of a finite-dimensional space, it is always ε-non-degenerate
for some ε > 0 even if it is non-degenerate. Due to (2.7.4) there is also a ν0 ≥ 0

such that N ε/2
j (wν

l ) = N ε
j (uj) is satisfied for all l = 1, . . . ,mν

j and ν ≥ ν0.
Consequently, if we choose ε > 0 small enough and ν0 ≥ 0 large enough while

setting wν
l (p) = cp for p ∈ N ε/2

j (wν
l ) according to (2.7.32) for all l = 1, . . . ,mν

j

and ν ≥ ν0, the assertions (2.7.24) and (2.7.25) of Lemma 2.7.2 hold and the
asymptotic convergence analysis can be applied to the corresponding algorithm
with the same results.
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2.7.5 Monotone multigrid for the limit cases

So far, our focus concerning the numerical treatment of (2.3.23) in this and
in the previous section was on the special situation according to Brooks and
Corey in (1.3.25). However, the Gauss–Seidel method as well as the monotone
multigrid method in Kornhuber [59] and [58] can be applied to much more
general cases. For the arguments in this section to hold, it is obviously enough
to impose the following conditions on M : I → R, given on a nontrivial interval
I ⊂ R with 0 ∈ I. First, the function M should be monotonically increasing
and bounded (or else satisfying (2.3.25)). Secondly, M should be continuously
differentiable on the interior of finitely many subintervals Ik, k = 1, . . . , n, of I,
whose union is I, such that M ′ is still Lipschitz continuous on compact subsets
of int Ik for each k = 1, . . . , n (compare [59, pp. 23/24] and [58, p. 1]). These
conditions include the nondegenerate case and all the limit cases discussed in
Section 1.4.

For the nondegenerate case in (1.4.21) and its limit cases, we do not have a
lower obstacle uc < 0, thus the convex function Φ : R → R given by (2.3.9) is
defined on the whole real line. In (1.4.21) the value uα occurs as an additional
critical value (due to lack of regularity of M) which plays a similar role as
the critical value −1 above, but does not have a physical meaning other than
perhaps as an upper bound for “unrealisticallly small” (generalized) pressure
values. In the limit case (1.4.25) we obtain a piecewise linear Φ on R with
only one critical value −1 (apart from 0 for the Signorini-type boundary), for
which (in contrast to −1 in the Brooks–Corey case) ∂Φ = M̃ is setvalued with
M̃(−1) = [θm, θM ]. Note that in the limit case pb/p0 → 0 in (1.4.26) the critical
value −1 is replaced by 0 such that we only have one critical value here.

The numerical treatment of the (hydrologically reasonable) limit case for the
Brooks–Corey parameter functions treated in this section is not only possible,
but it is in fact much easier than what has been done above. In Remark 2.4.5 it is
discussed how the limit cases (1.4.6) with (1.4.7) and (1.4.13) can be regarded as
the same situation, in which a linear Φ or, equivalently, a constant Φ′ = M ≡ θM

on an interval [uc,∞) with uc ≤ 0 resulting in

∂Φ(u) = M̃ (u) =





∅ for u < uc

(−∞, θM ] for u = uc

θM for u > uc

(2.7.34)

constitutes a linear constrained problem. We obtained uc ∈ {−2,−1, 0} in
Section 1.4, the value 0 coming from pb/p0 → 0. The effect of this latter case
is that the boundary conditions of Signorini’s type now turn into homogeneous
Dirichlet boundary conditions which makes the situation even more simple.
Otherwise, the value of uc < 0, which we discuss in the following, does not
matter.

With (2.7.34) instead of (2.6.10) the construction in Figure 2.1 degenerates and
becomes very easy. Furthermore, we only have the critical values uc and 0
(for the Signorini-type boundary) which constitute the intervals I2 as in (2.7.5)
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(with −1 replaced by uc) for the discrete phases N 2
j (v) as in (2.7.6). Accord-

ingly, the constraints in (2.7.30) can be replaced by the closures of these inter-
vals, on which we have vanishing Lν

p due to Φ′′ ≡ 0, such that we can choose
the constraints in

Kūν
j

= Kj

independently of ūν
j with the full convex set Kj from (2.5.1). Since φj is linear

on Kj, the constrained Newton linearization (2.7.14) is a constrained problem
for the original quadratic functional

Jūν
j

= J + φūν
j

= J + φj (2.7.35)

onKj , and so are the one-dimensional problems (2.7.15). The constraints Dν
l are

chosen as above and damping is not necessary due to the identity (2.7.35). As a
consequence, we end up with a usual multigrid method for a linear constrained
problem. The truncated version can be used as above without the adjustments
described in Section 2.7.4 for exploding Φ′′.

2.7.6 Convergence of the iterates for the saturation, the phys-
ical pressure and the generalized saturation

Finally, as in Subsection 2.5.4, we remark that the convergence uν
j → uj in Kj

for ν →∞ entails

ISjM(uν
j )→ ISjM(uj) in Sj for ν →∞ (2.7.36)

for the sequence of discrete saturations (ISjM(uν
j ))ν≥0 if M : R → R or, al-

ternatively, M : [uc,∞) → R is uniformly continuous. This is obvious if one
considers the equivalent ‖ · ‖∞-norm on Sj and it completes our convergence
results given in Propositions 2.5.11 and 2.5.12 as well as in Theorem 2.5.13.
Note that the map MSj : Sj → Sj defined by

MSj (v) := ISjM(v) ∀v ∈ Sj (2.7.37)

is Hölder continuous with respect to α ∈ (0, 1] if M : R→ R or M : [uc,∞)→ R
is. In this case we also obtain asymptotic geometric convergence

‖MSj (uj)−MSj(u
ν
j )‖∞ ≤ C‖uj − uνj

j ‖uj (ρ
α
j )ν−νj ∀ν ≥ νj (2.7.38)

on Sj for some C > 0 and with ρj := (1 − cγ−1
j (j + 1)−4) ∈ (0, 1) from Theo-

rem 2.7.4.

With regard to the iterates pν
j := ISjκ

−1(uν
j ) of the discrete physical pressure

ISjpj = ISjκ
−1(uj) the same restrictions concerning the singularity of κ−1 in uc

apply here as already discussed in Remark 2.5.14. If, however, a physically re-
alistic situation with uj(p) > uc or equivalently uj(p) > uc +ε with an ε > 0 for
all p ∈ Nj is given, then the Lipschitz continuity of κ−1 on [uc + ε,∞) provides
the same convergence results for the sequence (pν

j )ν≥0 = (ISjκ
−1(uν

j ))ν≥0 and
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its limit ISjpj = ISjκ
−1(uj) as we have just obtained in (2.7.36) and (2.7.38)

for the sequence (ISjM(uν
j ))ν≥0 and its limit ISjM(uj).

If M : R→ R or M : [uc,∞)→ R is discontinuous as in the limit cases (1.4.25)
and in Remark 2.4.5, we can associate the generalized saturation muν

j
∈ Sj

defined by

muν
j
(p) := h−1

p (ℓ(λp)− a(uν
j , λp)) ∀p ∈ Nj\ND

j (2.7.39)

(and with fixed prescribed values for p ∈ ND
j ) to the iterate uν

j ∈ Kj, analo-
gously as for uj in (2.5.46). Now, we can interpret (2.7.39) in concrete terms if
we assume that uν

j is obtained from a Gauss–Seidel iteration (2.6.4). In this case
the number muν

j
(p) for the node p = pl corresponding to the last Gauss–Seidel

step (2.6.3) occurs as the second coordinate of the intersection point of the line
in R2, given by the right hand side of (2.7.39) (compare (2.6.9) and (2.6.14)),
with the monotone graph gr(M̃ ) as depicted in Figure 2.1. The convergence
uν

j → uj in Kj for ν →∞ provides

|muj(p)−muν
j
(p)| ≤ h−1

p |a(uj − uν
j , λp)| ≤ C‖uj − uν

j ‖1 h−1
p ‖λp‖1 → 0

for ν → ∞ and any p ∈ Nj\ND
j . Again, with Theorem 2.7.4 we can conclude

the asymptotic convergence

‖muj −muν
j
‖∞ ≤ C‖uj − uνj

j ‖uj ρ
ν−νj

j ∀ν ≥ νj

on Sj for a C > 0 and with ρj as in (2.7.38). Strangely enough, this general
result guarantees better asymptotic convergence rates than (2.7.38) for Hölder
continuous M . Note, however, that muν

j
(p) < M(uν

j (p)) or muj(p) < M(uj(p))

is possible for uν
j (p) = uc or uj(p) = uc as discussed for (2.5.46) in Section 2.5.

2.8 Numerical results in 2D

The purpose of this section is to demonstrate the robustness and the efficiency of
our spatial solver, the truncated monotone multigrid method from Section 2.7,
when applied to the Richards equation. Since we have not yet dealt with the
issue of how to treat the gravitational term, we consider the Richards equation
in (1.2.7) with no gravity, i.e. with g = 0. Recall that neglecting this term
does not restrict the difficulties in the spatial problems (2.3.2) or (2.3.8) arising
after our implicit–explicit time discretization because the gravitational term
“disappears” in the linear functional ℓ(·) by the time discretization.

Concretely, based on the Brooks–Corey parameter functions, we consider the
Kirchhoff–transformed Richards equation in two space dimensions in the form
(1.3.18) in which the last product accounting for the gravitation is skipped. In
the pressure unit ̺gz0 in (1.3.15) we still choose the density ̺ = 103 [kg/m3] of
the water and the gravitational constant g = 10 [m/s2] in order to obtain the
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usual hydraulic conductivity Kh given in (1.3.14). Altogether, with Ω ⊂ R2

and T > 0 given below, we consider the equation

n t−1
0 M(u)t −Kh∆u = 0 on Ω× [0, T ] (2.8.1)

in which the porosity n = 0.4 and Kh = 2 · 10−3 [m/s] are chosen in a realistic
range, see Subsection 1.4.1. Consequently, the time unit is t0 = 200 [s]. The
spatial units are x0 = z0 = 1 [m] and the scaling factor in (1.3.15) is chosen
to be constant ur = 1. With this choice, varying bubbling pressures pb are
dealt with according to Remark 1.4.1. We give the pressure values with the
unit [m] in terms of water column level under earth’s gravitation conditions.
Our standard bubbling pressure is pb = −0.1 [m] and the pore size distribution
factor is set as λ = 1 which is realistic according to Subsection 1.4.1.

The domain Ω is chosen to be the triangle in R2 given by the vertices (0, 0),
(2, 0) and (0, 2). Recall from (1.6.3)–(1.6.6) that an initial saturation M0 has
to be given on Ω in order to obtain a well-posed problem. With the ball

B := {x ∈ R2 : |x| ≤ 1.38}

given by the Euclidean norm | · | on R2, we choose an extreme saturation

M0(x) =

{
θM := 1 for x ∈ Ω ∩B
θm := 0 for x ∈ Ω\B .

(2.8.2)

The initial condition is depicted in Figure 2.2. The set of points between (0, 0)
and (0, 1.38) on the y-axis including (0, 0) and (0, 1.38) is chosen to be the
Dirichlet boundary γD which is constant in time. On γD we impose Dirichlet
boundary conditions equal to the pressure a water column between the x-axis
and the parallel line through (0, 1.38) would generate in case of existing gravity.
Consequently, with the atmospheric pressure 0 [m], we have

uD(x, y, t) = (1.38 − y) ∀(x, y) ∈ γD .

We impose homogeneous Neumann boundary conditions on the edge between
the endpoints (0, 0) and (2, 0) on the x-axis and also between the points (0, 1.38)
and (0, 2) on the y-axis, again constant in time. The hypotenuse between
(2, 0) and (0, 2) including these points is the Signorini-type boundary γS . Note
that the Dirichlet condition and the initial condition are compatible according
to (1.3.25), but that the initial condition on Ω\B corresponds to u = uc, i.e. to
the unphysical pressure p = −∞.

The initial triangulation T0 of Ω, which resolves the Dirichlet boundary, is given
by the triangles t1 and t2 with the vertices (0, 0), (1, 1) and (0, 1.38) or (1.38, 0),
respectively, and the two remaining triangles Ω\(t1 ∪ t2), see Figure 2.3. The
refined triangulations Tj, j = 1, . . . , 7, are obtained by uniform refinement,
indicated on page 113, and result in 33024 unknowns on the finest level j = 7
with the mesh size hj = 1.38/128 ≈ 0.01.

For the iterative solution of the discretized Signorini-type problems (2.5.44) or,
equivalently, (2.5.9) on each refinement level j = 0, . . . , 7, we use the truncated
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Figure 2.2: Initial condition Figure 2.3: Initial triangulation

monotone multigrid V -cycle as described in Section 2.7, but with 3 presmooth-
ing and 3 postsmoothing steps. The latter means that the relaxation procedures
per level within the multigrid method as in Section 2.7 are repeated twice on
each level and are then carried out backwards from the coarsest to the in the
same manner. This whole process is repeated twice and gives the V (3, 3)-cycle
which is intended to increase the convergence speed.

We apply the modifications in Remark 2.7.4, in particular we take into account
the threshold Lipschitz constant L = 1012 in (2.7.29). Remarkably, ũc with
Φ′′′(ũc) = L can be determined explicitly due to the special form of the Brooks–
Corey parametrization, see (1.3.27). The size of L is not adapted for variations
of pb because the scaling factor ur = 1 in (1.3.18) is always kept fixed (see
Remark 1.4.1) such that the factor in front of ∆u in (2.8.1) does not change
either.

Since the solution from the previous time step usually serves as a good ini-
tial iterate for the spatial problem at the next time step, nested iteration as
described in Kornhuber [57, p. 7] is not necessary in general. However, we
carry out numerical studies by variations of the parameters. Therefore, we
use nested iteration in order to obtain suitable initial iterates throughout. As
a stopping criterion for the multigrid on level j we accept the approximate
solution ũj = uν∗

j as soon as the relative accuracy condition

‖uν∗

j − uν∗−1
j ‖uν∗

j
≤ 10−12‖uν∗

j ‖uν∗
j

(2.8.3)

is satisfied. Here, ‖ · ‖uν∗
j

is intended to approximate the local energy norm

‖ · ‖uν∗
j

and is defined analogously as in (2.7.27).

Note that the treatment of the constrained linear problems (2.7.15) on the
algebraic level requires the stiffness matrix (a(λp, λq))p,q∈Nj as well as the ad-
ditional vector b := (φ′ūν

j
(ūν

j )(λp))p∈Nj added to the right hand side and the

matrix D := (φ′′ūν
j
(ūν

j )(λp, λq))p,q∈Nj . Due to the special form of φūν
j

in (2.7.12),

the entries of b are M(ūν
j (p))hp for p ∈ N ◦

j (ūν
j ) and 0 otherwise, and D is a

diagonal matrix with the nontrivial entries M ′(ūν
j (p))hp for p = q ∈ N ◦

j (ūν
j ).

Therefore, the norm ‖ · ‖uν∗
j

given according to (2.7.27) can be computed easily.
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Restrictions and prolongations of the matrices and the residual are carried out
as stated in Kornhuber [59, pp. 77, 82].

We also refer to the numerical example of a stationary porous medium equation
treated in Kornhuber [58]. It contains a similar nonlinearity asM : [uc,∞)→∞
considered here, however, with a discontinuity for the critical value −1. (Never-
theless, recall from (2.7.31) that this situation can be regarded as “less degener-
ate” than the one considered here, where M is continuous but non-differentiable
in −1.) As in [58] the implementation for our case was carried out in the frame-
work of the finite element toolbox KASKADE [14].

With a glance at the initial condition (2.8.2) observe that the interior of Ω∩B
is still connected such that all of γS is completely unsaturated at the begin-
ning. In the time development, for which we choose the constant time step
size τ = 0.1 (=̂20 [s]) and the end time T = 1 (=̂ 200 [s]), free boundaries are
detected on γS and water flows out of the domain across parts of γS until Ω is
fully saturated.

Figure 2.4: t = 0.1 Figure 2.5: t = 0.2 Figure 2.6: t = 0.3

Figure 2.7: t = 0.8 Figure 2.8: t = 0.9 Figure 2.9: t = 1.0

Figures 2.8–2.8 show the development of the pressure p or the saturation θ(p)
in time. In these graphics the innermost (red) line in each triangle is the
isoline p = 0 and the succeeding (magenta) line is the isoline p = pb. The latter
marks the border of the fully saturated region outside of which both pressure
and saturation decrease. All the following (black) lines are isolines on which
constant equidistant saturation values θ(p) < θM = 1 occur, which correspond
to constant pressure values p < pb.
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Our set of parameters is chosen in such a way that in the first time step a
nontrivial part of γS , where p ≥ pb occurs, is already fully saturated but not
yet with p ≥ 0. In the second time step, a free boundary is detected on γS

separating the part where p < 0 prevails from the part where we have p ≥ 0,
and outflow is possible.

Apart from the fixed data given at the beginning of this section, the following
set of model parameters (with the units as introduced above) is the basis of our
numerical results.

1. end time T = 0.1

2. time step size τ = 0.1

3. maximal refinement level j = 7

4. pore size distribution factor λ = 1

5. bubbling pressure pb = −0.1

In the following, we present average convergence rates ρ of the truncated multi-
grid and the numbers of multigrid iterations #it (= ν∗) until (2.8.3) is satisfied.
The convergence rates are based on the relative errors with respect to the pre-
vious iterates. We determine the average convergence rate ρ by the geometric
mean of the relative errors, i.e. we set

ρ =



‖uν∗

j − uν∗−1
j ‖uν∗

j

‖u1
j − u0

j‖uν∗
j




1
ν∗−1

.

Our intention is to show that both ρ and #it do not degenerate if a parameter
from the above set is varied. The following Tables 2.1–2.7 show the results we
have obtained.

T ρ #it

0.1 0.273 18
0.2 0.288 18
0.3 0.295 18
0.4 0.324 19
0.5 0.317 19
0.6 0.353 21
0.7 0.363 22
0.8 0.338 20
0.9 0.328 20
1.0 0.202 14

Table 2.1: Variations of T

τ ρ #it

0.001 0.223 16
0.01 0.186 14
0.05 0.244 16
0.1 0.273 18
0.25 0.383 23
0.5 0.438 27
0.75 0.528 34
0.9 0.576 40
0.95 0.288 18
1.0 0.288 18

Table 2.2: Variations of τ = T

Table 2.1 refers to the time development discussed above and depicted in Fig-
ures 2.8–2.8. Here, ρ and #it are given for each time step T = 0.1, 0.2, . . . , 1.0.
In Table 2.2 the time step size τ (which is set equal to the end time T in
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j ρ #it

1 0.780 5
2 0.496 10
3 0.104 12
4 0.196 16
5 0.251 18
6 0.192 14
7 0.273 18
8 0.392 24

Table 2.3: Variations of the maximal refinement level j

this case) is varied. With regard to variations of the spatial step size, i.e.
the mesh size hj, Table 2.3 shows the results for different maximal refinement
levels j = 1, 2, . . . , 8.

Tables 2.4–2.7 provide the most interesting results since they refer to varia-
tions of the Brooks–Corey parameter functions which are intensely discussed
in Section 1.4, especially regarding their big slopes. First, Tables 2.4 and 2.5
display the effects which variations of the soil parameters λ and pb (the latter
given in the unit [m]) in their realistic ranges have on ρ and #it. According to
Rawls et al. [77, Table 5.3.2], we have λ ∈ [0.1, 0.7] (and up to λ ∈ [0.037, 1.090]
including standard deviations) and pb ∈ [−0.4,−0.1] (with deviations up to
pb ∈ [−1.872,−0.0136]) in naturally occurring situations. Furthermore, Ta-
bles 2.6 and 2.7 show the asymptotic behaviour for decreasing or increasing soil
parameters, i.e. referring to extreme shapes of the parameter functions, most
importantlyM : [uc,∞)→ R, “near” the limit cases derived in Subsection 1.4.2.

The results demonstrate the robustness and the efficiency of our spatial solver.
Yet, we have found some extreme cases documented in Tables 2.4 and 2.5, in
which the convergence results are comparatively unsatisfactory. For λ = 0.1,
for example, the isoline p = pb touches the boundary of Signorini’s type. For
pb = −1.8 there is only a small neighbourhood around the vertex (0, 1) in which
Ω is not fully saturated, and for pb = −4.0 the same situation occurs around
the vertex (1, 0) (this is also the case for T = 0.9 in Table 2.1). These situations
have in common that small pertubations of the corresponding parameter change
the (topological) shape of the unsaturated regime considerably. Therefore, the
convergence results could be worse here than on the average because of the
sensitivity of the solution rather than of the solver.

Finally, the convergence results for λ and pb in an asymptotic range in Tables 2.6
and 2.7 make clear that the performance of the solver is not restricted by big
slopes of M : [uc,∞)→ R. Altogether, the initial iterates obtained from nested
iteration usually seem to be sufficiently good so that the asymptotic linear
convergence guaranteed by Theorem 2.7.4 governs most of the iteration history
and provides convergence rates that are independent of Φ.
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λ ρ #it

0.01 0.384 23
0.05 0.457 28
0.09 0.511 34
0.1 0.584 41

0.105 0.526 34
0.2 0.401 25
0.3 0.328 21
0.4 0.265 17
0.5 0.332 21
0.6 0.248 17
0.7 0.294 19
0.8 0.267 17
0.9 0.264 17
1.0 0.273 18
1.25 0.260 17
1.5 0.252 16
1.75 0.249 16
2.0 0.248 16
2.5 0.232 16
3.0 0.237 16

Table 2.4: λ in a realistic range

pb ρ #it

-0.005 0.235 16
-0.01 0.248 16
-0.05 0.237 16
-0.1 0.273 18
-0.2 0.268 18
-0.3 0.299 19
-0.4 0.310 20
-0.5 0.342 22
-0.75 0.433 28
-1.0 0.523 37
-1.25 0.643 52
-1.5 0.683 61
-1.7 0.756 81
-1.8 0.810 112
-1.9 0.643 52
-2.0 0.470 30
-2.5 0.564 39
-3.0 0.619 47
-4.0 0.786 94
-5.0 0.274 17

Table 2.5: pb in a realistic range

λ ρ #it

10−10 0.270 17
10−9 0.270 17
10−8 0.270 17
10−7 0.270 17
10−6 0.270 17
10−5 0.258 17
10−4 0.260 17
10−3 0.282 18
101 0.253 16
102 0.376 22
103 0.400 23
104 0.469 28
105 0.292 18
106 0.282 18
107 0.278 17
108 0.278 17
109 0.278 17
1010 0.282 18

Table 2.6: λ in an asymptotic range

pb ρ #it

−10−10 0.169 13
−10−9 0.170 13
−10−8 0.170 13
−10−7 0.169 13
−10−6 0.168 13
−10−5 0.321 19
−10−4 0.294 18
−10−3 0.299 18
−101 0.274 17
−102 0.278 15
−103 0.275 13
−104 0.270 11
−105 0.263 9
−106 0.234 7
−107 0.268 5
−108 0.300 6
−109 0.302 6
−1010 0.302 6

Table 2.7: pb in an asymptotic range
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Chapter 3

Steklov–Poincaré theory for
domain decomposition
problems with jumping
nonlinearities

3.1 Introduction and overview

In the first chapter of this work, mainly in Subsections 1.5.3 and 1.5.4, we
provided weak formulations of a Signorini-type problem for the Richards equa-
tion and its Kirchhoff–transformed version in homogeneous soil. The second
chapter was devoted to a numerical treatment of such a problem if we ignore
gravity. However, we already pointed out there that our implicit–explicit time
discretization of the Richards equation leads to spatial problems which were
discussed generally enough in the last chapter to cover a treatment of the grav-
itational term by an upwind technique which we present in Chapter 4. The
same applies to the next two chapters which are motivated by the question of
how we can treat the Richards equation in heterogeneous soil. We only con-
sider spatial problems in a heterogeneous setting which might have arisen from
time-dependent problems after a suitable time discretization. Moreover, we do
not restrict ourselves to the time-discretized Richards equation although the
starting point (in Section 3.2) and the most important result of this chapter
(Theorem 3.4.23) are concerned with it.

As already indicated in Section 1.6, there seems to be a lack of analysis for the
Richards equation in a heterogeneous setting so far. Moreover, to our knowl-
edge, a numerical treatment of the Richards equation in heterogeneous soil
has only been carried out in Fuhrmann [39], Fuhrmann and Langmach [41] as
well as in Bastian et al. [10], however, with a solver that is not robust with
respect to deteriorating soil parameters (see Section 2.2). By contrast, our
approach presented in Chapter 2 provides such a solver in the homogeneous
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setting (see Sections 2.6 and 2.7). Recall, however, that the Kirchhoff transfor-
mation, on which our approach is based, does not lead to semilinear problems
in the heterogeneous case (see Remark 1.3.1).

It should be pointed out at this stage that we consider the setting given by the
Richards equation (1.2.7) still as homogeneous, even though the permeability
K(·) is allowed to depend on x ∈ Ω. In this form the spatial problems arising
from the Richards equation after the implicit–explicit time discretization can
be treated just as described in the last chapter. The heterogeneous case comes
into play if we also consider the parameter functions θ(·) and kr(·) as explicitly
dependent on space since the choice of these functions depends on the soil type
that occurs in Ω. Therefore, what we call heterogeneous soil in the following
will be a setting in which different subdomains Ωi, i = 1, . . . , n, of Ω contain dif-
ferent soil types which are themselves homogeneous in each Ωi in the sense just
described. But then the question arises how a partial differential equation with
nonlinearities which have jumps across the interfaces between two subdomains
can be interpreted or given sense at all.

In Section 3.2 we give a weak formulation of and therefore a meaning to a
Signorini-type problem for the Richards equation in such a heterogeneous set-
ting. It consists of a multi-domain formulation which is motivated by an equiv-
alence result that holds in the homogeneous case. This formulation is a gen-
eralization of a result from the linear theory in Quarteroni and Valli [75] and
gives rise to a Dirichlet–Neumann algorithm for the Richards equation which
we also present.

In Section 3.3 we discuss a Dirichlet–Neumann method for a nonlinear transmis-
sion problem on two subdomains which includes the special case of a stationary
Richards equation without gravity in heterogeneous soil with nondegenerating
parameter functions (as in Subsection 1.4.3). Despite the heterogeneity, the
main idea for our further treatment of this domain decomposition problem is
the same as in the homogeneous case, namely the application of the Kirchhoff
transformation, now independently in the subdomains. We point out that the
equivalence of the reformulated problem with the original one depends strongly
on the results we obtained in Subsection 1.5.4, in which the Kirchhoff trans-
formation on a domain or on (parts of) a boundary was investigated in the
framework of superposition operators. The reformulated substructuring prob-
lem can then be analysed on the basis of the linear Steklov–Poincaré theory,
to be found in Quarteroni and Valli [75], which we extend to our nonlinear
case. Doing so, we find sufficient conditions for the convergence of the non-
linear Dirichlet–Neumann method which turn out to be satisfied in one space
dimension. Counterexamples show that these conditions need not hold in higher
dimensions. However, numerical computations suggest that the algorithm can
also be applied successfully to higher-dimensional problems.

Section 3.4 is devoted to an analysis of Robin’s method applied to a larger class
of nonlinear transmission problems than in Section 3.3, which also contains the
implicit-explicitly time-discretized Richards equation in the nondegenerate case
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of Subsection 1.4.3. Nevertheless, we proceed similarly as in Section 3.3 by first
applying Kirchhoff transformations on the subdomains, again using the results
on superposition operators in Subsection 1.5.4. Then, a nonlinear Steklov–
Poincaré theory is established for the transformed problem which extends the
linear theory in Discacciati [33, Chapter 5]. As in Section 3.3, this leads to suf-
ficient conditions for the convergence of the nonlinear Robin method which can
be proved to be satisfied in one space dimension. However, these considerations
are more complicated in Section 3.4 because here we have two nonlinearities in
the partial differential equation of the original problem, whereas in Section 3.3
we only have one. In addition, and in contrast to Section 3.3, the subproblems
in the Robin iteration procedure are always nonlinear, which is also discussed
on the continuous and on the discrete level. Finally, although the same coun-
terexamples as in Section 3.3 apply here, the Robin method shows a satisfying
convergence behaviour in numerical tests carried out in two space dimensions.

3.2 Substructuring of a Signorini-type problem for

the Richards equation in heterogeneous soil

The purpose of this section is to obtain a weak formulation of a Signorini-type
problem for the Richards equation in heterogeneous soil. This is achieved via
substructuring of a corresponding problem in homogeneous soil, which leads to
an equivalence between the global problem and local problems that are coupled
by suitable interface conditions. The latter set of problems is then taken as a
definition of a Signorini-type problem for the Richards equation in heteroge-
neous soil. We start with the global homogeneous problem and some necessary
notation in Subsection 3.2.1. Then, Subsection 3.2.2 contains the theoretical re-
sults (especially Theorem 3.2.4) for the substructuring of this problem. Finally,
in Subsection 3.2.3 we address the Dirichlet–Neumann scheme arising from the
substructuring for the Richards equation and note Definition 3.2.7, which gives
sense to a Signorini-type problem for the Richards equation in a heterogeneous
setting.

3.2.1 Global problem and notation

The setting that we want to consider is given by a decomposition of a bounded
open Lipschitz domain Ω ⊂ Rd into two non-overlapping open and nonempty
subdomains Ω1 and Ω2 (i.e. Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = ∅) with the interface

Γ := Ω1 ∩Ω2.

As in Quarteroni and Valli [75, p. 6] we assume that Γ is a (d− 1)-dimensional
Lipschitz manifold so that the results on trace spaces in the appendix (on
pages 248–251) are applicable. In addition, both Ω1 and Ω2 are assumed to
have Lipschitz boundaries. Figure 3.1 displays such a situation for d = 2 which
we have already considered in Subsection 1.5.1 in the homogeneous case.
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n

Γ
Ω1

Ω2

Figure 3.1: 2D-domain Ω decomposed into two subdomains

As already stated in the introduction to this chapter, many of our considerations
here are motivated by and generalizations of the corresponding theory presented
in Quarteroni and Valli [75] for the linear case. However, since we consider
weak formulations of Signorini-type problems for the Richards equation, which
involve nonlinearities and convex sets in Sobolev spaces rather than the full
spaces, our notation needs to be different in this section. Nevertheless, we will
use the notation in [75] wherever it is appropriate, for example, we will denote
the “restriction” of a p ∈ H1(Ω) to Σ ⊂ ∂Ω by p|Σ instead of trΣ p with the

trace operator trΣ : H1(Ω) → H1/2(Σ). Moreover, for different domains and
i ∈ N we will from now on distinguish H1-norms as

‖v‖1,Ω := ‖v‖H1(Ω) ∀v ∈ H1(Ω) and ‖vi‖1,Ωi := ‖vi‖H1(Ωi) ∀vi ∈ H1(Ωi) .

We start with the homogeneous case, i.e. we assume constant soil parameters
(λ and pb in case of the Brooks–Corey functions, see Section 1.2) on Ω1 as
on Ω2 providing space-independent nonlinearities θ(·) and kr(·) on the whole
domain Ω. Instead of the weak formulation (1.5.38) of the Signorini-type prob-
lem for the Richards equation we consider the problem arising from an implicit–
explicit time discretization of (1.5.38). We point out, however, that our equiva-
lence result in Theorem 3.2.4 can equally be established for the problem (1.5.38),
see also Subsection 3.2.3.

Setting fN (t) = 0 without loss of generality as in Section 2.3 and applying our
implicit–explicit time discretization to (1.5.38) explained in that section, we
obtain the variational inequality

p ∈ K0 :

∫

Ω
θ(p) (v − p) dx+ τ

∫

Ω
kr(θ(p))∇p∇(v − p) dx ≥

∫

Ω
θ(p̃) (v − p) dx+ τ

∫

Ω
kr(θ(p̃))ez∇(v − p) dx ∀v ∈ K0 . (3.2.1)

Here, τ > 0 is some time step size and we assume that p̃ ∈ H1(Ω) is a known
physical pressure from the previous time step. We omit the time step t or tn in
the notation as done in Subsection 2.3.1. Recall from (1.5.37) that

K0 = {v ∈ H1(Ω) : v|γD
= pD ∧ v|γS

≤ 0}

with an appropriate pD as in (1.5.36). As already stated in Remark 1.5.19,
Theorem 1.5.18 holds equally for the time-discretized versions, i.e. if p solves
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the variational inequality (3.2.1), then the Kirchhoff–transformed u = κ(p)
solves (2.3.8) with uD = κ(pD). The converse is true provided kr ≥ c > 0
(compare Subsection 1.4.3) and γS = ∅.
For the purpose of this section it is indicated to introduce the abbreviations

ã(p, v − p) :=

∫

Ω
θ(p) (v − p) dx+ τ

∫

Ω
kr(θ(p))∇p∇(v − p) dx ∀v ∈ K0

and

ℓ(v − p) :=

∫

Ω
θ(p̃) (v − p) dx+ τ

∫

Ω
kr(θ(p̃))ez∇(v − p) dx ∀v ∈ K0

in (3.2.1) with the solution p ∈ K0 if it exists. The form ã(·, ·) on (H1(Ω))2 is
nonlinear in the first and linear in the second entry while ℓ(·) is a linear form
on H1(Ω). Analogously, we introduce the convex sets

Ki := {v ∈ H1(Ωi) : v|γDi
= pD|γDi

∧ v|γSi
≤ 0}

as well as the forms

ãi(pi, vi−pi) :=

∫

Ωi

θ(pi) (vi−pi) dx+τ

∫

Ωi

kr(θ(pi))∇pi∇(vi−pi) dx ∀vi ∈ Ki

and

ℓi(vi − pi) :=

∫

Ωi

θ(p̃i) (vi − pi) dx+ τ

∫

Ω
kr(θ(p̃i))ez∇(vi − pi) dx ∀vi ∈ Ki

with pi ∈ Ki and given p̃i := p̃|Ωi
for i = 1, 2, which correspond to the sub-

domains Ω1 and Ω2. Here we have used the definitions γDi := ∂Ωi ∩ γD and
γSi := ∂Ωi ∩ γS .

We also need to introduce convex sets with prescribed Dirichlet values on the
interface which we define as

Kpj

i := {v ∈ Ki : v|Γ = pj|Γ}

for pj ∈ Kj and i, j ∈ {1, 2}. In addition, we introduce the convex set of traces

Λ0 := {η ∈ H1/2(Γ) : η = v|Γ for a v ∈ K0}

and its translated copy

Λ̃ := Λ0 − p|Γ = {η ∈ H1/2(Γ) : η = v|Γ for a v ∈ K0 − p} .

with a p ∈ K0 (which will later be the assumed solution of (3.2.1)). We refer to
Lemma 3.2.3 to make sure that traces of H1(Ω)-functions in the interior of Ω
are well defined.

With respect to the setting for the Poisson problem considered in Quarteroni
and Valli [75, p. 6] we note that our convex sets degenerate and fit into that
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setting if we only have homogeneous Dirichlet values imposed on ∂Ω. With the
definitions

V := H1
0 (Ω)

Vi := {v ∈ H1(Ωi) : vi|∂Ω∩∂Ωi
= 0}

V 0
i := H1

0 (Ωi)

Λ := {η ∈ H1/2(Γ) : η = v|Γ for a v ∈ V }

(3.2.2)

for i = 1, 2 we obtain V = K0, Vi = Ki and V 0
i = Kpi

i −pi as well as Λ0 = Λ̃ = Λ

in this case. We recall that Λ = H1/2(Γ) for Γ ∩ ∂Ω = ∅ and Λ = H
1/2
00 (Γ) if

Γ ∩ ∂Ω 6= ∅ which is the case we mostly consider here (compare (A.2.4) and
[75, pp. 6/7]). However, the structure of Λ̃ is more delicate in our general case
where we can only guarantee that Λ̃ is a convex subset of H1/2(Γ). For our
equivalence result (Theorem 3.2.4) we need the vector space structure of Λ̃
which we cannot expect if Γ ∩ γS 6= ∅.

3.2.2 Substructuring equivalence result in homogeneous soil

We start with a result which guarantees that Λ̃ is a vector space.

Proposition 3.2.1. We assume Γ∩ γS = ∅. Then Λ̃ is a subspace of H1/2(Γ)
with the property

Λ̃ = {η ∈ H1/2(Γ) : η = v|Γ for a v ∈ H1
γD∪γS

(Ω)} , (3.2.3)

i.e. containing H
1/2
00 (Γ). If, in addition, Γ ∩ γN = ∅ and Γ ∩ ∂Ω 6= ∅ or

Γ ∩ γD = ∅, then we have Λ̃ = H
1/2
00 (Γ) or Λ̃ = H1/2(Γ), respectively. In the

general case Λ̃ is a Hilbert space with the quotient norm

‖η‖Λ̃ = inf{‖v‖1,Ω : v ∈ H1
γD∪γS

(Ω) ∧ η = v|Γ} . (3.2.4)

Moreover, with the subspace

H̃1
γDi

∪γSi
(Ωi) := {v ∈ H1

γDi
∪γSi

(Ωi) : vi|Γ ∈ Λ̃}

of the Hilbert space H1
γDi

∪γSi
(Ωi) the trace operator

trΓ : H1
γD∪γS

(Ω)→ Λ̃ (3.2.5)

induces continuous linear trace operators

trΓ,i : H̃1
γDi

∪γSi
(Ωi)→ Λ̃ , i = 1, 2 ,

for which, in addition, continuous linear extension operators

Ri : Λ̃→ H1
γDi

∪γSi
(Ωi) , i = 1, 2 , (3.2.6)

with trΓ,iRiη = η for all η ∈ Λ̃ exist.
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Proof. In order to see “⊃” in (3.2.3) observe that v+p ∈ K0 for p ∈ K0 and any
v ∈ H1

γD∪γS
(Ω). Conversely, since we have dist(Γ, γS) > 0 or γS = ∅ there are

open neighbourhoods OΓ and OγS
of Γ and γS , respectively, with OΓ ∩OγS

= ∅
and an open ball B ⊂ Rd with OΓ ∪ OγS

∪ Ω ⊂ B. It is well known that
there is a ϕ ∈ C∞

0 (B) with a range in [0, 1] satisfying ϕ|OγS
= 0 and ϕ|OΓ

= 1,

consult e.g. [56, p. 277]. Let η ∈ Λ̃ and v ∈ K0 with v|Γ = η. Then one can
check with the Leibniz rule (compare e.g. [1, p. 21]) and ϕ|Ω ∈ W 1,∞(Ω) that
ϕv ∈ H1

γD∪γS
(Ω) holds. Moreover, we have (ϕv)|Γ = v|Γ = η. In particular,

(3.2.3) entails Λ̃ ⊃ H
1/2
00 (Γ). Note that the arguments can also be applied to

the case γS = ∅.
If, in addition, Γ∩ γN = ∅, then we can replace H1

γD∪γS
(Ω) by H1

0 (Ω) in (3.2.3)

and obtain Λ̃ = H
1/2
00 (Γ) due to Γ ∩ ∂Ω 6= ∅. This can be seen in the same

manner as above: If OΓ and OγN
are chosen analogously as OΓ and OγS

and
a function ϕ ∈ C∞

0 (B) with ϕ|OγN
= 0 and ϕ|OΓ

= 1 is at hand, then for any

v ∈ H1
γD∪γS

(Ω) the function ϕv ∈ H1
0 (Ω) satisfies (ϕv)|Γ = v|Γ.

If, instead, Γ∩γD = ∅, then we can replaceH1
γD∪γS

(Ω) byH1(Ω) in (3.2.3). Now
we choose OΓ and OγD∪γS

analogously as OΓ and OγS
above and a ϕ ∈ C∞

0 (B)
with ϕ|OγD∪γS

= 0 and ϕ|OΓ
= 1. As a consequence, for any v ∈ H1(Ω) we have

ϕv ∈ H1
γD∪γS

(Ω) and (ϕv)|Γ = v|Γ.

With regard to the general case it is easily checked that the quotient norm
in (3.2.4) is indeed a norm (compare [98, p. 34]). With this norm, trΓ in
(3.2.5) is a quotient map and therefore Λ̃ is isometrically isomorphic to the
quotient H1

γD∪γS
(Ω)/ ker(trΓ), see [98, pp. 54, 56]. Since H1

γD∪γS
(Ω) is a Hilbert

space we have the canonical representation H1
γD∪γS

(Ω) = ker(trΓ) ⊕ ker(trΓ)⊥

in which ker(trΓ)⊥ is the orthogonal complement of the (closed) kernel ker(trΓ),
see [98, p. 221]. Therefore, we can conclude the isometric isomorphisms

ker(trΓ)⊥ ∼= H1
γD∪γS

(Ω)/ ker(trΓ) ∼= Λ̃

in which trΓ induces the isomorphism ker(trΓ)⊥ ∼= Λ̃. In particular, Λ̃ is a
Hilbert space. The inverse

R : Λ̃→ ker(trΓ)⊥ ⊂ H1
γD∪γS

(Ω)

of trΓ restricted to ker(trΓ)⊥ is a continuous linear map with the property
trΓRη = η for all η ∈ Λ̃. The definition Riη := (Rη)|Ωi

for all η ∈ Λ̃ and
i = 1, 2 provides continuous linear operators (3.2.6) with the properties

‖Riη‖1,Ωi ≤ ‖Rη‖1,Ω = ‖η‖Λ̃ ∀η ∈ Λ̃

and (with a glance at Lemma 3.2.3) trΓ,iRiη = trΓRη = η as required.

Observe that for the existence of the extension operators Ri, i = 1, 2, we needed
to use the Hilbert space structure of H1

γDi
∪γSi

(Ωi), in particular the existence

of an orthogonal complement of ker(trΓ). In contrast, a closed subspace in a
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general Sobolev space W 1,p
γDi

∪γSi
(Ω) for p ≥ 1 and p 6= 2 does not necessarily

have a complemented subspace in W 1,p
γDi

∪γSi
(Ω), see [98, pp. 162, 248]. In such

a case one would have to define extension operators as in (3.2.6) or, equiva-
lently, projections from W 1,p

γDi
∪γSi

(Ω) on ker(trΓ) more explicitly. Concerning

this question we refer to Lions and Magenes [64, pp. 19–23, 38–43].

Remark 3.2.2. Since H
1/2
00 (Γ) is intrinsically definable (see (A.2.4) but also

Quarteroni and Valli [75, p. 7]) and thus only dependent on Γ, it seems that

Λ̃ = H
1/2
00 (Γ) holds whenever Γ ∩ γD = Γ ∩ ∂Ω is satisfied (at least if we have

Γ ∪ γD ⊂ ∂Ω̃ with some Lipschitz domain Ω̃ and except for possibly higher
dimensional “degenerate cases”). With the same reasoning it seems that Λ̃ is
also a vector space (satisfying (3.2.3)) if Γ∩ γS 6= ∅ holds with Γ∩ γS = Γ∩ γD

(again possibly except for degeneracies). Note that if Γ intersects arbitrary
parts of γD or γN (but not of γS), then the trace space Λ̃ could be regarded as
a “partially 00” H1/2(Γ)-space. Depending on the geometry, especially in higher
dimensions, one might obtain cases, which could result in different “00-degrees”,
for example, if d = 3 and Γ ∩ γD contains one point. (Note that we always
assume γD to have positive Hausdorff measure if γD 6= ∅.) At least in such
degenerate cases H̃1

γDi
∪γSi

(Ωi) might be a proper subspace of H1
γDi

∪γSi
(Ωi).

The following basic result is crucial for any substructuring in H1(Ω).

Lemma 3.2.3. If p ∈ H1(Ω), then we have pi := p|Ωi
∈ H1(Ωi) for i = 1, 2

and p1|Γ = p2|Γ. Conversely, if pi ∈ H1(Ωi) for i = 1, 2 and p1|Γ = p2|Γ holds,
then

p :=

{
p1 on Ω1

p2 on Ω2

is contained in H1(Ω).

Proof. The first assertion is easy to see by considering a sequence of functions
(ϕn)n∈N ⊂ C∞(Ω) converging to p in H1(Ω) and observing that their restric-
tions to Ωi or to Γ converge to pi or to pi|Γ, respectively, for i = 1, 2 in the
corresponding norms. Conversely, to see that p is weakly differentiable we
apply partial integration (A.2.11) in H1(Ωi) to the weak derivatives of pi for
i = 1, 2 tested with test functions in C∞

0 (Ω) and observe that the contributions
on Γ cancel each other due to the gluing p1|Γ = p2|Γ.

We can now prove the main result of this section which is a generalization
of Lemma 1.2.1 in Quarteroni and Valli [75] to problems of Signorini’s type
for nonlinear equations. Recall that extension operators are defined as right
inverses to corresponding trace maps.

Theorem 3.2.4. Let Γ ∩ γS = ∅. Then the variational problem (3.2.1) which
in short reads

p ∈ K0 : ã(p, v − p)− ℓ(v − p) ≥ 0 ∀v ∈ K0 (3.2.7)
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can be equivalently reformulated as: Find p1 ∈ K1 and p2 ∈ K2 such that

ã1(p1, v1 − p1)− ℓ1(v1 − p1) ≥ 0 ∀v1 ∈ Kp1
1 (3.2.8)

p1 = p2 on Γ (3.2.9)

ã2(p2, v2 − p2)− ℓ2(v2 − p2) ≥ 0 ∀v2 ∈ Kp2
2 (3.2.10)

ã2(p2, R2µ) = ℓ2(R2µ) + ℓ1(R1µ)− ã1(p1, R1µ) ∀µ ∈ Λ̃ (3.2.11)

where Ri denotes any possible extension operator from Λ̃ to H1
γDi

∪γSi
(Ωi) for

i = 1, 2.

Note that Ri, i = 1, 2, exist and can be chosen as the continuous linear extension
operators given by Proposition 3.2.1.

Proof. First let p be a solution of (3.2.7). Then we have pi := p|Ωi
∈ Ki for

i = 1, 2 and (3.2.9) due to Lemma 3.2.3. Let v1 ∈ Kp1
1 . Since (3.2.9) holds, the

function

v :=

{
v1 on Ω1

p2 on Ω2

is contained in K0 (Lemma 3.2.3), and (3.2.8) follows from (3.2.7). Analogously,
we obtain (3.2.10). Now, for each µ ∈ Λ̃ the function Rµ defined by

Rµ :=

{
R1µ on Ω1

R2µ on Ω2
(3.2.12)

belongs to H1
γD∪γS

(Ω) (Lemma 3.2.3) and we have ±Rµ+p ∈ K0 (Λ̃ is a vector
space!). The variational inequality (3.2.7) applied to both v = Rµ + p ∈ K0

and v = −Rµ+ p ∈ K0 provides (equality in) (3.2.11).

Conversely, let pi ∈ Kpi
i , i = 1, 2, be solutions of (3.2.8)–(3.2.11). Setting

p :=

{
p1 on Ω1

p2 on Ω2

we obtain p ∈ K0 due to (3.2.9), the definitions of Kpi
i and Lemma 3.2.3.

Choosing a v ∈ K0 we set µ := v|Γ and λ := p|Γ and obtain µ − λ ∈ Λ̃ by

definition of Λ̃. Defining R(µ− λ) according to (3.2.12) we see that

vi := v|Ωi
−Ri(µ− λ) ∈ Kpi

i , i = 1, 2 ,

holds. Now, (3.2.8), (3.2.10) and (3.2.11) entail

ã(p, v − p)− ℓ(v − p) =

2∑

i=1

ãi(pi, v|Ωi
− pi)− ℓi(v|Ωi

− pi)

=

2∑

i=1

(
ãi(pi, vi − pi)− ℓi(vi − pi)

+ ãi(pi, Ri(µ− λ))− ℓi(Ri(µ− λ))
)
≥ 0

as required.
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Remark 3.2.5. We point out that it seems unrealistic to generalize Theo-
rem 3.2.4 in a satisfying way to situations in which Γ and γS have a nonempty
intersection (and thus Λ̃ is in general no longer a vector space). Observe that
for the second part of the proof we need extension operators

Ri : Λ̃→ Ki −Kpi
i ⊂ H1

γDi
(Ωi) , i = 1, 2 , (3.2.13)

(not necessarily linear or continuous) with the property

(v −R(v|Γ − p|Γ))|γS
≤ 0 ∀v ∈ K0 (3.2.14)

(with R as in (3.2.12)) and for which (3.2.11) is satisfied with “≥” instead
of “=”. And, indeed, with this modified condition (3.2.11) we obtain the equiv-
alence — if such extension operators exist. However, we have the following
proposition, in which the second assertion presumably also holds in all cases
where the intersection of Γ and γS leads to a Λ̃ without a vector space structure.

Proposition 3.2.6. Let p ∈ K0 and R : Λ̃→ H1
γD

(Ω) be some (not necessarily

linear or continuous) extension operator, i.e. satisfying trΓRµ = µ for all µ ∈ Λ̃.
In addition, assume with (3.2.12) that R satisfies (3.2.13) and (3.2.14). Then
we have

R : Λ̃→ {v ∈ H1
γD

(Ω) : v|γS
≥ 0} . (3.2.15)

In particular, if there is a neighbourhood OΓ of Γ with OΓ ∩ ∂Ω = OΓ ∩ γS 6= ∅,
then such a map R does not exist.

Proof. For simplicity but without loss of generality we assume p = 0. Then
(3.2.14) reads

v|γS
≤ (R(v|Γ))|γS

∀v ∈ K0 . (3.2.16)

The following construction can be carried out as in the proof of Proposi-
tion 3.2.1. Assuming that γS is open in the relative topology of ∂Ω, we consider
neighbourhoods On ⊂ Rd of γS\γS and neighbourhoods Un of Γ for n ∈ N with
Lebesgue measure |On|, |Un| → 0 for n→∞. Now, for any η ∈ Λ̃ it is possible
to construct a sequence of functions (vn)n∈N ⊂ K0 which satisfy vn|Γ = η and
vn|γS\(On∪Un) = 0 for all n ∈ N. (vn)n∈N can probably even be chosen uniformly
bounded in H1(Ω) if one uses the example function in Braess [19, p. 30]. Now,
it follows from (3.2.16) that R has to provide (Rη)|γS

≥ 0 for all η ∈ Λ̃. This
proves the first assertion (3.2.15) of Proposition 3.2.6 (which can analogously
be obtained for arbitrary p ∈ K0). Consequently, the elements of Λ̃ are both
traces of functions v with v|γS

≥ 0 and of functions w with w|γS
≤ 0.

In particular, if OΓ ∩ ∂Ω = OΓ ∩ γS 6= ∅ for some neighbourhood OΓ of Γ, then

we obtain Λ̃ ⊂ H1/2
00 (Γ) (and therefore Λ̃ = H

1/2
00 (Γ)) with the help of arguments

as in Proposition 3.2.1 for the case Γ∩ γN = ∅ and Γ∩ ∂Ω 6= ∅. However, there

is an η̃ ∈ H1/2(Γ)\H1/2
00 (Γ) and a v ∈ H1(Ω) with v|Γ = η̃. In addition, we

(generally) have

v+ := max(v, 0) ∈ H1(Ω) and v− := min(v, 0) ∈ H1(Ω)
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due to Theorem 1.5.15. Again, by a localization technique as in Proposi-
tion 3.2.1 for the case Γ ∩ γD = ∅, using OΓ ∩ ∂Ω = OΓ ∩ γS 6= ∅, we conclude

− v+
|Γ, v

−
|Γ ∈ {w|Γ : w ∈ H1

γD
(Ω) ∧ w|γS

≤ 0} ⊂ Λ̃ (3.2.17)

with the help of Proposition 1.5.6. But since we have v|Γ /∈ H1/2
00 (Γ), at least one

of the functions v+
|Γ, v−|Γ is not contained inH

1/2
00 (Γ) which, however, contradicts

the inclusion Λ̃ ⊂ H1/2
00 (Γ).

Using an η̃ in the gap between a “partially 00” H1/2(Γ)-space (“00” on Γ∩ γD)
and another suitable “partially 00” H1/2(Γ)-space (“00” on Γ ∩ (γD ∪ γS)), in
which Λ̃ is contained, one might obtain (3.2.17) by a possibly more refined lo-
calization technique. In this way, it seems feasible to extend the assertion about
the non-existence of the operator R to much more general nontrivial intersec-
tions of Γ and γS , which lead to proper convex subsets Λ̃ of a “partially 00”
trace space (see also Remark 3.2.2).

Although the considerations in Remark 3.2.5 lead to the poor non-existence
result in Proposition 3.2.6 they still contain a positive message for the discrete
setting. If we discretize the problems (3.2.7) and (3.2.8)–(3.2.11) analogously
as in Subsection 2.5.1, then obviously Theorem 3.2.4 and Remark 3.2.5 can be
established accordingly in the discrete setting. Now, however, the properties
(3.2.13) and (3.2.14) are satisfied if we consider R to be the trivial extension,
setting Rµ as 0 on the nodes in Ω\Γ while respecting the Dirichlet values. In
this case we would also obtain an equivalence between the discretized version
of (3.2.7) and the discretized versions of (3.2.8)–(3.2.11) where “=” is replaced
by “≥” in the discretization of (3.2.11).

3.2.3 Dirichlet–Neumann scheme for the time-discretized Ri-
chards equation and the heterogeneous case

As far as the interpretation of the interface conditions is concerned, it is clear
that (3.2.9) indicates the continuity of the pressure p across the interface Γ.
Furthermore, with the help of Green’s formula (A.2.12) one can easily verify
that (3.2.11) is the weak formulation for the continuity of the implicit-explicitly
time-discretized flux

(kr(θ(p1))∇p1 − kr(θ(p̃1))ez) · n = (kr(θ(p2))∇p2 − kr(θ(p̃2))ez) · n on Γ
(3.2.18)

related to the implicit-explicitly time-discretized Richards equation (see (1.5.1)
and (1.5.3)) which reads

θ(p)− θ(p̃)
τ

− div
(
kr(θ(p))∇p− kr(θ(p̃))ez

)
= 0 (3.2.19)

in strong form (see also Subsection 3.4.5). For simplicity, we dropped the minus
sign on both sides of (3.2.18), so we actually deal with the negative discretized
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water flux here. Moreover, we adapt to the usual convention that n is the
outward normal of the subdomain Ω1 (see Figure 3.1 and compare [75, pp. 1/2]).

As already stated above, we can also establish Theorem 3.2.4 for the variational
form (1.5.38) of the Richards equation before time discretization. Then, we
have pi = p̃i for i = 1, 2 in (3.2.18), and the strong form of (3.2.11) is just the
continuity of the water flux at the time t.

As in the linear case in Quarteroni and Valli [75, p. 7], the subproblems (3.2.8)
and (3.2.10) are underdetermined because of lacking boundary values for pi,
i = 1, 2, on Γ. If these problems are nontrivial problems of Signorini’s type,
even the convex sets of test functions Kpi

i are unknown a priori. This is not the
case if γSi = ∅ since then Kpi

i − pi = V 0
i is a vector space. Nevertheless, both

from an algorithmic and from an analytic point of view, it is quite important to
know how one can “complete” these problems in order to make them well-posed.

As in the linear case this can be done within an iterative process with the
help of the Dirichlet interface condition (3.2.9) and the Neumann interface
condition (3.2.11). Given an iterate pk

2 ∈ K2, one can compute an iterate
pk+1
1 ∈ K1 by solving the convex problem

pk+1
1 ∈ Kpk

2
1 : ã1(p

k+1
1 , v1 − pk+1

1 )− ℓ1(v1 − pk+1
1 ) ≥ 0 ∀v1 ∈ Kpk

2
1 (3.2.20)

imposing the Dirichlet condition pk+1
1 = pk

2 on Γ which refers to (3.2.9). Given
pk+1
1 ∈ K1, one can obtain pk+1

2 ∈ K2 by solving the convex problem

pk+1
2 ∈ K2 : ã2(p

k+1
2 , ṽ2 − pk+1

2 )− ℓ2(ṽ2 − pk+1
2 ) (3.2.21)

−
(
ℓ1(R1(ṽ2 − pk+1

2 )|Γ)− ã1(p
k+1
1 , R1(ṽ2 − pk+1

2 )|Γ)
)
≥ 0 ∀ṽ2 ∈ K2

into which the weak form (3.2.11) of the Neumann condition (3.2.18) (with
pi replaced by pk+1

i , i=1,2) is wired. To see this observe first that (3.2.21)
is uniquely solvable due to Theorem 2.3.16 with the assumptions given there.
Now, for any ṽ2 ∈ K2 consider the trace function

µ := (ṽ2 − pk+1
2 )|Γ ∈ Λ0 − pk+1

2|Γ and v2 := ṽ2 −R2µ ∈ Kpk+1
2

2 .

Then, with these functions, adding (3.2.10) and (3.2.11) leads to (3.2.21).

Together with an initial guess p0
2, the iterative procedure given by (3.2.20) and

(3.2.21) for k ≥ 0 is a nonlinear Dirichlet–Neumann scheme in a weak for-
mulation applied to the Signorini-type problem (3.2.1) for the time-discretized
Richards equation. However, as in the linear case one would apply an additional
damping (compare (3.3.10)) in order to have a chance to get a convergent se-
quence.

It is also possible to combine the two interface conditions (3.2.9) and (3.2.11) in
order to obtain convex problems with Robin boundary conditions on Γ. They
also turn out to be uniquely solvable for the Richards equation in homogeneous
soil under natural conditions. In Subsection 3.4.1 we will address this option,
resulting in a Robin method for the Richards equation, in detail.
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Finally, we turn to the case of heterogeneous soil, i.e. to the case of possibly
different parameter functions θ1(·) and kr1(·) in Ω1 and θ2(·) and kr2(·) in Ω2.
This is the case referred to as jumping nonlinearities in the title of this work.
We assume that ãi(·, ·) and ℓi(·), i = 1, 2, are constituted accordingly as in
Subsection 3.2.1. With these ingredients one can also define ã(·, ·) and ℓ(·)
on Ω and give sense to the corresponding variational inequality (3.2.7).

However, our solution theory from Chapter 2 cannot be applied in this het-
erogeneous setting since the Kirchhoff transformation cannot be carried out
globally on Ω (compare Remark 1.3.1). Therefore, we turn to the correspond-
ing substructuring problem (3.2.8)–(3.2.11) for which the arising Dirichlet and
Neumann problems can be solved uniquely after (different) Kirchhoff transfor-
mations in the subdomains. The interface conditions which require continuity
of the physical pressure (3.2.9) and continuity of the (time-discretized) water
flux as discussed above (see (3.2.11) and (3.2.18)) also seem to be hydrologically
very well justified. Therefore, we can finally note

Definition 3.2.7. Let Γ ∩ γS = ∅ and θi(·), kri(·) given (possibly different)
parameter functions on Ωi for i = 1, 2. Let ãi(·, ·), ℓi(·), i = 1, 2, be defined with
these functions according to Subsection 3.2.1. We call a function p defined a.e.
on Ω with pi := p|Ωi

, i = 1, 2, a weak solution of the corresponding Signorini-
type problem for the Richards equation in heterogeneous soil on Ω if we have
p1 ∈ K1 and p2 ∈ K2 such that

ã1(p1, v1 − p1)− ℓ1(v1 − p1) ≥ 0 ∀v1 ∈ Kp1
1 (3.2.22)

p1 = p2 on Γ (3.2.23)

ã2(p2, v2 − p2)− ℓ2(v2 − p2) ≥ 0 ∀v2 ∈ Kp2
2 (3.2.24)

ã2(p2, R2µ) = ℓ2(R2µ) + ℓ1(R1µ)− ã1(p1, R1µ) ∀µ ∈ Λ̃ (3.2.25)

where Ri denotes any possible extension operator from Λ̃ to H1
γDi

∪γSi
(Ωi) for

i = 1, 2.

As usual, for more than two subdomains one would consider convex prob-
lems for each subdomain and impose continuity of the pressure and the (time-
discretized) water flux on each interface.

3.3 Nonlinear Dirichlet–Neumann method

The topic of this section is a quasilinear elliptic transmission problem where
the nonlinearity changes discontinuously across two subdomains. This problem
is motivated by Definition 3.2.7 of a boundary value problem for the Richards
equation on a domain with two different soils in the subdomains. In fact, it can
be regarded as a nondegenerate stationary Richards equation without gravity
in such a setting.
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We treat this problem applying a nonlinear version of the linear Steklov–
Poincaré theory introduced in Quarteroni and Valli [75, pp. 8–11]. Therefore,
in Subsection 3.3.1, we start with a short introduction to the basic idea under-
lying the usage of Steklov–Poincaré operators for the analytical treatment of
the Dirichlet–Neumann method applied to linear problems.

In order to extend the linear theory to cover our case, we reformulate our
nonlinear transmission problem via Kirchhoff transformation, thus obtaining
linear problems on the subdomains (cf. Bonani and Ghione [18]). However,
this entails nonlinear transmission conditions. Still, this allows a reformulation
of the problem as a nonlinear Steklov–Poincaré interface equation. Then, we
introduce a Dirichlet–Neumann iteration for this problem which, in analogy to
the linear case, can be regarded as a preconditioned Richardson iteration applied
to the nonlinear Steklov–Poincaré equation. All this is done in Subsection 3.3.2.

Then, in Subsection 3.3.3, we present a convergence analysis based on Banach’s
fixed point theorem for our nonlinear Dirichlet–Neumann iteration, generalizing
related results for the linear case in Quarteroni and Valli [75, pp. 117–120].
This leads to sufficient conditions for a convergence of the scheme to a unique
solution which are satisfied in one space dimension. As a by-product, we obtain
well-posedness of our transmission problem in this case.

In Subsection 3.3.4 we present counterexamples in 2D, one of them given and
discussed analytically, showing that the sufficient conditions for the conver-
gence of the nonlinear Dirichlet–Neumann algorithm, on which our proof via
the contraction argument is based, are violated in higher dimensions. This still
leaves the open question whether (at least local) convergence of the Dirichlet–
Neumann method can be proved by other techniques.

Finally, in view of the convergence in 1D and the considerations on the coun-
terexamples in 2D, numerical results in two space dimensions are given for our
transmission problem in Subsection 3.3.5, suggesting that the algorithm can be
applied successfully to higher-dimensional problems and in the general case of
the Richards equation.

3.3.1 Basic idea of linear Steklov–Poincaré theory

In order to understand the basic problem that we encounter when we try to
analyse the substructuring problem (3.2.22)–(3.2.25) with jumping nonlineari-
ties across the interface Γ, it is helpful to recall the principles of linear Steklov–
Poincaré theory. In the following, this is pursued in loose terms and also leads to
a formulation of the Dirichlet–Neumann method in terms of Steklov–Poincaré
operators which our nonlinear approach in Subsection 3.3.2 extends.

Consider a non-overlapping decomposition of Ω ⊂ Rd into Ω1 and Ω2 as in Sec-
tion 3.2, compare Figure 3.1. The starting point is a boundary value problem

Lu = f on Ω (3.3.1)
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with boundary conditions ϕ on ∂Ω (linear in u) where L is some linear partial
differential operator. As seen in the (even nonlinear) example in Section 3.2,
such a problem can turn out to be equivalent to solving

Liui = f on Ωi (3.3.2)

where Li, are the restrictions of L on Ωi for i = 1, 2, together with the re-
strictions due to the boundary conditions ϕ and with suitable transmission
conditions on Γ. The regularity of u on Ω in some solution space often requires

u1|Γ = u2|Γ (3.3.3)

and the fact that u also solves (3.3.1) “across Γ” generally leads to a continuity
condition on some “flux” across Γ

Ψ1u1 = −Ψ2u2 (3.3.4)

given by certain linear operators Ψ1 and Ψ2.

Now, usually the aim is to obtain an interface equation for the trace λ := u|Γ
of the solution in the trace space Λ which is equivalent to the global problem
(3.3.1) or to the substructuring problem (3.3.2)–(3.3.4). For simplicity, we
assume that ϕ are homogeneous Dirichlet boundary conditions on ∂Ω. Then
the general approach in the linear case is the following.

We write L−1
i (f, µ), i = 1, 2, for the solution of (3.3.2) where µ is either a

Dirichlet boundary value or a “flux” (Neumann) boundary value as in (3.3.4).
Both the unknown interface value λ on Γ and the known source term f can
be regarded as inhomogeneities for the solution of the subproblems (3.3.2) on
Ωi for i = 1, 2. Using the linearity of Li, i = 1, 2, one can decouple these
inhomogeneities and separate the known one f from the unknown one λ. Then,
obviously, the solutions for the

homogeneous system + inhomogeneity λ on Γ : u0
i = L−1

i (0, λ) =: L−1
i,hom(λ)

inhomogeneous system + homogeneity on Γ : u∗i = L−1
i (f, 0) =: L−1

i,inh(f)

give the solution for the data f, λ on Ωi : ui = u0
i + u∗i .

(3.3.5)

Considering (3.3.5) for any interface value λ, the first continuity condition
(3.3.3) is satisfied. Now, with the linearity of Ψi, i = 1, 2, the second con-
dition (3.3.4) can be written as

Ψ1u
0
1 + Ψ2u

0
2 = −Ψ1u

∗
1 −Ψ2u

∗
2 (3.3.6)

so that the influence of the two inhomogeneities occurs on different sides. The
left hand side of this equation results from the action of the Steklov–Poincaré
operators, defined by

Si := ΨiL
−1
i,hom , i = 1, 2 , S := S1 + S2 , (3.3.7)
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on the interface value λ. Together with the right hand side

χ := (−Ψ1L
−1
1,inh −Ψ2L

−1
2,inh)(f) (3.3.8)

of (3.3.6) one obtains the desired Steklov–Poincaré interface equation in the
form

Sλ = χ . (3.3.9)

Now, with a given initial iterate λ0, and as already seen in (3.2.22)–(3.2.25) in
a weak formulation for our nonlinear problem, the Dirichlet–Neumann iteration
is obtained by the Dirichlet step and the Neumann step

uk+1
1 = L−1

1 (f, λk)

uk+1
2 = L−1

2 (f,−Ψ1u
k+1
1 )

for k ≥ 0, respectively. It provides the next iterate

λk+1 = ϑuk+1
2|Γ + (1− ϑ)λk (3.3.10)

after a damping with the factor 0 < ϑ < 1 which is necessary in general to
obtain convergence.

The natural decomposition S = S1 + S2 allows for a reformulation of (3.3.10)
in terms of Steklov–Poincaré operators. As a result, the damped Dirichlet–
Neumann method turns out to be a Richardson procedure

λk+1 = λk + ϑS−1
2 (−Sλk + χ)

for the Steklov–Poincaré interface equation Sλ = χ with S2 as a preconditioner,
see Quarteroni and Valli [75, pp. 13/14]. In what is to come, these basic results
are generalized to certain nonlinear problems.

3.3.2 Steklov–Poincaré formulation for elliptic problems related
to the nondegenerate stationary Richards equation with-
out gravity

In this subsection we introduce a nonlinear elliptic problem in a heterogeneous
setting as considered in Subsection 3.2.3 which can be regarded as a stationary
Richards equation without gravity in heterogeneous soil with nondegenerate
relative permeability (see Subsection 1.4.3). Furthermore, we generalize the
ideas from the linear Steklov–Poincaré theory indicated in the last subsection
to this nonlinear problem.

As in Subsection 3.2.1, let Ω ⊂ Rd be a bounded Lipschitz domain divided into
two non-overlapping subdomains Ω1, Ω2 with the Lipschitz continuous interface
Γ = Ω1 ∩ Ω2, compare Figure 3.2.

Given f ∈ L2(Ω), k1, k2 ∈ L∞(R) with ki ≥ α > 0 for i = 1, 2, we consider the
following quasilinear elliptic transmission problem in strong formulation.
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n

Ω1
Ω2

Γ

Figure 3.2: Non-overlapping partition of the domain Ω.

Find a function p on Ω, p|Ωi
= pi ∈ H1(Ωi), i = 1, 2, p|∂Ω = 0, such that

− div(ki(pi)∇pi) = f on Ωi , i = 1, 2 (3.3.11)

p1 = p2 on Γ (3.3.12)

k1(p1)∇p1 · n = k2(p2)∇p2 · n on Γ . (3.3.13)

Compare this problem to (3.2.19) with (3.2.18) in order to see the claimed
relationship with the stationary Richards equation without gravity. We remark
that the gravitational term cannot be treated explicitly in the stationary case
and would lead to an additional nonlinearity which our approach does not cover.
In addition, note that we impose uniform ellipticity

ki(·) ≥ α > 0 for i = 1, 2 (3.3.14)

here, so this case is comparable to the nondegenerate case induced by altered
Brooks–Corey functions treated in Subsection 1.4.3. On the other hand, observe
that the nonlinearities ki need not be continuous here, so this setting covers
much more and in particular the limit cases discussed in Subsection 1.4.4.

Due to lack of regularity of the nonlinearities, Newton-type linearization is ruled
out in advance. However, by our approach based on Kirchhoff transformation,
we can reformulate the two nonlinear partial differential equations (3.3.11) as
linear Poisson equations in both subdomains.

Since large parts of what we present here can be regarded as generalizations
of the linear theory given in Quarteroni and Valli [75], we use much of the
notation accordingly. This includes the spaces defined in (3.2.2) with the trace

space Λ = H
1/2
00 (Γ) in the case we consider here. Furthermore, for i = 1, 2, we

use the abbreviation

(wi, vi)Ωi :=

∫

Ωi

wivi dx ∀wi, vi ∈ L2(Ωi) (3.3.15)

for the L2-scalar product on Ωi and define the forms

ai(wi, vi) := (∇wi,∇vi)Ωi (3.3.16)

bi(wi, vi) := (k(wi)∇wi,∇vi)Ωi (3.3.17)

for wi, vi ∈ Vi. As usual, the norm in H1(Ωi) will be denoted by ‖ · ‖1,Ωi , the
norm in Λ with ‖ · ‖Λ.
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Let Ri, i = 1, 2, be any linear continuous extension operator from Λ to Vi. Then,
with Green’s formula (1.5.9), the variational formulation of problem (3.3.11)–
(3.3.13) reads as follows:

Find pi ∈ Vi, i = 1, 2, such that

bi(pi, vi) = (f, vi)Ωi ∀vi ∈ V 0
i , i = 1, 2 (3.3.18)

p1|Γ = p2|Γ in Λ (3.3.19)

b1(p1, R1µ)− (f,R1µ)Ω1 = −b2(p2, R2µ) + (f,R2µ)Ω2 ∀µ ∈ Λ . (3.3.20)

We now introduce new variables ui, i = 1, 2, by Kirchhoff transformations κi

defined as

ui(x) := κi(pi(x)) =

∫ pi(x)

0
ki(q) dq a.e. in Ωi (3.3.21)

according to (1.3.1), which yields ki(pi)∇pi = ∇ui in a weak sense due to Propo-
sition 1.5.12. For the details we refer to Subsection 1.5.4, where we discussed
the topic of weak Kirchhoff transformations in terms of superposition operators
in appropriate depth. There, we had kr ◦ θ from the Richards equation instead
of the function ki but with equal generality. Nevertheless, we note the following
basic properties of κi here.

Proposition 3.3.1. The following holds for i = 1, 2. κi : R → R satisfies
ki(0) = 0 and is a.e. differentiable with κ′i = ki, strictly increasing and Lip-
schitz continuous with Lipschitz constant ‖ki‖∞. The inverse κ−1

i is also a.e.
differentiable, strictly increasing and Lipschitz continuous with Lipschitz con-
stant ‖k−1

i ‖∞.
Furthermore, with α ≥ 0 from (3.3.14) we have

α ‖pi‖1,Ωi ≤ ‖κi(pi)‖1,Ωi ≤ ‖ki‖∞ ‖pi‖1,Ωi (3.3.22)

and there exist positive constants c, C with

c ‖pi|Γ‖Λ ≤ ‖κi(pi)|Γ‖Λ ≤ C ‖pi|Γ‖Λ . (3.3.23)

Finally, interpreted as superposition operators, κi : Vi → Vi and κi : Λ→ Λ are
homeomorphisms.

Proof. The first statements have already been noted in Lemma 1.5.7. The
estimates in (3.3.22) come from Proposition 1.5.12. Property (3.3.23) is entailed
by (3.3.22) and the last statement on κi, interpreted as superposition operators,
which is a direct consequence of Theorem 1.5.15 and Proposition 1.5.17. The
bijectivity of these operators and the commutativity (1.5.33) applied to (3.3.22)
provide

α ‖pi|Γ‖ ≤ ‖κi(pi)|Γ‖ ≤ ‖ki‖∞ ‖pi|Γ‖
for the norm ‖ · ‖ in Λ defined by

‖η‖ := inf
p∈Vi, p|Γ=η

‖p‖1,Ωi ∀η ∈ Λ

which is known to be equivalent to ‖ · ‖Λ, see (A.2.10).
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Now, with the transformations κi, problem (3.3.18)–(3.3.20) becomes:

Find ui ∈ Vi, i = 1, 2, such that

ai(ui, vi) = (f, vi)Ωi ∀vi ∈ V 0
i , i = 1, 2 (3.3.24)

κ−1
1 (u1|Γ) = κ−1

2 (u2|Γ) in Λ (3.3.25)

a1(u1, R1µ)− (f,R1µ)Ω1 = −a2(u2, R2µ) + (f,R2µ)Ω2 ∀µ ∈ Λ . (3.3.26)

Remark 3.3.2. At first glance, the equivalence of problem (3.3.18)–(3.3.20)
with pi ∈ Vi and its transformed version (3.3.24)–(3.3.26) with ui = κi(pi) ∈ Vi

seems to be an easy matter. Notice, however, that for (3.3.18) ⇔ (3.3.24)
and (3.3.20) ⇔ (3.3.26) we need to apply the weak chain rule (1.5.22) which
is not trivial. In addition, for (3.3.12) ⇔ (3.3.19) we need the commutativity
of the trace map and the Kirchhoff transformation (see Proposition 1.5.16),
which is not straightforward either and which requires a strong result from the
theory of superposition operators in the general setting occurring here (compare
Proposition 1.5.14 and Theorem 1.5.15).

Moreover, bearing these results from Subsection 1.5.4 in mind, we can interpret
κi, i = 1, 2, equally as a pointwise evaluation almost everywhere on Ωi or Γ
or as a superposition operator in the relevant function spaces on these sets. In
particular, the crucial commutativity (1.5.33) makes it possible to talk about
the Kirchhoff transformation on Γ of a function in Vi. To simplify the notation,
we usually leave out the brackets for operators as in κi(·) from now on.

Now, we turn to a Steklov–Poincaré formulation of problem (3.3.24)–(3.3.26).
The latter is a weak formulation of a problem as discussed in Subsection 3.3.1
including linear subproblems (3.3.24), but now with nonlinear Dirichlet trans-
mission conditions (3.3.25) for the transformed variables in the two subdomains.
Since the linearity of the subproblems can be used now, the argumentation is
quite similar as usual and outlined in Subsection 3.3.1.

For a given λ ∈ Λ and i = 1, 2 we now consider the harmonic extensions
u0

i = Hi(κiλ) ∈ Vi of the Dirichlet boundary value κiλ on Γ. Furthermore,
let u∗i = Gif be the solutions of the subproblems (3.3.24) with homogeneous
Dirichlet data u∗i|∂Ωi

= 0. Due to the linearity of the local problems (3.3.24),
the functions

ui = Hiκiλ+ Gif , i = 1, 2 , (3.3.27)

satisfy (3.3.24)–(3.3.26) if and only if

a1(H1κ1λ,R1µ) + a2(H2κ2λ,R2µ) =

(f,R1µ)Ω1 − a1(G1f,R1µ) + (f,R2µ)Ω2 − a2(G2f,R2µ) ∀µ ∈ Λ . (3.3.28)

Since the extension operators Ri, i = 1, 2, can be chosen arbitrarily, we set
Ri = Hi. Denoting by 〈·, ·〉 the duality pairing between Λ′ and Λ, we recall the
definition of the Steklov–Poincaré operators Si : Λ→ Λ′,

〈Siη, µ〉 = ai(Hiη,Hiµ) ∀η, µ ∈ Λ , i = 1, 2 , (3.3.29)
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and furthermore the functional χ = χ1 + χ2 ∈ Λ′,

〈χi, µ〉 = (f,Hiµ)Ωi − ai(Gif,Hiµ) ∀µ ∈ Λ , i = 1, 2 , (3.3.30)

which can be found in Quarteroni and Valli [75, pp. 8/9].

Now, (3.3.28) can be written as the nonlinear Steklov–Poincaré interface equa-
tion

find λ ∈ Λ : (S1κ1 + S2κ2)λ = χ (3.3.31)

or, equivalently,

find λ2 ∈ Λ : (S1κ1κ
−1
2 + S2)λ2 = χ (3.3.32)

if we set λ2 = κ2λ. Note that since κ2 : Λ → Λ is a homeomorphism due to
Proposition 3.3.1, the convergence of a sequence of iterates λk

2 to λ2 implies the
convergence of λk = κ−1

2 λk
2 to λ an vice versa. We state the main result of this

subsection.

Proposition 3.3.3. Solving problem (3.3.18)–(3.3.20) is equivalent to solving
the nonlinear Steklov–Poincaré equations (3.3.31) or (3.3.32) in the sense of
(3.3.21) and (3.3.27).

3.3.3 Convergence result for a Dirichlet–Neumann method and
well-posedness in 1D

In this subsection we present a nonlinear Dirichlet–Neumann algorithm for our
problem (3.3.18)–(3.3.20) which is a straightforward generalization of the lin-
ear one introduced in Subsection 3.3.1. It requires the solution of two linear
problems in each iteration step and a nonlinear transformation only on the
interface, but it does not involve any further linearization. We analyse the al-
gorithm along the lines of the linear theory in Quarteroni and Valli [75] leading
us to sufficient conditions for convergence which are satisfied in one space di-
mension. As a consequence, we get an existence and uniqueness result for the
original nonlinear heterogeneous problem (3.3.18)–(3.3.20).

Since it turns out that for a rigorous analysis the damping has to be carried out
in the transformed variables, we state our Dirichlet–Neumann algorithm for the
transformed version (3.3.24)–(3.3.26) as follows.

Given λ0
2 ∈ Λ, find successively uk+1

1 ∈ V1 and uk+1
2 ∈ V2 for each k ≥ 0 such

that

a1(u
k+1
1 , v1) = (f, v1)Ω1 ∀v1 ∈ V 0

1 (3.3.33)

uk+1
1|Γ = κ1κ

−1
2 (λk

2) in Λ (3.3.34)

and then

a2(u
k+1
2 , v2) = (f, v2)Ω2 ∀v2 ∈ V 0

2 (3.3.35)

a2(u
k+1
2 ,H2µ)− (f,H2µ)Ω2 = −a1(u

k+1
1 ,H1µ) + (f,H1µ)Ω1 ∀µ ∈ Λ .(3.3.36)
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Then, with some damping parameter ϑ ∈ (0, 1), the new iterate is defined by

λk+1
2 := ϑuk+1

2|Γ + (1− ϑ)λk
2 . (3.3.37)

As for the linear case in Subsection 3.3.1, one can reformulate the nonlin-
ear Dirichlet–Neumann algorithm (3.3.37) in terms of Steklov–Poincaré opera-
tors (3.3.29), including the nonlinear Kirchhoff transformations now. Consid-
ering the harmonic extensions Hiu

k+1
i|Γ and the solutions Gif of the problems

(3.3.24) with homogeneous boundary data for i = 1, 2, the intermediate iterates
are obtained by

uk+1
1 = H1κ1κ

−1
2 λk

2 + G1f and uk+1
2 = H2u

k+1
2|Γ + G2f .

Thus, equation (3.3.36) provides

a1(H1κ1κ
−1
2 λk

2 ,H1µ) + a2(H2u
k+1
2|Γ ,H2µ)

=

2∑

i=1

(f,Hiµ)Ωi − ai(Gif,Hiµ) ∀µ ∈ Λ

which, due to (3.3.29) and (3.3.30), is the same as

〈S2u
k+1
2|Γ , µ〉 = 〈−S1κ1κ

−1
2 λk

2 + χ, µ〉 ∀µ ∈ Λ

and, regarding (3.3.37), altogether yields

S2(λ
k+1
2 − λk

2) = ϑ(χ− (S1κ1κ
−1
2 + S2)λ

k
2) in Λ′ . (3.3.38)

Consequently, the damped Dirichlet–Neumann algorithm applied to (3.3.24)–
(3.3.26) is a preconditioned Richardson procedure for the nonlinear Steklov–
Poincaré formulation (3.3.32) with S2 as a preconditioner.

Note that an analogous formulation for the interface equation (3.3.31) cannot
be obtained due to the nonlinearity of S2κ2. However, (3.3.38) can be treated
just as in the linear case if we apply the following generalization of an abstract
convergence result in Quarteroni and Valli [75, pp. 118/119]. Let X be a Hilbert
space, let Q1 : X → X ′ be a not necessarily linear operator and let Q2 : X → X ′

be linear and invertible. With the definition Q := Q1+Q2 and for given G ∈ X ′

we consider the problem

find λ ∈ X : Qλ = G (3.3.39)

together with the corresponding Richardson iteration

λk+1 = λk + ϑQ−1
2 (G−Qλk) (3.3.40)

with the linear operator Q2 as a preconditioner.
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Theorem 3.3.4. Let Q2 be continuous and coercive, i.e. there are positive
constants β2 and α2 such that

〈Q2η, µ〉 ≤ β2‖η‖X‖µ‖X ∀η, µ ∈ X , 〈Q2η, η〉 ≥ α2‖η‖2X ∀η ∈ X . (3.3.41)

Let Q1 be Lipschitz continuous, i.e. there is a constant β1 > 0 such that

〈Q1η −Q1µ, λ〉 ≤ β1‖η − µ‖X‖λ‖X ∀η, µ, λ ∈ X . (3.3.42)

Suppose there exists a constant κ∗ > 0 such that

〈Q2(η − µ), Q−1
2 (Qη −Qµ)〉+ 〈Qη −Qµ, η − µ〉 ≥ κ∗‖η − µ‖2X ∀η, µ ∈ X .

(3.3.43)
Then (3.3.39) has a unique solution λ ∈ X. Furthermore, for any given λ0 ∈ X
and any ϑ ∈ (0, ϑmax) with

ϑmax :=
κ∗α2

2

β2(β1 + β2)2
,

the sequence given by (3.3.40) converges in X to λ.

The proof is an application of Banach’s fixed point theorem and is carried out
here along the lines of the one given in Quarteroni and Valli [75, pp. 119].

Proof. First, the operator Q2 is invertible as a consequence of (3.3.41) and
of the Lax–Milgram lemma (see e.g. [98, pp. 240]). With this observation we
introduce the Q2-scalar product

(η, µ)Q2 :=
1

2
(〈Q2η, µ〉+ 〈Q2µ, η〉) ∀η, µ ∈ X .

The corresponding Q2-norm given by

‖η‖Q2 := (η, η)
1/2
Q2

= 〈Q2η, η〉1/2 ∀η ∈ X

is equivalent to the norm ‖ · ‖X ; actually, it satisfies the two-sided inequality

α2‖η‖2X ≤ ‖η‖2Q2
≤ β2‖η‖2X ∀η ∈ X . (3.3.44)

To prove the convergence of the sequence {λk}k≥0 it is sufficient to show that
the mapping

Tϑ : X → X , Tϑη := η − ϑQ−1
2 Qη ∀η ∈ X ,

is a contraction with respect to the Q2-norm. With this aim, assuming that
ϑ ≥ 0, we have for η, µ ∈ X:

‖Tϑη − Tϑµ‖2Q2
= ‖η − µ‖2Q2

+ ϑ2〈Qη −Qµ,Q−1
2 (Qη −Qµ)〉

−ϑ(〈Q2(η − µ), Q−1
2 (Qη −Qµ)〉+ 〈Qη −Qµ, η − µ〉)

≤ ‖η − µ‖2Q2
+ ϑ2 (β1 + β2)

2

α2
‖η − µ‖2X − ϑκ∗‖η − µ‖2X .
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To verify the second term of the estimate (the third one is (3.3.43)), observe
that due to (3.3.41) and (3.3.42) we have

〈Qη −Qµ,Q−1
2 (Qη −Qµ)〉 ≤ (β1 + β2)‖η − µ‖X‖Q−1

2 (Qη −Qµ)‖X

and that due to (3.3.44) we get

‖Q−1
2 (Qη −Qµ)‖2X ≤

1

α2
‖Q−1

2 (Qη −Qµ)‖2Q2
=

1

α2
〈Qη −Qµ,Q−1

2 (Qη −Qµ)〉 .

Now, setting

Kϑ = 1 + ϑ2 (β1 + β2)
2

α2
2

− ϑκ
∗

β2

we obtain
‖Tϑη − Tϑµ‖2Q2

≤ Kϑ‖η − µ‖2Q2
.

The bound Kϑ < 1 is guaranteed if 0 < ϑ < ϑmax.

Remark 3.3.5. Observe that the proof does not depend on the splitting
Q = Q1 +Q2 if Q1 in (3.3.42) is replaced by Q. Furthermore, note that con-
dition (3.3.43) reduces to a much simpler expression if, in addition, Q2 is sym-
metric. In the linear case (3.3.43) is just the coerciveness of Q or, equivalently,
the coerciveness of Q1. In our nonlinear case (3.3.43) states the strong mono-
tonicity of Q (see e.g. [102, p. 501]) which reads

〈Qη −Qµ, η − µ〉 ≥ κ∗

2
‖η − µ‖2X ∀η, µ ∈ X . (3.3.45)

Now, it is well known that in the particular situation of (3.3.32) and (3.3.38)
both Steklov–Poincaré operators S1 and S2 are symmetric, continuous and co-
ercive, see [75, pp. 8/9]. Thus in order to apply Theorem 3.3.4 to the case
X = Λ, G = χ, Q2 = S2 and Q1 = S1κ1κ

−1
2 , we have to make sure that the

conditions (3.3.42) and (3.3.45) are satisfied for Q1 = S1κ1κ
−1
2 . So we arrive at

the following

Theorem 3.3.6. The nonlinear Steklov–Poincaré equation (3.3.32) admits a
unique solution λ2 in Λ to which the nonlinear Dirichlet–Neumann scheme
(3.3.33)–(3.3.37) converges for sufficiently small ϑ and any λ0

2 ∈ Λ if the fol-
lowing two conditions are satisfied:
κ1κ

−1
2 : Λ → Λ is Lipschitz continuous, i.e., there is a constant L(κ1κ

−1
2 ) > 0

such that

‖κ1κ
−1
2 η − κ1κ

−1
2 µ‖Λ ≤ L(κ1κ

−1
2 )‖η − µ‖Λ ∀η, µ ∈ Λ , (3.3.46)

and S1κ1κ
−1
2 : Λ→ Λ′ is a strongly monotone operator, i.e. there is a constant

α1 > 0 such that

〈S1(κ1κ
−1
2 η − κ1κ

−1
2 µ), η − µ〉 ≥ α1‖η − µ‖2Λ ∀η, µ ∈ Λ . (3.3.47)
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Note that the conditions (3.3.46) and (3.3.47) do not require κi : Λ → Λ,
i = 1, 2, to be superposition operators or Kirchhoff transformations defined
by (3.3.21). In case of linear κi : Λ → Λ, condition (3.3.46) reduces to the
boundedness of κi, i = 1, 2, and (3.3.47) is the coercivity of the linear map
S1κ1κ

−1
2 : Λ → Λ′. Note that (3.3.46) and (3.3.47) are trivially satisfied

for linear Kirchhoff transformations corresponding to constant functions ki as
in (3.3.14). However, our abstract theorem also has a concrete relevance for our
general setting in problem (3.3.11)–(3.3.13).

Proposition 3.3.7. The conditions (3.3.46) and (3.3.47) are satisfied in one
space dimension.

Proof. Let Ω1 = [a, b], Ω2 = [b, c] with Γ = {b} and a < b < c. Then we

have Λ = H
1/2
00 (Γ) = H1/2(Γ) ∼= (R, | · |) and condition (3.3.46) follows from

Proposition 3.3.1.

Let L(κ−1
1 ) and L(κ2) be the Lipschitz constants of the real functions κ−1

1 and
κ2 according to Proposition 3.3.1. In order to prove (3.3.47), let η, µ, λ ∈ R.
The harmonic extension H1(λ) is the affine function x 7→ λ

b−a x− λ
b−a a. As κ−1

1

and κ2 are monotonically increasing, then (3.3.29) provides

〈S1(κ1κ
−1
2 η − κ1κ

−1
2 µ), η − µ〉

=

∫ b

a
∇H1(κ1κ

−1
2 η − κ1κ

−1
2 µ)∇H1(η − µ) dx

=

∫ b

a

κ1κ
−1
2 η − κ1κ

−1
2 µ

b− a · η − µ
b− a dx

=
(κ1κ

−1
2 η − κ1κ

−1
2 µ)(η − µ)

b− a

≥ 1

(b− a)L(κ−1
1 )L(κ2)

|η − µ|2 .

Now, we are able to state an existence and uniqueness result for the nonlinear
heterogeneous problem (3.3.18)–(3.3.20), which is satisfied at least in one space
dimension.

Proposition 3.3.8. If the conditions (3.3.46) and (3.3.47) are satisfied, then
problem (3.3.18)–(3.3.20) is well-posed. Moreover, we have pk

i → pi, k → ∞,
in Vi for the iterates

pk
i = κ−1

i (Hiκiλ
k + Gif) ∈ Vi , i = 1, 2 , (3.3.48)

on Ωi which correspond via λk = κ−1
2 λk

2, k ≥ 0, to the iterates (λk
2)k≥0 of the

Dirichlet–Neumann scheme (3.3.33)–(3.3.37).

Proof. The equivalence of problem (3.3.18)–(3.3.20) and (3.3.32) has been ob-
tained in Proposition 3.3.3. We recall from (3.3.27) that the functions

pi = κ−1
i (Hiκiλ+ Gif) ∈ Vi , i = 1, 2 , (3.3.49)
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solve (3.3.11)–(3.3.13) if λ2 = κ2λ solves (3.3.32). With Theorem 3.3.6 this
gives existence and uniqueness of these solutions for (3.3.18)–(3.3.20).

In order to prove the continuous dependency of pi, i = 1, 2, on the data
f ∈ L2(Ω), it is enough to prove the continuous dependency of λ on f since
all operators in (3.3.49) are known to be continuous. For κi : Λ → Λ and
κ−1

i : Vi → Vi see Proposition 3.3.1, for Hi : Λ → Vi see e.g. [75, p. 9], and
for Gi : L2(Ωi)→ H1

0 (Ωi) we refer to [60, p. 82].

To see that λ = κ−1
2 λ2 depends continuously on f in (3.3.32) observe first

that χ ∈ Λ′ depends continuously on f due to (3.3.30). Secondly, the strong
monotonicity (3.3.47) provides the Lipschitz continuity of the inverse operator
(S1κ1κ

−1
2 )−1 : Λ′ → Λ and therefore of (S1κ1κ

−1
2 + S2)

−1 in (3.3.32). Con-
sequently, λ2 and finally λ depend continuously on f . This shows the well-
posedness of problem (3.3.18)–(3.3.20).

Now, the claimed convergence of the iterates pk
i in (3.3.48) to the solutions pi,

i = 1, 2, on the subdomains is a consequence of the convergence of (λk
2)k≥0 to λ2

in Λ, the continuity of the Kirchhoff transformations as superposition operators
on Λ and Vi, i = 1, 2, (Theorem 1.5.15 and Proposition 1.5.17) as well as the
continuity of Hi in (3.3.48) for i = 1, 2.

Remark 3.3.9. In Subsection 3.3.5 we are going to carry out the Dirichlet–
Neumann iteration (3.3.33)–(3.3.36) for the solution of (3.3.24)–(3.3.26) on a
discrete level. In light of Subsection 2.5.1 it is quite clear how to do this. We
discretize (3.3.24) as well as (3.3.33) and (3.3.35) by linear finite elements in
suitable finite element spaces Si

j on Ωi for i = 1, 2, such that the restrictions of
the finite element functions from both sides of Γ constitute a common interface
space Λj of finite elements on Γ (which needs to be polygonal in this case).
The Dirichlet transmission conditions (3.3.25) as well as (3.3.34) are imposed
on the nodes on Γ only, involving corresponding discrete Kirchhoff transforma-
tions κi,j : Λj → Λj . The Neumann conditions (3.3.26) as well as (3.3.36) are
discretized for all µ ∈ Λj with discrete (linear continuous or, more specifically,
harmonic) extension operators Ri,j,Hi,j : Λj → Si

j for i = 1, 2. Accordingly,
discrete Green operators Gi,j and χj as in Quarteroni and Valli [75, pp. 46/47]
come into play.

Then, due to the coercivity and the continuity of the discrete Steklov–Poincaré
operators Si,j : Λj → (Λj)′ (with constants independent of j ≥ 0, consult
[75, p. 105/106]), the convergence theory with the corresponding results from
Theorem 3.3.6 and Proposition 3.3.7 in the discrete setting is literally the same
as in the continuous case. For the proof of (3.3.46) and (3.3.47) in one space
dimension we even have Λj = Λ, κi,j = κi and Hi,j = Hi for j ≥ 0 and i = 1, 2.

However, in contrast to the continuous setting, the discrete Kirchhoff transfor-
mations κi,j : Λj → Λj do not satisfy the weak chain rule (1.5.22). Therefore,
the discretized transmission problem (3.3.24)–(3.3.26) is only equivalent to a
corresponding retransformed transmission problem similar to (3.3.18)–(3.3.20)
with solutions pi,j = κi(ui,j) /∈ Si

j and with equality p1,j|Γ = p2,j|Γ just for
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the nodes on Γ. Accordingly, Proposition 3.3.8 has to be understood and thus
has a satisfying discrete counterpart only for the discretized transformed prob-
lem (3.3.24)–(3.3.26).

Recall that we have κi = κi,j for i = 1, 2, j ≥ 0, in the trivial case of linear
Kirchhoff transformations κi and that for κ1 = κ2 the discretization of (3.3.24)–
(3.3.26) can be shown to be equivalent to the corresponding discretized global
problem as done in the proof of Theorem 3.2.4. In the general nonlinear case,
however, we do not know whether the solutions ui,j of the discretized prob-
lem (3.3.24)–(3.3.26) converge to ui, i = 1, 2, for j →∞.

Remark 3.3.10. Observe that we do not know whether a Dirichlet–Neumann
method applied to (3.3.18)–(3.3.20) in the “physical pressure” λ = pi|Γ con-
verges if the damping parameter is chosen small enough. Due to the nonlinear-
ities Siκi for i = 1, 2 in the symmetric equation (3.3.31) we do not even get a
Steklov–Poincaré formulation for this method.

We note that there is another proof of the convergence for the Dirichlet–
Neumann method to be found in Marini and Quarteroni [71] which does not
involve Steklov–Poincaré operators directly. Nevertheless, one can also adapt
and extend that proof to our situation and obtain Theorem 3.3.6 as well.

Remark 3.3.11. It is possible to formulate a nonlinear Neumann–Neumann
method for problem (3.3.24)–(3.3.26) in terms of Steklov–Poincaré operators
and involving the Kirchhoff transformations as done in Quarteroni and Valli
[75, pp. 14–16] for the linear case. With a λ0

1 ∈ Λ and given positive constants
σ1, σ2, one obtains the iteration

λk+1
1 = λk

1 + ϑ(σ1S
−1
1 + σ2S̃

−1
2 )(χ− S̃λk

1) , k ≥ 0 , (3.3.50)

with S̃2 = S2κ2κ
−1
1 and S̃ = S1 + S̃2 referring to the Steklov–Poincaré equation

(S1 + S̃2κ2κ
−1
1 )λ1 = χ

for the transformed variable λ1 = κ1λ on Γ from the first subdomain with λ as
in (3.3.31). However, both for (3.3.50) and its symmetric counterpart

λk+1 = λk + ϑ(σ1(S1κ1)
−1 + σ2(S2κ2)

−1)(χ− (S1κ1 + S2κ2)λ
k) , k ≥ 0 ,

for the untransformed variable λ referring to (3.3.31) we do not have a linear
preconditioner such that a direct application of Theorem 3.3.4 is not possible.
It is unclear whether this theorem can be extended to nonlinear preconditioners
which do not induce a norm in which convergence could be measured.

3.3.4 Counterexamples in 2D for the strong monotonicity of
the nonlinear Steklov–Poincaré operator

Let us point out at the beginning of this subsection that we do not know whether
the assertions of Theorem 3.3.6 or Proposition 3.3.8 or weaker ones, for ex-
ample local convergence, hold in higher dimensions if some natural conditions
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on κ1 and κ2, possibly other than (3.3.46) and (3.3.47), are satisfied. Therefore,
although this subsection is about counterexamples, we do not have a counterex-
ample for which the Dirichlet–Neumann scheme diverges in higher dimensions.
The counterexamples that we talk about here concern our approach to prove
the assertions in Theorem 3.3.6 by a contraction argument and to use The-
orem 3.3.4 to achieve that. This special approach seems to be ruled out for
higher dimensions in which the trace space Λ, in contrast to 1D, is an abstract
infinite dimensional function space with a norm that is not so easily treatable
in concrete terms (see pages 248–251 in the appendix).

Concerning the question whether the Kirchhoff transformations κ1 and κ2 are
Lipschitz continuous as superposition operators acting on the trace space Λ,
recall that we deduced Proposition 1.5.17 from Lemma 1.5.11, Theorem 1.5.15
and Proposition 1.5.16, i.e. the continuity of κi on Λ is a consequence of the
continuity of κi on H1(Ωi), i = 1, 2. But with a glance at the proof of the latter,
even for restrictive conditions on ki (see Proposition 1.5.14), and even more so
in the general case treated in Theorem 1.5.15, one will find it extremely unlikely
that κi : H1(Ωi)→ H1(Ωi) and therefore κi : Λ→ Λ are Lipschitz continuous.

Much more so, the strong monotonicity (3.3.47) is in general not satisfied in
higher dimensions. This is what the two counterexamples in 2D, which we are
going to present, are intended to show. Unfortunately, in higher dimensions
condition (3.3.47) may be violated to the extent that

〈S1(κ1κ
−1
2 η − κ1κ

−1
2 µ), η − µ〉 < 0 (3.3.51)

can occur for certain η, µ ∈ Λ and κi : Λ→ Λ, i = 1, 2.

As a starting point for the considerations leading to possible counterexamples
observe that in case of κi = id : Λ→ Λ, condition (3.3.47) is just the coercivity
of the Steklov–Poincaré operator

〈Siη, η〉 =

∫

Ωi

|∇Hiη|2 dx ≥ cΩi‖Hiη‖1,Ωi

which is a consequence of the Poincaré inequality (see Theorem A.2.5) with a
CΩi > 0, i = 1, 2. It is well known that if η and ∂Ωi are smooth enough, then
the harmonic extension Hiη on Ωi, i = 1, 2, is harmonic in the strong sense (see
e.g. Werner [99, pp. 5, 11, 36, 62, 212]) and the classical normal derivatives of
ui := Hiη exist on Γ ⊂ ∂Ωi, i.e. we have

〈Siη, η〉 =

∫

Γ

∂ui

∂ni
· ui dσ > 0 (3.3.52)

for i = 1, 2 due to Green’s formula (1.5.9). Now, the crucial observation is that
although (3.3.52) holds for any harmonic function ui on Ωi which is in C2(Ωi),
there may well be subsets Γ− ⊂ Γ of positive Hausdorff measure on which

∂ui

∂ni
· ui < 0 (3.3.53)
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Figure 3.3: u : (x, y) 7→ −x2 + y2 satisfying (3.3.53) between (−1, 1) and (1, 1)

is possible. This fact is exploited in the construction of the counterexamples.
Loosely speaking, with a certain choice of a Kirchhoff transformation one can
provide a bigger weight to the product on the left hand side of (3.3.53) such
that altogether one can obtain (3.3.51).

We start with an analytical counterexample based on the harmonic function

u : (x, y) 7→ −x2 + y2

given on the trapezium T ⊂ R2 with the vertices (−1, 1), (1, 1), (2, 2) and
(−2, 2), see Figure 3.3. For i = 1, 2 let Γi be the edge between the vertices
(−i, i) and (i, i), not containing the vertices in both cases. We compute

∂u

∂n
= −∂u

∂y
= −2y = −2 on Γ1 ,

∂u

∂n
=
∂u

∂y
= 2y = 4 on Γ2

and, moreover,
∫

∂T

∂u

∂n
· u dσ =

∫

Γ1

∂u

∂n
· u dσ +

∫

Γ2

∂u

∂n
· u dσ

=

∫ 1

−1
(−2) · (−x2 + 1) dx +

∫ 2

−2
4 · (−x2 + 4) dx

= −2
2

3
+ 29

1

3
= 26

2

3
, (3.3.54)

i.e. we have Γ− = Γ1 on which (3.3.53) holds in this example. Now, we choose a
κ : R→ R intended to replace (κ1κ

−1
2 )−1 in (3.3.51) and some η, µ ∈ H1/2(∂T )

with u|∂T = η − µ such that

〈S1(η − µ), κη − κµ〉 =

∫

∂T

∂u

∂n
· (κη − κµ) dσ < 0 .
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Let µ|Γ1
:= 0, µ|Γ2

:= 1 and η|Γ1
:= u|Γ1

, η|Γ2
:= u|Γ2

+ 1, and extend both
µ and η linearly on the edges between (−1, 1) and (−2, 2) as well as between
(1, 1) and (2, 2). Furthermore, we define κ := id on (−∞, 1] and

κ : x 7→ ax+ 1− a ∀x ∈ [1,∞) (3.3.55)

for a constant a > 0. As a consequence, we have

〈S1(η−µ), κη−κµ〉 =

∫

∂T

∂u

∂n
· (κη−κµ) dσ =

∫

Γ1

. . .+

∫

Γ2

. . .+

∫

∂T\(Γ1∪Γ2)
. . .

in which the last integrand vanishes since η = µ on ∂T\(Γ1 ∪ Γ2). Moreover,
we still have ∫

Γ1

∂u

∂n
· (κη − κµ) dσ = −2

2

3

as in (3.3.54) and

∫

Γ2

∂u

∂n
· (κη−κµ) dσ = 4

∫

Γ2

κη−κµ dσ = 4

∫

Γid

η−µdσ+4

∫

Γ2\Γid

κη−κµ dσ

with Γid := {(x, y) ∈ Γ2 : −x2 + y2 ≤ 1} where κ = id. Since u = −x2 + 4 ≤ 1
on Γid is satisfied if and only if −2 < x ≤ −

√
3 or x ≥

√
3 < 2 holds, we can

estimate
∫

Γ1∪Γid

∂u

∂n
· (κη − κµ) dσ ≤ 4 · 2 · (2−

√
3) · 1− 2

2

3
< 0

and due to (3.3.55) we get

∫

Γ2\Γid

∂u

∂n
· (κη − κµ) dσ =

∫ √
3

−
√

3
4(a(5 − x2) + 1− a− 1) dx

= a

∫ √
3

−
√

3
4(4− x2) dx −→ 0 for a→ 0 .

This example is certainly somewhat artificial, mostly because the interface Γ is
assumed to be a superset of Γ1 ∪ Γ2 here, i.e. it is either quite large or discon-
nected. Nevertheless, such a case occurs if T = Ω1 is contained in the interior
of a bounded Lipschitz domain Ω ⊂ R2 so that the complement Ω2 = Ω\T sat-
isfies ∂Ω2 = ∂Ω. However, in contrast to the situation in Figure 3.2, such a
decomposition of Ω provides the trace space Λ = H1/2(Γ). Note that in this
case, T = Ω1 must be chosen as the subdomain for the Dirichlet problems in
a Dirichlet–Neumann method similar to (3.3.33)–(3.3.37) since otherwise pure
indeterminate Neumann problems occur.

Alternatively, one can consider T = Ω1 as a subset of a ring-shaped domain

with Ω1 ∩ Ω2 = Γ1 ∪ Γ2. Note, however, that we have η|Γ2
, µ|Γ2

/∈ H
1/2
00 (Γ2)

in the counterexample. In order to still apply the considerations above, one
can think of the following modification for arbitrary ε > 0. Choose η and µ
to be constantly 0 on the edges between (−1, 1) and (−2 + ε, 2 − ε) as well as
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Figure 3.4: Harmonic function satisfying (3.3.53) around (0,−1)

between (1, 1) and (2− ε, 2− ε), and then to be linear between the value 0 and
the value 1 which has to be assumed on the vertices (−2, 2) and (2, 2). At least

this construction gives η|Γ̃, µ|Γ̃ ∈ H
1/2
00 (Γ̃) with a subset Γ̃ ⊂ ∂T contained in

an arbitrarily small neighbourhood of Γ2.

In addition to what has been considered above, there are also counterexamples
on domains Ω ⊂ R2 for the case of connected and smaller interfaces Γ ⊂ ∂Ω.
Figure 3.4 illustrates such an example on Ω = [−1, 1]× [−1, 1] in which we have
chosen Γ = [−1, 1] × {−1}. The plot shows an approximation of the harmonic
function u on Ω with piecewise linear and continuous Dirichlet boundary values
satisfying u|∂Ω\Γ = 0 and

u(x,−1) = sign(x2 − 0.25) + 1.1 ∀x ∈ Γ̃

on a subset Γ̃ ⊂ Γ for which Γ\Γ̃ is a small neighbourhood of the points (−1, 1),
(−0.5,−1), (0.5,−1) and (1,−1). Although we do not have an analytical ex-
pression for u on Ω and we cannot prove that the normal derivative of u across
the connected component Γ′ of Γ̃ containing (0,−1) is negative, it is quite obvi-
ous from the plot in Figure 3.4 that this is the case. Consequently, (3.3.53) holds
on Γ′, which is the basis for a similar construction as above for our analytical
example, leading to the non-monotonicity (3.3.51).
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3.3.5 Numerical example in 2D

The purpose of this subsection is to apply our nonlinear Dirichlet–Neumann
method to a problem in two space dimensions. Although the counterexamples
in Subsection 3.3.4 rule out a similar proof for the convergence of this method
in a 2D-setting as done in 1D for Proposition 3.3.7, it turns out that the method
works quite well in this case, too.

We consider the transmission problem (3.3.11)–(3.3.13) on the Yin Yang do-
main Ω within a circle of radius 1 as shown in Figure 3.5. We denote the white
subdomain together with the grey circle B1 by Ω1 and the grey subdomain with
the white circle B2 by Ω2.

Furthermore, we select the data

f(x) = (−1)i on Bi , i = 1, 2 , f(x) = 0 elsewhere (3.3.56)

and the nonlinearities

ki(pi) =

{
Kh max{(−pi)

−3λi−2, c} for pi ≤ −1

1 for pi ≥ −1
(3.3.57)

with certain parameters λi and c > 0 to be specified below.

This choice is motivated by the state equations of Brooks–Corey and Burdine for
the relative permeability in saturated-unsaturated porous media with different
soils that we introduced in (1.2.9)–(1.2.11), see also Subsection 1.4.3. In this
way, our model problem can be regarded as a nondegenerate stationary Richards
equation without gravity in a heterogeneous setting as in Subsection 3.2.3.

Note that pi < −1 characterizes the unsaturated region which is separated by
a free boundary from the linear, saturated regime occurring for pi ≥ −1. Here,
the adimensional entity −1 represents the bubbling pressure pb, see Section 1.3.
In agreement with realistic hydrological data as in Subsection 1.4.1 we choose
it to be equivalent to the negative pressure of 0.1 meters of a water column.

We recall from Section 1.2 that the parameters λ1 and λ2 in Ω1 and Ω2, respec-
tively, are known as pore size distribution factors. According to Rawls et al.
[77, Table 5.3.2] we choose them in an extreme manner as

λ1 = 1.0 (coarse sand)

λ2 = 0.1 (fine clay) .
(3.3.58)

The factor Kh = 0.002 is a realistic hydraulic conductivity in the case of full
saturation (see Subsection 1.4.1). The parameter c = 0.1 > 0 is introduced to
enforce ellipticity (compare Subsection 1.4.3). The convergence results worsen
if c is chosen smaller and for c = 0 we do not observe convergence of the method.

The choice of the data f which results in a strong sink in B1 and a strong
source in B2 (due to the small value of Kh) and our special choice of Ω1
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Figure 3.5: Yin Yang domain Ω
Figure 3.6: Solution p on Ω with

free boundary (black line)

and Ω2 ensure that the free boundary has a nontrivial intersection with the
interface Γ = Ω1 ∩ Ω2. Since we apply the Dirichlet–Neumann scheme (3.3.33)–
(3.3.37), we hereby make sure that step (3.3.34) is nonlinear.

The free boundary can be seen in Figure 3.6 which shows the numerical solu-
tion p on Ω obtained on the 6th level with the ranges [−56.1, 0.9] in Ω1 and
[−7.3, 3.0] in Ω2. Here, the pressure of one meter of a water column is used as
the unit.

We discretize the problem using piecewise linear finite element spaces on each of
the two subdomains, see Remark 3.3.9. The linear problems on the subdomains
are solved by a linear multigrid method which occurs as the method discussed
in Section 2.7 when there are no nonlinearities.

In contrast to Section 2.8, the implementation for this test case has been
performed in the numerics environment DUNE [12] using the grid manager
from UG [11]. This also applies to all the following numerical examples pre-
sented in this work. For the visualization of the corresponding results we make
use of the toolbox AMIRA [89].

Figure 3.7 shows the average convergence rates ρ of the Dirichlet–Neumann
iteration with respect to the damping parameter ϑ on the first 6 levels as in-
dicated by numbers at the graphs of the functions. The convergence rates are
given with respect to the transformed variables uk

i and are measured in the
energy norms ai(·, ·)1/2 on Vi for i = 1, 2, which are induced by the stiffness
matrices on the relevant finite element spaces.

More precisely, with initial iterates u0
i = 0 for i = 1, 2, the Dirichlet–Neumann

iteration is carried out until the relative error satisfies

(∑2
i=1 ai(u

n
i − un−1

i , un
i − un−1

i )
)1/2

(∑2
i=1 ai(u

n−1
i , un−1

i )
)1/2

< 10−12 (3.3.59)

for some n ≥ 0. Then we calculate ρ as the maximum of the geometric means
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Figure 3.7: ρ vs. damping parameter ϑ on levels 1 to 6

of the rates (∑2
i=1 ai(u

k
i − un

i , u
k
i − un

i )
)1/2

(∑2
i=1 ai(u

k−1
i − un

i , u
k−1
i − un

i )
)1/2

(3.3.60)

for 1 ≤ k ≤ ñ over all ñ < n (note that we get zero for ñ = n). Each of the local
problems on the subdomains is solved by 50 multigrid iterations which leads to
numerically exact solutions.

We use a grid hierarchy of 7 levels resulting from a uniform mesh refinement of
the coarse grid with 169 nodes depicted in Figure 3.5. In this way, we obtain
about 940,000 nodes on the finest mesh on Ω corresponding to about 938,000
unknowns on the 7th level.

As can be seen in Figure 3.7, we need quite small damping parameters for
the Dirichlet–Neumann iteration to converge. Moreover, the convergence rate
as a function of the damping parameter depends on the refinement level: On
higher levels more damping is necessary in order to obtain convergence at all.
Furthermore, the finer the grid the smaller the optimal damping parameter ϑopt

and the bigger the optimal convergence rate ρopt = ρ(ϑopt) become.

However, this effect seems to stabilize on higher levels. Figures 3.8 and 3.9
show the dependency of ϑopt and ρopt, respectively, with respect to the levels 1
to 7. It turns out that we have ϑopt = 0.175 on the levels 5 (with ρopt = 0.762)
and 6 (with ρopt = 0.765) and ϑopt = 0.17 on level 7 (with ρopt = 0.770).

In Berninger et al. [16], where this numerical example has first been addressed,
the situation concerning the 5th level in Figure 3.7 and the constant convergence
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Figure 3.9: ρopt vs. refinement level

rates for ϑopt = 0.175 on levels 1 to 6 have been presented. Now, Figure 3.7
indicates that level-independence of the convergence rates is obtained if and
only if the damping parameter is at most ϑopt corresponding to the finest level
considered.

3.4 Nonlinear Robin method

In the last section we discussed a Dirichlet–Neumann method for elliptic trans-
mission problems related to the nondegenerate stationary Richards equation
without gravity. This section is devoted to the discussion of Robin’s method
for a larger class of non-overlapping nonlinear domain decomposition problems
on two subdomains containing the problems treated in Section 3.3 but which
also includes our implicit-explicitly time-discretized Richards equation (3.2.19)
in the nondegenerate case (see Subsection 1.4.3). We carry out a similar anal-
ysis for this problem class as done in Section 3.3 although our considerations
need to be more sophisticated this time.

First, in Subsection 3.4.1, we present our domain decomposition problem both
in the physical and in the Kirchhoff–transformed variables and we introduce
the nonlinear Robin method for an iterative solution of this problem. It turns
out that the Robin boundary value problems that occur in the iteration are
uniquely solvable if natural conditions hold.

In Subsection 3.4.2 we derive an equivalent formulation of our domain decom-
position problem in terms of an interface equation involving nonlinear Steklov–
Poincaré operators. Furthermore, the Robin method can be expressed by these
operators which leads us to a nonlinear ADI method for the solution of the
interface equation. With regard to a convergence analysis we also introduce an
altered version of this ADI method which is equal to the latter in one space
dimension.
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In Subsection 3.4.3 we develop a convergence analysis for the altered ADI or
the altered Robin method which extends existing results for the linear case in
Discacciati [33, Chapter 5]. Based on a contraction argument as in Subsec-
tion 3.3.3 we get the same sufficient conditions on the Steklov–Poincaré oper-
ators as obtained there (namely Lipschitz continuity and strong monotonicity)
which ensure convergence.

Finally, in Subsection 3.4.4, we examine these sufficient conditions in more
detail in one space dimension for the nondegenerate Richards equation in het-
erogeneous soil. This leads us to the convergence of the Robin method and
the well-posedness of the original domain decomposition problem if natural
conditions on the nonlinearities are satisfied. Unfortunately, the same coun-
terexamples as given in Subsection 3.3.4 also apply in the case and the method
of proof considered here.

Subsection 3.4.5 contains a short presentation of the space discretization and
the numerical treatment of the subproblems occurring in the Robin iteration
procedure for the Richards equation (still neglecting gravity which is discussed
in Section 4.2). Basically, this can be carried out analogously as presented in
Chapter 2. Moreover, analogously as in Subsections 3.4.3 and 3.4.4, a conver-
gence result is obtained for the discrete Robin method in one space dimension.

This section ends with numerical tests for the Robin method in two space
dimensions which can be found in Subsection 3.4.6. In a first part we compare
the Robin method with the Dirichlet–Neumann method when applied to the
Yin Yang example in Subsection 3.3.5. In a second part of Subsection 3.4.6
the Robin method is applied to a time-dependent case of the Richards equation
without gravity in heterogeneous soil. We obtain reasonable results for the
performance of the Robin method in both cases.

3.4.1 Robin method for elliptic problems related to the time-
discretized nondegenerate Richards equation

In this subsection we introduce our class of transmission problems with a fo-
cus on the Richards equation. As already seen before, for example in Subsec-
tion 3.3.2, these problems are transformed by Kirchhoff transformations. We
give both strong and weak formulations. Then we introduce the Robin method
for such problems, which we discuss in the sequel and for which we give an
existence and uniqueness result concerning the solvability of the subproblems.
For the latter we need to apply and extend the theory on convex minimization
problems which we presented in Section 2.3.

As in Subsection 3.3.2 suppose Ω ⊂ Rd is a bounded Lipschitz domain and
f ∈ L2(Ω). We consider a non-overlapping decomposition of Ω in Ω1 and Ω2

as in Figure 3.2 with a Lipschitz continuous interface Γ = Ω1 ∩ Ω2. In light
of Theorem 3.2.4, Definition 3.2.7 gives sense to certain problems of finding a
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function p on Ω with p|∂Ω = 0 such that

θ(x, p)− div (kr(x, θ(p))∇p) = f in Ω . (3.4.1)

Such problems arise from an implicitly time-discretized Richards equation with
an explicit treatment of the gravitational term as in (3.2.19), and with a sat-
uration θ and a relative permeability kr which are space-independent on the
subdomains only and may jump across Γ. Analogously as in Subsection 3.3.2,
we give a strong formulation first.

Given real nonnegative monotonically increasing functions θ1 and θ2 and func-
tions k1, k2 ∈ L∞(R) satisfying k1, k2 ≥ α with an α > 0 we consider the
following domain decomposition problem:

Find a function p on Ω, p|Ωi
= pi ∈ H1(Ωi), i = 1, 2, p|∂Ω = 0, such that

θi(pi)− div(ki(pi)∇pi) = f on Ωi , i = 1, 2 (3.4.2)

p1 = p2 on Γ (3.4.3)

k1(p1)∇p1 · n = k2(p2)∇p2 · n on Γ . (3.4.4)

If we ignore gravity and if θ1 = θ2 and k1 = k2, then Theorem 3.2.4 provides
the equivalence of (3.4.2)–(3.4.4) and the corresponding global problem (3.4.1).
If gravity is included (explicitly as always in here), one should actually consider

(k1(p1)∇p1 − k1(p̃1)ez) · n = (k2(p2)∇p2 − k2(p̃2)ez) · n on Γ (3.4.5)

with the solutions p̃i on Ωi, i = 1, 2, from the previous time step instead of
(3.4.4) since we have k1(p̃1) 6= k1(p̃1) in general due to k1 6= k2 even though
p̃1 = p̃2 holds on Γ. This is hydrologically reasonable and mathematically indi-
cated (see (3.2.18)). Therefore, we point out here that all the results in this sec-
tion can easily be extended to the more general transmission conditions (3.4.5)
which are discussed in more detail in Subsection 3.4.5, see also Remark 3.4.3.

An application of Kirchhoff’s transformation (3.3.21) to (3.4.2)–(3.4.4), sep-
arately in the two subdomains Ω1 and Ω2 with the transformed functions
Mi := θi ◦ κ−1

i (see the saturation of the generalized pressure (1.3.2)), gives
the following transformed problem:

Find a function u on Ω, u|Ωi
= ui ∈ H1(Ωi), i = 1, 2, u|∂Ω = 0, such that

Mi(ui)−∆ui = f on Ωi , i = 1, 2 (3.4.6)

κ−1
1 u1 = κ−1

2 u2 on Γ (3.4.7)

∂u1

∂n
=

∂u2

∂n
on Γ . (3.4.8)

Observe that just as θi the transformed Mi are nonnegative, monotonically
increasing functions on the real line for i = 1, 2. Additionally, due to the
definition of Kirchhoff’s transformation we have ui = 0⇔ pi = 0.

In order to obtain weak formulations of the transmission problems (3.4.2)–(3.4.4)
and (3.4.6)–(3.4.8) we use the definition (3.2.2) of the spaces Vi, V

0
i for i = 1, 2
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and the trace space Λ. Furthermore, we need the bilinear forms as defined in
(3.3.15)–(3.3.17) and the L2-scalar product

(η, µ)Γ :=

∫

Γ
ηµ dσ ∀η, µ ∈ Λ

on the trace space. The norm in L2(Ωi) will be denoted by ‖ · ‖0,Ωi , the norm in
H1(Ωi) by ‖ · ‖1,Ωi and the norm in Λ by ‖ · ‖Λ. Finally, as in Subsection 3.3.2,
let Ri, i = 1, 2, be any linear continuous extension operator from Λ to Vi.

Now, with the help of Green’s formula (1.5.9) it is easy to see that the weak
form of (3.4.2)–(3.4.4) reads as follows:

Find pi ∈ Vi, i = 1, 2, such that

(θi(pi), vi)Ωi + bi(pi, vi) = (f, vi)Ωi ∀vi ∈ V 0
i , i = 1, 2 (3.4.9)

p1|Γ = p2|Γ in Λ (3.4.10)

(θ1(p1), R1µ)Ω1 + b1(p1, R1µ)− (f,R1µ)Ω1 =

− (θ2(p2), R2µ)Ω2 − b2(p2, R2µ) + (f,R2µ)Ω2 ∀µ ∈ Λ . (3.4.11)

Analogously, the weak formulation of the transformed problem (3.4.6)–(3.4.8)
reads:

Find ui ∈ Vi, i = 1, 2, such that

(Mi(ui), vi)Ωi + ai(ui, vi) = (f, vi)Ωi ∀vi ∈ V 0
i , i = 1, 2 (3.4.12)

κ−1
1 (u1|Γ) = κ−1

2 (u2|Γ) in Λ (3.4.13)

(M1(u1), R1µ)Ω1 + a1(u1, R1µ)− (f,R1µ)Ω1 =

− (M2(u2), R2µ)Ω2 − a2(u2, R2µ) + (f,R2µ)Ω2 ∀µ ∈ Λ. (3.4.14)

Proposition 3.4.1. With our assumptions on θi and ki, i = 1, 2, the domain
decomposition problem (3.4.9)–(3.4.11) is equivalent to its transformed version
(3.4.12)–(3.4.14).

The proof is essentially the same as for Theorem 1.5.18 which already holds if
we have kr ◦ θ ∈ L∞(Ω). We just recall that kr is monotonically increasing in
hydrologically realistic situations and that, nonetheless, our assumptions on ki,
i = 1, 2, are enough for the weak chain rule (1.5.22) to hold. We also refer to
Remark 3.3.2 for an explanation that Proposition 3.4.1 is not as straightforward
as it seems to be since the commutativity κ−1

i (ui|Γ) = κ−1
i (ui)|Γ, i = 1, 2, is not

trivial.

For a general analysis of the problem (3.4.6)–(3.4.8), which is of course carried
out for the weak form (3.4.12)–(3.4.14), we first assume that some transforma-
tions κ1, κ2 : Λ → Λ and monotonically increasing functions M1,M2 : R→ R
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are given. We will impose conditions on κ1, κ2 and M1,M2 that ensure con-
vergence of a refined version of the Robin method applied to (3.4.6)–(3.4.8). In
analogy to Quarteroni and Valli [75, p. 16] the classical strong formulation of
the Robin method reads as follows:

Given positive parameters γ1 and γ2 and an initial iterate u0
2 ∈ V2 find succes-

sively uk+1
1 ∈ V1 and uk+2

2 ∈ V2 for k ≥ 0 such that

M1(u
k+1
1 )−∆uk+1

1 = f on Ω1 (3.4.15)

∂uk+1
1

∂n
+ γ1 κ

−1
1 uk+1

1 =
∂uk

2

∂n
+ γ1 κ

−1
2 uk

2 on Γ (3.4.16)

and then

M2(u
k+1
2 )−∆uk+1

2 = f on Ω2 (3.4.17)

∂uk+1
2

∂n
− γ2 κ

−1
2 uk+1

2 =
∂uk+1

1

∂n
− γ2 κ

−1
1 uk+1

1 on Γ . (3.4.18)

Expressed for the original nontransformed problem (3.4.2)–(3.4.4) related to
the Richards equation the Robin condition (3.4.16) translates into

k1(p
k+1
1 )∇pk+1

1 · n + γ1 p
k+1
1 = k2(p

k
2)∇pk

2 · n + γ1 p
k
2 on Γ (3.4.19)

and analogously for (3.4.18). As a consequence, for a fixed point ū = κ(p̄) of
the iteration both the physical pressure and the part ki(p̄|Ωi

)∇p̄|Ωi
· n, i = 1, 2,

of the physical water flux across Γ are continuous. Therefore, p̄ would be a
solution of (3.4.2)–(3.4.4), see also Remark 3.4.3.

With the help of Green’s formula (1.5.9) the weak form of the Robin method
(3.4.15)–(3.4.18) reads as follows: Given a u0

2 ∈ V2 find successively uk+1
1 ∈ V1

and uk+2
2 ∈ V2 for k ≥ 0 such that

(M1(u
k+1
1 ), v1)Ω1 + a1(u

k+1
1 , v1) = (f, v1)Ω1 ∀v1 ∈ V 0

1 (3.4.20)

(M1(u
k+1
1 ), R1µ)Ω1 + a1(u

k+1
1 , R1µ)− (f,R1µ)Ω1 + γ1(κ

−1
1 uk+1

1 , µ)Γ =

− (M2(u
k
2), R2µ)Ω2 − a2(u

k
2 , R2µ) + (f,R2µ)Ω2 + γ1(κ

−1
2 uk

2 , µ)Γ ∀µ ∈ Λ
(3.4.21)

and then

(M2(u
k+1
2 ), v2)Ω2 + a2(u

k+1
2 , v2) = (f, v2)Ω2 ∀v2 ∈ V 0

2 (3.4.22)

(M2(u
k+1
2 ), R2µ)Ω2 + a2(u

k+1
2 , R2µ)− (f,R2µ)Ω1 + γ2(κ

−1
2 uk+1

2 , µ)Γ =

−(M1(u
k+1
1 ), R1µ)Ω1−a1(u

k+1
1 , R1µ)+(f,R1µ)Ω1+γ2(κ

−1
1 uk+1

1 , µ)Γ ∀µ ∈ Λ .
(3.4.23)

Note that the alternating signs in front of γ1 and γ2 are also respected in
the weak formulation because the outward normal on Γ with respect to Ω2 in
(3.4.18) is −n which has to be considered for (3.4.23). Of course, we first have
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to check whether this method consists of well-posed subproblems generating
uniquely determined iterates. In order to clarify this, we need to apply and ex-
tend the theory of convex minimization problems given in Section 2.3 to convex
functionals given by “convex” superposition operators on Γ ⊂ ∂Ω instead of Ω.

Theorem 3.4.2. Let Mi : R → R be monotonically increasing, continuous
and either bounded or else Hölder continuous outside of a bounded interval.
Furthermore, let κi : Λ → Λ be a superposition operator arising from Kirch-
hoff’s transformation (3.3.21) with ki ∈ L∞(R) satisfying ki ≥ α > 0 for
i = 1, 2. Then the subproblems (3.4.20)–(3.4.21) and (3.4.22)–(3.4.23) of the
Robin method are uniquely solvable.

Proof. We only consider the problem (3.4.20)–(3.4.21) since it is symmetric to
(3.4.22)–(3.4.23) and skip the indices k and k + 1 for convenience.

Using the trace operator trΓ : V1 → Λ we define the functional ℓ1 on V1 by

ℓ1 : v1 7→ (f, v1)Ω1 − (M2(u2), R2 trΓv1)Ω2 − a2(u2, R2 trΓv1)

+ (f,R2 trΓv1)Ω2 + γ1(κ
−1
2 u2, trΓv1)Γ ∀v1 ∈ V1 .

ℓ1 is linear and bounded since trΓ and R2 are. Then, one can easily see that
(3.4.20)–(3.4.21) is equivalent to the variational equality

(M1(u1), v1)Ω1 + γ1(κ
−1
1 u1, trΓv1)Γ + a1(u1, v1) = ℓ1(v1) ∀v1 ∈ V1 . (3.4.24)

Now, with a primitive Ψ1 of κ−1
1 we define the functional ψ1 on V1 by

ψ1 : v1 7→
∫

Γ
Ψ1(v1(s)) dσ(s) ∀v1 ∈ V1 . (3.4.25)

Since the real function κ−1
1 is monotonically increasing and Lipschitz contin-

uous (Proposition 3.3.1), Ψ1 is convex and differentiable (Lemma 2.3.6). The
latter provides the convexity of ψ1 (Proposition 2.3.7) and the existence of the
directional derivative ∂vψ1(w) for any v,w ∈ V1 with

∂vψ1(w) =

∫

Γ
κ−1

1 (w) · v dσ = (κ−1
1 w, trΓv)Γ (3.4.26)

analogously as in Proposition 2.3.9. Therefore, if we choose a convex primitive
Φ1 of M1 as in Subsection 2.3.2 (possibly with M1 as in (2.3.25)) leading to
a convex functional φ1 on K = V1 as in Subsection 2.3.3, Proposition 2.3.11
provides the equivalence of (3.4.24) and the convex minimization problem

u1 ∈ V1 : F1(u1) ≤ F1(v1) ∀v1 ∈ V1 (3.4.27)

for the convex functional

F1 : v1 7→ φ1(v1) + γ1ψ1(v1) +
1

2
a1(v1, v1)− ℓ1(v1) ∀v1 ∈ V1 . (3.4.28)

Now, an obvious extension of Theorem 2.3.16 can be applied to show that
(3.4.27) is uniquely solvable. This generalization can be obtained although M1
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and κ−1
1 are not necessarily bounded since, as indicated in (2.3.25) for M1,

Hölder continuity of M1 and κ−1
1 outside of an interval is enough to ensure the

coercivity of the functional F1. For κ−1
1 this follows with the same reasoning as

for M1 because here, an affine estimate on the right hand side of (2.3.11) can
be established after an application of the trace inequality (A.2.9).

We point out that the unique solvability of a Robin boundary value problem for
the implicit-explicitly time-discretized Richards equation (in the nondegenerate
case kr ≥ α > 0 as in Theorem 3.4.2) also holds if we include additional
Dirichlet, Neumann and Signorini-type boundary conditions, see Section 2.3.
Furthermore, as discussed in Remark 2.3.17 and in Section 2.4, the continuity
and boundedness of Mi, i = 1, 2, can be relaxed while still preserving the
unique solvability of the convex minimization problem (3.4.27). After a suitable
space discretization the numerical treatment of these Robin boundary value
problems for the Richards equation can be carried out by monotone multigrid,
see Subsection 3.4.5 and note Remark 3.4.28.

Unfortunately, we cannot prove Theorem 3.4.2 for general linear operators
κi : Λ→ Λ, i = 1, 2, which have continuous inverses. In this case one would
be tempted to deal with an additional bilinear form

(w, v) 7→ (κ−1
1 trΓw, trΓv)Γ ∀v,w ∈ V1 (3.4.29)

on the right hand side of (3.4.24) instead of the contribution ∂vψ1(w) of the
convex functional ψ1. However, we would need to require symmetry and non-
negativity of this bilinear form as an additional assumption in order to proceed
successfully as in the proof above. Note that if a κi : Λ→ Λ is a superposition
operator coming from a Kirchhoff transformation (3.3.21), it is linear if and
only if ki : R → R is a constant function and in this case the corresponding
(symmetric) bilinear form (3.4.29) is nonnegative if and only if ki ≥ 0.

Remark 3.4.3. Finally, we address the case of the Richards equation in our
time-discretized form for which (3.4.4) is replaced by the continuity (3.4.5)
of the discretized water flux across Γ. Due to the explicit treatment of the
gravitational term, this generalization of problem (3.4.2)–(3.4.4) easily fits into
our framework in the following way. Consider (3.4.4) to be replaced by

k1(p1)∇p1 · n + g1 = k2(p2)∇p2 · n + g2 on Γ

with g1, g2 ∈ L2(Γ). Then the linear and bounded functionals µ 7→ −(f,Riµ)Ωi ,
i = 1, 2, on Λ in the weak formulations (3.4.11) or (3.4.14) and also in (3.4.21)
and (3.4.23) need to be replaced by the functionals

µ 7→ −(f,Riµ)Ωi + (gi, µ)Γ ∀µ ∈ Λ

which are also linear and bounded. Of course this does not change the validity
of Theorem 3.4.2. Moreover, the rest of our theory in this section, to which we
turn now, can be extended to this more general case in the same way.
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3.4.2 Steklov–Poincaré formulation, equivalence of Robin and
ADI method, and altered versions

As done in Subsections 3.3.2 and 3.3.3 for the Dirichlet–Neumann method
(3.3.33)–(3.3.37), it is possible to derive a Steklov–Poincaré formulation of the
Robin method (3.4.20)–(3.4.23). This shall be carried out in the following, gen-
eralizing existing results for the linear case in Discacciati [33, Chapter 5], which
also leads to the introduction of a nonlinear ADI method and an altered version
of the Robin method. Since in contrast to (3.3.33)–(3.3.37), where we only had
one nonlinearity on the interface, two nonlinearities Mi and κi are involved in
each subproblem for i = 1, 2 now. Therefore, in the following we recapitulate
the ideas given in Section 3.3.1 in order to extend them to our nonlinear case.

In general, a classical Steklov–Poincaré interface equation should provide an
equivalent formulation of the given problem (3.4.6)–(3.4.8) in terms of a suitably
chosen interface value λ corresponding to the solution on Γ while enforcing the
continuity of the normal derivatives (3.4.8) on the interface. More concretely,
applying the Steklov–Poincaré operators Si, i = 1, 2, to λ means solving a
Dirichlet subproblem in Vi with boundary values arising from the interface
value λ and then providing the normal derivative Siλ on Γ of the obtained
solution. Taking into account the sign of the normals, the continuity of the
normal derivative then just means

S1λ+ S2λ = 0 (3.4.30)

which is already the Steklov–Poincaré formulation of the problem (3.4.6)–(3.4.8)
that we desired. Now, the difficulty in the analysis is often due to the fact
that the solution of a subproblem does not only depend on λ but also on the
source term f . This is why in the linear setting one usually splits linearly the
dependency of the solutions u1 and u2 on the two inhomogeneities, i.e. f and
the boundary value λ on Γ, thus obtaining an equation

Sλ = S1λ+ S2λ = χ (3.4.31)

in which the application of S is no longer dependent on f since the depen-
dency on f is completely contained in χ on the right hand side, as done
in (3.3.5)–(3.3.9). Due to the nonlinearities M1 and M2 we cannot carry out
such a splitting here. Therefore, we only split off parts of the solutions u1 and
u2 which are representing the source term f with regard to the main part, i.e
the partial differential operator in the equation, the Laplacian, which is linear.
More concretely, analogously to (3.3.5) and for i = 1, 2 we consider the splitting

ui = ui(λ) + u∗i (3.4.32)

where u∗i is the solution of the linear problem

−∆u∗i = f on Ωi (3.4.33)

u∗i = 0 on ∂Ωi (3.4.34)
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with homogeneous Dirichlet boundary conditions and ui(λ) is the solution of
the nonlinear problem

Mi(ui(λ) + u∗i )−∆ui(λ) = 0 on Ωi (3.4.35)

ui(λ) = κi(λ) on Γ (3.4.36)

ui(λ) = 0 on ∂Ωi\Γ (3.4.37)

which is homogeneous in the source term. With regard to the time-discretized
Richards equation we have chosen the interface value λ as the retransformed
variable that has to be equal on both subdomains and that represents the phys-
ical pressure in the case of the Richards equation. Observe that the functions
ui(λ) depend nonlinearly on λ, but they are also still dependent on f whose
influence is hidden in the solutions u∗i which occur in the problems (3.4.35)–
(3.4.37) for i = 1, 2.

Remark 3.4.4. If Ωi are bounded Lipschitz domains and Mi monotonically
increasing, continuous and either bounded or else Hölder continuous outside of
a bounded interval (see (2.3.25)), we have unique solutions ui ∈ Vi, i = 1, 2, of
the nonlinear problems

Mi(ui)−∆ui = f on Ωi (3.4.38)

ui = κi(λ) on Γ (3.4.39)

ui = 0 on ∂Ωi\Γ (3.4.40)

whose weak forms are equivalent to convex minimization problems (see Sec-
tion 2.3 and in particular Theorem 2.3.16 and Remark 2.3.17). Due to the
unique solvability of (3.4.33)–(3.4.34) we also have unique solutions ui(λ) of
the problems (3.4.35)–(3.4.37). The latter problems can be regarded as par-
tially homogeneous, i.e. the solutions ui(λ) “depend mainly” on λ if Mi and
κi, i = 1, 2, behave well enough, which will become clear in and is the basis of
the analysis carried out in Subsections 3.4.3 and 3.4.4 (see Proposition 3.4.14,
Corollary 3.4.18 and Lemma 3.4.21).

This fact turns out to be the main reason for the splitting of u1 and u2 whereas
the occurrence of χ as the influence of the inhomogeneity f via u∗1 and u∗2 on
the right hand side of (3.4.31) seems to be rather pointless here. After all,
there is an influence of f on the left hand side and on ui(λ), i = 1, 2, already
(compare with the advantage of χ in (3.3.32) for the proof of the well-posedness
in Proposition 3.3.8, but see also the proof of Theorem 3.4.23).

Therefore, we define the Steklov–Poincaré operators in the general way as
in (3.4.30) by giving the equation

Sλ = S1λ+ S2λ =
∂

∂n
u1 −

∂

∂n
u2 =

∂

∂n
(u1(λ) + u∗1)−

∂

∂n
(u2(λ) + u∗2) = 0

(3.4.41)
the following weak formulation.
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Definition 3.4.5. Let i = 1, 2. Assume Ri : Λ→ Vi, is any linear and continu-
ous extension operator (e.g. a harmonic extension) andMi is as in Remark 3.4.4.
Then for λ ∈ Λ we define the functional Siλ ∈ Λ′ by

〈Siλ, µ〉 := (Mi(ui(λ) + u∗i ), Riµ)Ωi + ai(ui(λ) + u∗i , Riµ)− (f,Riµ)Ωi ∀µ ∈ Λ
(3.4.42)

and we set S := S1 + S2.

Observe that well-definedness of Si, i = 1, 2, is only guaranteed if there is a
unique solution u(λ) of (3.4.35)–(3.4.37). Therefore, we always assume that
Mi, i = 1, 2, is chosen at least as in Remark 3.4.4 from now on.

Proposition 3.4.6. Solving problem (3.4.12)–(3.4.14) is equivalent to finding
a λ ∈ Λ satisfying

Sλ = 0 . (3.4.43)

The solutions ui ∈ Vi, i = 1, 2, of (3.4.12)–(3.4.14) correspond to λ ∈ Λ by
ui|Γ = κi(λ) or equivalently ui = ui(λ) + u∗i .

Proof. By definition, ui = ui(λ) + u∗i satisfies (3.4.12)–(3.4.13) which is the
weak form of (3.4.38)–(3.4.40) for i = 1, 2. Therefore, λ satisfies (3.4.43) by
definition (3.4.42) if and only if ui satisfies (3.4.14).

Following Remark 3.4.3, it is clear that if (3.4.4) is replaced by (3.4.5) for the
full Richards equation with gravity, then each normal derivative in (3.4.41) has
to be replaced by the sum of the normal derivative and the corresponding gi

for i = 1, 2. Of course, (3.4.42) has to be adapted, too, and Proposition 3.4.6
also holds in this general case.

Now we are ready to derive a formulation of the Robin method (3.4.20)–(3.4.23)
in terms of the Steklov–Poincaré operators. This leads to the so-called Alter-
nating Direction Iterative (ADI) method which was first related to the Robin
method in Discacciati [32, pp. 4–6] for the linear case, and this also works in
our nonlinear setting. Using the notation

〈Iη, µ〉 = (η, µ)Γ ∀η, µ ∈ Λ (3.4.44)

we obtain

Proposition 3.4.7. LetMi and κi, i = 1, 2, be as in Theorem 3.4.2. Then, with
a given λ0

2 = κ−1
2 (u0

2|Γ) ∈ Λ, the Robin method (3.4.20)–(3.4.23) is equivalent
to solving successively for k ≥ 0

〈(γ1I + S1)λ
k+1
1 , µ〉 = 〈(γ1I − S2)λ

k
2 , µ〉 ∀µ ∈ Λ (3.4.45)

〈(γ2I + S2)λ
k+1
2 , µ〉 = 〈(γ2I − S1)λ

k+1
1 , µ〉 ∀µ ∈ Λ (3.4.46)

in the sense that

uk
i = ui(λ

k
i ) + u∗i ⇐⇒ λk

i = κ−1
i (uk

i|Γ) ∀k ≥ 0 , i = 1, 2 , (3.4.47)

holds for the iterates uk
i from (3.4.20)–(3.4.23).
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Proof. Assume that uk
2 is the initial iterate for k = 0 or has been obtained from

(3.4.22)–(3.4.23) for k ≥ 1. Furthermore, assume that

λk
2 = κ−1

2 (uk
2|Γ) (3.4.48)

holds. Let λk+1
1 be a solution of (3.4.45) and define ūk+1

1 := u1(λ
k+1
1 ) + u∗1.

Then ūk+1
1 satisfies (3.4.20) since it is the solution of (3.4.38)–(3.4.40), which

also provides
λk+1

1 = κ−1
1 (ūk+1

1|Γ ) . (3.4.49)

Therefore, ūk+1
1 also solves (3.4.21) due to (3.4.48). Since (3.4.20)–(3.4.21) is

uniquely solvable due to Theorem 3.4.2,

ūk+1
1 = uk+1

1 (3.4.50)

is the solution of this Robin step.

As ūk+1
1 is uniquely determined, λk+1

1 must be a unique solution of (3.4.45).
On the other hand, there exists a solution λ̄k+1

1 of (3.4.45) because with the
existing solution uk+1

1 of (3.4.20)–(3.4.21) the function

λ̄k+1
1 := κ−1

1 (uk+1
1|Γ ) (3.4.51)

satisfies (3.4.45) if uk+1
1 = u1(λ̄

k+1
1 )+u∗1 holds. But, indeed, due to (3.4.20) and

(3.4.51), uk+1
1 is the solution of (3.4.38)–(3.4.40) with λ = λ̄k+1

1 . This shows
the converse of the equivalence for the first iteration step (3.4.45).

With regard to the second step (3.4.46), one can use (3.4.50) besides (3.4.49)
instead of (3.4.48) in order to derive ūk+1

2 = uk+1
2 for ūk+1

2 = u2(λ
k+1
2 )+u∗2 and

the unique solvability of (3.4.46). The reasoning is the same as just seen for the
first step. Therefore, since (3.4.48) holds for k = 0, we can conclude inductively
that the iterates λk

i give the iterates uk
i by (3.4.47) and vice versa.

The iteration (3.4.45)–(3.4.46) is a nonlinear extension of the ADI method which
was introduced in Peaceman and Rachford [74] on an algebraic level and fur-
ther investigated e.g. in Wachspress and Habetler [95], Wachspress [94] and
Varga [92]. A nonlinear ADI method (involving a linearization) for the solution
of the Richards equation without gravity in homogeneous soil with Signorini-
type boundary conditions is given in Hornung [50]. A convergence theory for
a nonlinear version of the ADI method concerning monotone operators which
act on a Hilbert space can be found in Lions and Mercier [66]. With regard
to an analysis of the ADI method in connection to the Robin method for the
linear case see Discacciati [32] or [33, Chapter 5], where one can also find the
analysis that shall be generalized in the following. As in Lions and Mercier [66]
this will lead us to monotonicity conditions for the Steklov–Poincaré opera-
tors Si : Λ→ Λ′ (see Theorem 3.4.12 and Remark 3.4.26).

Due to the just derived invertibility of the operators involved, the operator
Tγ1,γ2 : Λ → Λ providing the iteration λk+1

2 = Tγ1,γ2λ
k
2 in (3.4.45)–(3.4.46) is

given by

Tγ1,γ2 = (γ2I + S2)
−1(γ2I − S1)(γ1I + S1)

−1(γ1I − S2) . (3.4.52)
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Proposition 3.4.8. Let Mi and κi, i = 1, 2, be as in Theorem 3.4.2. Any fixed
point u2 ∈ V2 (corresponding to u1 ∈ V1) of the Robin method (3.4.20)–(3.4.23)
is a solution of the domain decomposition problem (3.4.12)–(3.4.14) and vice
versa, and it provides a fixed point λ = u2|Γ ∈ Λ of Tγ1,γ2 : Λ→ Λ in (3.4.52).
Conversely, any fixed point λ ∈ Λ of the operator Tγ1,γ2 provides a fixed point
u2 = u2(λ)+u∗2 of the Robin method (3.4.20)–(3.4.23). Finally, any fixed point
λ ∈ Λ of Tγ1,γ2 : Λ→ Λ is a solution of the Steklov–Poincaré interface equation
Sλ = 0 and vice versa.

Proof. Let u2 ∈ V2 (corresponding to u1 ∈ V1) be a fixed point of the Robin iter-
ation (3.4.20)–(3.4.23). Then subtracting (3.4.23) from (3.4.21) with u1 = uk+1

1

and u2 = uk
2 = uk+1

2 we obtain

(κ−1
1 u1, µ)Γ = (κ−1

2 u2, µ)Γ ∀µ ∈ Λ , (3.4.53)

i.e. κ−1
1 (u1|Γ) = κ−1

2 (u2|Γ) in L2(Γ) (in particular almost everywhere on Γ) and

therefore in Λ. Now, adding γ2 · (3.4.21) to γ1 · (3.4.23) with u1 = uk+1
1 and

u2 = uk
2 = uk+1

2 and considering (3.4.53) gives (3.4.14), i.e. u1 ∈ V1, u2 ∈ V2 is
a solution of the domain decomposition problem (3.4.12)–(3.4.14).

Conversely, if u1 ∈ V1, u2 ∈ V2 satisfy (3.4.12)–(3.4.14) one obtains (3.4.53)
from (3.4.13) and therefore (3.4.21) and (3.4.23) from (3.4.14) with u1 = uk+1

1

and u2 = uk
2 = uk+1

2 .

Furthermore, the fixed points of the Robin method (3.4.20)–(3.4.23) and the
ADI method (3.4.45)–(3.4.46) coincide in the asserted way due to Proposi-
tion 3.4.7.

Finally, since the fixed points of Tγ1,γ2 : Λ→ Λ and the solutions of the domain
decomposition problem (3.4.12)–(3.4.14) correspond to each other in the way
described, Proposition 3.4.43 entails the last assertion.

For a rigorous analysis we replace the identity operator I on Λ inducing bounded
linear functionals on Λ via (3.4.44) by the bounded linear operator I : Λ→ Λ′

from the Riesz representation theorem (see e.g. [98, p. 222]). The latter can be
defined as

Iµ ∈ Λ′ : (Iµ, ξ)Λ′ = 〈ξ, µ〉 ∀ξ ∈ Λ′ (3.4.54)

where (·, ·)Λ′ denotes the scalar product in Λ′. Consequently, we have

〈Iη, µ〉 = (Iµ,Iη)Λ′ = (η, µ)Λ . (3.4.55)

Therefore, if we replace I by I in (3.4.52), we replace the L2-scalar products

(κ−1
i uk+1

i , µ)Γ , i = 1, 2 , and (κ−1
2 uk

2 , µ)Γ

in (3.4.20)–(3.4.23), k ≥ 0, by the corresponding scalar products in Λ

(κ−1
i uk+1

i , µ)Λ , i = 1, 2 , and (κ−1
2 uk

2 , µ)Λ .
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Consequently, we consider another iterative method instead of the classical
weak formulation of the Robin method given in (3.4.20)–(3.4.23). Note that
this difference is not yet reflected in the strong Robin boundary condition

∂

∂n
w + γw on Γ

for γ > 0. The usual weak treatment of the quantities ∂
∂n
w and w as in

(3.4.20)–(3.4.23) is to interpret them as elements of Λ′ induced by the L2-scalar
product. This is natural for ∂

∂n
w for which Green’s formula (1.5.9) provides

the weak form. In what is to come, the element of Λ′ arising from the second
quantity w shall be induced by the scalar product in Λ′ via Riesz’s operator I
as shown above. The corresponding iterative method reads:

For a given u0
2 ∈ V2 find successively uk+1

1 ∈ V1 and uk+2
2 ∈ V2 for k ≥ 0 such

that

(M1(u
k+1
1 ), v1)Ω1 + a1(u

k+1
1 , v1) = (f, v1)Ω1 ∀v1 ∈ V 0

1 (3.4.56)

(M1(u
k+1
1 ), R1µ)Ω1 + a1(u

k+1
1 , R1µ)− (f,R1µ)Ω1 + γ1(κ

−1
1 uk+1

1 , µ)Λ =

− (M2(u
k
2), R2µ)Ω2 − a2(u

k
2 , R2µ) + (f,R2µ)Ω2 + γ1(κ

−1
2 uk

2 , µ)Λ ∀µ ∈ Λ
(3.4.57)

and then

(M2(u
k+1
2 ), v2)Ω2 + a2(u

k+1
2 , v2) = (f, v2)Ω2 ∀v2 ∈ V 0

2 (3.4.58)

(M2(u
k+1
2 ), R2µ)Ω2 + a2(u

k+1
2 , R2µ)− (f,R2µ)Ω1 − γ2(κ

−1
2 uk+1

2 , µ)Λ =

−(M1(u
k+1
1 ), R1µ)Ω1−a1(u

k+1
1 , R1µ)+(f,R1µ)Ω1−γ2(κ

−1
1 uk+1

1 , µ)Λ ∀µ ∈ Λ .
(3.4.59)

We shall call this new iterative method the altered Robin method.

Remark 3.4.9. We point out, that it seems unclear if (3.4.56)–(3.4.57) and
(3.4.58)–(3.4.59) are equivalent to convex minimization problems or uniquely
solvable at all. So on the one hand, the application of monotone multigrid for
the equations arising from (3.4.56)–(3.4.57) and (3.4.58)–(3.4.59) on the discrete
level might be ruled out, and on the other hand we have to assume the

unique solvability of (3.4.56)–(3.4.57) and (3.4.58)–(3.4.59) (3.4.60)

here. Obviously, we need to assume the well-definedness of the Steklov–Poincaré
operators in the first place. With this assumption, however, we can establish
a convergence analysis for the altered Robin method to which we turn in the
next subsection and which leads to natural conditions on the Steklov–Poincaré
operators Si or, more specifically, on the nonlinearities Mi and κi, i = 1, 2, that
guarantee convergence.

In order to see that this assumption is not artificial note that it is certainly
satisfied in one space dimension. In this case Γ only contains one point such
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that the altered Robin method and the classical one (3.4.20)–(3.4.23) coincide
with I = I and equality of (·, ·)Γ and (·, ·)Λ since here Λ = L2(Γ) is just the one
dimensional Hilbert space (R, | · |). At least in the one-dimensional case we ob-
tain convergence of the Robin method for the implicit-explicitly time-discretized
Richards equation in the nondegenerate setting (see Subsection 1.4.3) which we
prove in Subsection 3.4.4.

It is straightforward to see and it will be helpful in our further analysis that
Propositions 3.4.7 and 3.4.8 carry over to the altered Robin method.

Proposition 3.4.10. With the assumption (3.4.60) the altered Robin method
(3.4.56)–(3.4.59) is equivalent to the altered ADI method

〈(γ1I + S1)λ
k+1
1 , µ〉 = 〈(γ1I − S2)λ

k
2 , µ〉 ∀µ ∈ Λ (3.4.61)

〈(γ2I + S2)λ
k+1
2 , µ〉 = 〈(γ2I − S1)λ

k+1
1 , µ〉 ∀µ ∈ Λ (3.4.62)

for given λ0
2 = κ−1

2 (u0
2|Γ) ∈ Λ in the same sense as in Proposition 3.4.7.

Proposition 3.4.11. We assume (3.4.60). Then the assertions of Proposi-
tion 3.4.8 also hold if we replace the Robin method (3.4.20)–(3.4.23) by the
altered Robin method (3.4.56)–(3.4.59) and the operator Tγ1,γ2 : Λ → Λ in
(3.4.52) by Tγ1,γ2 : Λ→ Λ defined as

Tγ1,γ2 = (γ2I + S2)
−1(γ2I − S1)(γ1I + S1)

−1(γ1I − S2) . (3.4.63)

In the following section we deduce conditions for which the fixed points in this
proposition are existing and unique.

3.4.3 Convergence analysis for the altered Robin method via
nonlinear Steklov–Poincaré operators

In this subsection we provide conditions first on the Steklov–Poincaré opera-
tors Si : Λ → Λ′ and then on Mi : R → R and κi : Λ → Λ, i = 1, 2, that
guarantee convergence of the altered Robin method (3.4.56)–(3.4.59). We have
introduced this altered version of (3.4.20)–(3.4.23) in the last subsection be-
cause this variant seems to be the “right” weak formulation of (3.4.15)–(3.4.18)
for a successful convergence analysis using a contraction argument. The aim
is to prove the convergence of a transformed sequence (λ̃k

2)k≥0 of the sequence
(λk

2)k≥0 of iterates from (3.4.61)–(3.4.62) in the Hilbert space Λ′ using its nat-
ural inner product (·, ·)Λ′ .

As pointed out in Remark 3.4.9 we need to assume (3.4.60). For the proof of
the next theorem, where we deal with contractions on Λ′, we even require the
stronger condition

γi I + Si : Λ→ Λ′ is invertible for i = 1, 2 (3.4.64)

if we are not in a one dimensional setting where this condition is satisfied due
to Theorem 3.4.2 under reasonable conditions on Mi, κi, i = 1, 2. For the well-
definedness of the Steklov–Poincaré operators in Definition 3.4.5 we need to
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assume the conditions on Mi, i = 1, 2, given in this theorem anyway. With
these assumptions we can prove the following generalization of a linear result
in Discacciati [33, pp. 99/100]. It is not surprising that two conditions that we
already encountered in Theorem 3.3.4 (see (3.3.42) and (3.3.45)) reoccur in this
case.

Theorem 3.4.12. Assume that (3.4.64) holds and Mi : R → R, i = 1, 2, is
monotonically increasing, continuous and either bounded or Hölder continuous
outside of a bounded interval. Let γ1 = γ2 = γ > 0. Then for any initial iterate
λ0

2 ∈ Λ the operator Tγ : Λ→ Λ defined by

Tγ = (γI + S2)
−1(γI − S1)(γI + S1)

−1(γI − S2)

provides a sequence (λk
2)k≥0 which converges in Λ to the unique fixed point of Tγ

if both S1, S2 : Λ → Λ′ are Lipschitz continuous and strongly monotone, i.e. if
there are positive constants ci and Ci such that the following holds for i = 1, 2:

〈Siη − Siµ, λ〉 ≤ Ci‖η − µ‖Λ‖λ‖Λ ∀η, µ, λ ∈ Λ (3.4.65)

〈Siη − Siµ, η − µ〉 ≥ ci‖η − µ‖2Λ ∀η, µ ∈ Λ . (3.4.66)

Proof. First the operator Tγ is well-defined by assumption (3.4.60). For k ≥ 0
we introduce the auxiliary variable λ̃k

2 = (γI + S2)λ
k
2 and rewrite λk+1

2 = Tγλk
2

as λ̃k+1
2 = T̃γλ̃k

2 with the operator T̃γ : Λ′ → Λ′ defined by

T̃γ = (γI − S1)(γI + S1)
−1(γI − S2)(γI + S2)

−1 .

Then, since I : Λ → Λ′ is continuous, S2 : Λ → Λ′ is assumed to be Lipschitz
continuous and γI + S2 : Λ→ Λ′ is invertible with

Tγ = (γI + S2)
−1 T̃γ (γI + S2) , (3.4.67)

it suffices to prove the analogous statement for T̃γ and the auxiliary variables
instead of Tγ and the original ones. In fact, it turns out that both operators

T̃i,γ : Λ′ → Λ′ , T̃i,γ = (γI − Si)(γI + Si)
−1 , i = 1, 2 ,

are contractions under the assumptions that are imposed on the operators Si.
So for any η̃, µ̃ ∈ Λ′, η̃ 6= µ̃, and i = 1, 2 we consider the ratio

‖T̃i,γ η̃ − T̃i,γµ̃‖2Λ′

‖η̃ − µ̃‖2Λ′

=
‖(γI − Si)(γI + Si)

−1η̃ − (γI − Si)(γI + Si)
−1µ̃‖2Λ′

‖η̃ − µ̃‖2Λ′

=
‖(γI − Si)η − (γI − Si)µ‖2Λ′

‖(γI + Si)η − (γI + Si)µ‖2Λ′

where we have introduced the auxiliary variables η = (γI + Si)
−1η̃ ∈ Λ and

µ = (γI + Si)
−1µ̃ ∈ Λ, η 6= µ. This ratio can be reformulated as

γ2‖Iη − Iµ‖2Λ′ − 2γ(Siη − Siµ,Iη − Iµ)Λ′ + ‖Siη − Siµ‖2Λ′

γ2‖Iη − Iµ‖2Λ′ + 2γ(Siη − Siµ,Iη − Iµ)Λ′ + ‖Siη − Siµ‖2Λ′
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and the Riesz representation theorem provides ‖Iη − Iµ‖Λ′ = ‖η − µ‖Λ while
(3.4.54) gives (Siη−Siµ,Iη−Iµ)Λ′ = 〈Siη− Siµ, η−µ〉 so that all that is left
to do is to find a positive constant c < 1 such that

γ2‖η − µ‖2Λ − 2γ〈Siη − Siµ, η − µ〉+ ‖Siη − Siµ‖2Λ′

γ2‖η − µ‖2Λ + 2γ〈Siη − Siµ, η − µ〉+ ‖Siη − Siµ‖2Λ′

≤ c . (3.4.68)

Now, exploiting first the strong monotonicity and then the Lipschitz continuity
of Si we can estimate the left hand side in (3.4.68) by

γ2‖η − µ‖2Λ − 2γci‖η − µ‖2Λ + ‖Siη − Siµ‖2Λ′

γ2‖η − µ‖2Λ + 2γci‖η − µ‖2Λ + ‖Siη − Siµ‖2Λ′

≤
γ2 − 2γci +

‖Siη−Siµ‖2
Λ′

‖η−µ‖2
Λ

γ2 + 2γci +
‖Siη−Siµ‖2

Λ′

‖η−µ‖2
Λ

≤ 1− 4γci

γ2 + 2γci +
‖Siη−Siµ‖2

Λ′

‖η−µ‖2
Λ

≤ 1− 4γci
γ2 + 2γci + C2

i

< 1 .

Observe that the stronger condition (3.4.64) instead of (3.4.60) was only neces-
sary for i = 2 in the proof. Note, in addition, that in contrast to Theorem 3.3.4,
which plays the same role in Section 3.3 as Theorem 3.4.12 here, the above
result does not guarantee the existence of an upper bound ρmax ∈ (0, 1) for
convergence rates of the convergence λk

2 → λ since the operator Tγ providing
the sequence (λk

2)k≥0 is only a composition (3.4.67) of continuous operators
with a contraction and may not be a contraction itself. On the other hand,
Theorem 3.4.12 guarantees the convergence λk

2 → λ for any parameter γ > 0
whereas it is well known (and observed in Subsection 3.3.5) that for damping
parameters above some threshold in (0, 1) the Dirichlet–Neumann method need
not converge.

In what is to come we give conditions on Mi : R→ R and κi : Λ→ Λ, i = 1, 2,
under which the assumptions (3.4.65) and (3.4.66) are satisfied. The following
nice result will turn out to be a fundamental tool for the further considerations
in this direction.

Lemma 3.4.13. Let Mi : R→ R be as in Theorem 3.4.12 and Hi : Λ→ Vi the
harmonic extension operators for i = 1, 2. Then for any η, µ ∈ Λ we have the
identity

(Mi(ui(η) + u∗i )−Mi(ui(µ) + u∗i ), ui(η)− ui(µ))Ωi

+ai(ui(η)− ui(µ), ui(η)− ui(µ)) =

(Mi(ui(η) + u∗i )−Mi(ui(µ) + u∗i ),Hiκiη −Hiκiµ)Ωi

+ai(ui(η)− ui(µ),Hiκiη −Hiκiµ) .

(3.4.69)

177



Proof. Let i = 1, 2. The conditions on Mi provide the unique solvability of
(3.4.35)–(3.4.37). The weak form of (3.4.35) reads

(Mi(ui(λ) + u∗i ), vi)Ωi + ai(ui(λ), vi) = 0 ∀vi ∈ V 0
i (3.4.70)

and due to (3.4.36) we have vi(η, µ) := ui(η) − ui(µ) − (Hiκiη −Hiκiµ) ∈ V 0
i

for any η, µ ∈ Λ. So setting λ = η in (3.4.70) and vi = vi(η, µ) we obtain

(Mi(ui(η) + u∗i ), ui(η)− ui(µ))Ωi + ai(ui(η), ui(η) − ui(µ)) =

(Mi(ui(η) + u∗i ),Hiκiη −Hiκiµ)Ωi + ai(ui(η),Hiκiη −Hiκiµ) (3.4.71)

while setting λ = µ in (3.4.70) and testing again with vi = vi(η, µ) we have

(Mi(ui(µ) + u∗i ), ui(η) − ui(µ))Ωi + ai(ui(µ), ui(η)− ui(µ)) =

(Mi(ui(µ) + u∗i ),Hiκiη −Hiκiµ)Ωi + ai(ui(µ),Hiκiη −Hiκiµ) . (3.4.72)

Now, subtracting (3.4.72) from (3.4.71) gives the identity (3.4.69).

At first glance (3.4.69) looks like a special “nonlinear orthogonality” of the
difference ui(η) − ui(µ) of solutions to (3.4.35)–(3.4.37) and the correspond-
ing difference Hiκiη − Hiκiµ of solutions to the same problem with Mi = 0
for i = 1, 2. Note, however, that in the proof no special properties of Hi

are applied and that, in fact, (3.4.69) holds for arbitrary extension operators
Ri : Λ→ Vi, i = 1, 2. Nevertheless, we will exploit the linearity and the well-
known continuity

‖Hiη‖1,Ωi ≤ C‖η‖Λ ∀η ∈ Λ

with a C > 0 of the harmonic extension operators (see Quarteroni and Valli
[75, p. 8/9]) in the following analysis. Therefore, we choose Ri = Hi in the
representation of the Steklov–Poincaré operators (3.4.42) (which could of course
be any extension operator with the same properties). Before we turn to the main
propositions of this subsection we need an additional preliminary result which
is of interest on its own.

Proposition 3.4.14. Let i = 1, 2. If Mi : R → R is monotonically increasing
and Lipschitz continuous and κi : Λ→ Λ is Lipschitz continuous, then for any
given u∗i ∈ V 0

i the problem (3.4.35)–(3.4.37) is well-posed with respect to λ.
More specifically, there is a well-defined solution operator

Li : Λ→ Vi , Liλ = ui(λ) ,

which is Lipschitz continuous, i.e. there is a constant C > 0 such that

‖Liη − Liµ‖1,Ωi ≤ C‖η − µ‖Λ ∀η, µ ∈ Λ .

Proof. The unique solvability of problem (3.4.35)–(3.4.37) depends on the prop-
erties ofMi and has already been addressed in Remark 3.4.4. For the continuous
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dependence of the solution on the data consider the identity (3.4.69) which we
would like to abbreviate by

A = B .

In the following Ck, k = 1, 2, 3, are suitably chosen positive constants. Using
the monotonicity of Mi (noting that ui(η) − ui(µ) = ui(η) + u∗i − ui(µ) − u∗i )
and the Poincaré inequality (A.2.13), the left hand side A in (3.4.69) can be
estimated from below by

A ≥ C1‖ui(η)− ui(µ)‖21,Ωi
. (3.4.73)

With the Cauchy–Schwarz inequality and the Lipschitz continuity of Mi (with
the Lipschitz constants L(Mi)), κi and Hi on the right hand side B of (3.4.69)
can be estimated from above by

B ≤ ‖Mi(ui(η) + u∗i )−Mi(ui(µ) + u∗i )‖0,Ωi‖Hi(κiη − κiµ)‖0,Ωi

+ ‖ui(η)− ui(µ)‖1,Ωi‖Hi(κiη − κiµ)‖1,Ωi

≤ (L(Mi) + 1)‖ui(η)− ui(µ)‖1,Ωi‖Hi(κiη − κiµ)‖1,Ωi

≤ C2‖ui(η)− ui(µ)‖1,Ωi‖η − µ‖Λ .

Taking into account the estimate (3.4.73) we obtain

‖ui(η)− ui(µ)‖1,Ωi ≤ C3‖η − µ‖Λ

as claimed.

Proposition 3.4.15. The Steklov–Poincaré operator Si : Λ → Λ′, i = 1, 2, is
Lipschitz continuous if Mi : R → R is monotonically increasing and Lipschitz
continuous and κi : Λ→ Λ is Lipschitz continuous.

Proof. We choose η, λ, µ ∈ Λ. Using (3.4.42) with Ri = Hi and we obtain

〈Siη − Siµ, λ〉 ≤ |(Mi(ui(η) + u∗i )−Mi(ui(µ) + u∗i ),Hiλ)Ωi |
+ |ai(ui(η)− ui(µ),Hiλ)| . (3.4.74)

Applying the Cauchy–Schwarz inequality and exploiting the Lipschitz continu-
ity of Mi as in the proof of Proposition 3.4.14, the right hand side of (3.4.74)
can be estimated by

‖Mi(ui(η) + u∗i )−Mi(ui(µ) + u∗i )‖0,Ωi‖Hiλ‖0,Ωi + ‖ui(η)− ui(µ)‖1,Ωi‖Hiλ‖1,Ωi

≤ (L(Mi) + 1) ‖ui(η) − ui(µ)‖1,Ωi ‖Hiλ‖1,Ωi . (3.4.75)

The assertion now follows by applying Proposition 3.4.14 as well as the conti-
nuity of Hi.
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Just as encountered for the transmission problem (3.3.11)–(3.3.13) discussed
in Section 3.3 (compare Proposition 3.3.7), the monotonicity of the Steklov–
Poincaré operators turns out to be considerably more delicate than their Lip-
schitz continuity in our more general case of problem (3.4.2)–(3.4.4), too. This
is reflected by the next proposition which does not yet provide easily verifiable
conditions that guarantee (3.4.66). But even though the estimate in this propo-
sition seems to be a bit technical, it unveils the power of our identity (3.4.69)
and makes space for more detailed monotonicity considerations, which we carry
out in the next subsection.

Proposition 3.4.16. The Steklov–Poincaré operator Si : Λ → Λ′, i = 1, 2,
is strongly monotone if Mi : R → R is as in Theorem 3.4.12, κi : Λ → Λ is
invertible with Lipschitz continuous κ−1

i and there is a constant Ci > 0 such
that

(Mi(ui(η) + u∗i )−Mi(ui(µ) + u∗i ),Hiη −Hiµ)Ωi

+ ai(ui(η) − ui(µ),Hiη −Hiµ)

≥ Ci

(
(Mi(ui(η) + u∗i )−Mi(ui(µ) + u∗i ),Hiκiη −Hiκiµ)Ωi

+ ai(ui(η)− ui(µ),Hiκiη −Hiκiµ)
)
.

(3.4.76)

Proof. Let i = 1, 2. Condition (2.3.25) on Mi guarantees that (3.4.35)–(3.4.37)
is uniquely solvable, and therefore Si is well-defined. In the following Ck,
k = 3, 4, 5, are suitable positive constants. Let η, µ ∈ Λ. Then, with Ri = Hi

in (3.4.42) we have

〈Siη − Siµ, η − µ〉 = (Mi(ui(η) + u∗i )−Mi(ui(µ) + u∗i ),Hiη −Hiµ)Ωi

+ ai(ui(η)− ui(µ),Hiη −Hiµ) .

Now, due to (3.4.76) and (3.4.69) we obtain

〈Siη − Siµ, η − µ〉 ≥ Ci

(
(Mi(ui(η) + u∗i )−Mi(ui(µ) + u∗i ), ui(η)− ui(µ))Ωi

+ ai(ui(η) − ui(µ), ui(η)− ui(µ))
)

which can be further estimated from below by

C3‖ui(η)−ui(µ)‖21,Ωi
≥ C4‖(ui(η)−ui(µ))|Γ‖2Λ = C4‖κiη−κiµ‖2Λ ≥ C5‖η−µ‖2Λ

(3.4.77)
using successively the monotonicity of Mi, the Poincaré inequality (A.2.13) and
the trace inequality (A.2.9) as well as the Lipschitz continuity of κ−1

i .

Remark 3.4.17. Note that (3.4.76) could be more compactly written as

〈Siη − Siµ, η − µ〉 ≥ Ci〈Siη − Siµ, κiη − κiµ〉

in terms of the Steklov–Poincaré operators Si, i = 1, 2, and the above proof
guarantees that the right hand side of this inequality can always be bounded
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from below by C5‖η−µ‖2Λ. This should not confuse since the term on the right
hand side is actually “the symmetric term” in this inequality. It depends on
κiη and κiµ in both entries of 〈·, ·〉 due to the definition (3.4.42) of Si, i = 1, 2,
based on the solutions ui = ui(λ) + u∗i of (3.4.38)–(3.4.40) with ui|Γ = κi(λ).

With the last estimate (3.4.77) in the proof of Proposition 3.4.16 we obtain
the following result which completes Proposition 3.4.14. Recall that the unique
solvability of (3.4.35)–(3.4.37), i.e. the existence of Li, i = 1, 2, only depends
on the properties of Mi.

Corollary 3.4.18. Let i = 1, 2. If Mi : R→ R is monotonically increasing and
Lipschitz continuous and κi : Λ → Λ invertible with Lipschitz continuous κ−1

i ,
then the solution operator Li in Proposition 3.4.14 has a Lipschitz continuous
inverse on Li(Λ), i.e. there is a constant c > 0 such that

‖η − µ‖Λ ≤ c ‖ui(η)− ui(µ)‖1,Ωi ∀η, µ ∈ Λ .

Concluding Remarks 3.4.19. Summarizing the analysis in this section we
can establish an abstract convergence result for the altered Robin method
(3.4.56)–(3.4.59) which reads:

Let i = 1, 2 and γ1 = γ2 > 0. Suppose Mi : R→ R is a monotonically increasing
and Lipschitz continuous function and κi : Λ → Λ is Lipschitz continuous and
has a Lipschitz continuous inverse. Moreover, we assume (3.4.64) and (3.4.76)
for Ci > 0. Then the altered Robin method (3.4.57)–(3.4.59) provides sequences
of iterates (uk

1)k≥1 and (uk
2)k≥0 converging in V1 and in V2, respectively, to the

unique solution of the domain decomposition problem (3.4.12)–(3.4.14) which,
in addition, is well-posed with respect to f ∈ L2(Ω).

The proof is mainly based on Theorem 3.4.12 and Propositions 3.4.15 and 3.4.16
and will be carried out in detail for a more concrete one-dimensional result in
Theorem 3.4.23 to which we turn in the next subsection.

3.4.4 Convergence of the Robin method in 1D for the time-
discretized nondegenerate Richards equation in hetero-
geneous soil

The purpose of this subsection is to prove (3.4.65) and (3.4.66) in 1D for our set-
ting in Subsection 3.4.1. As already indicated at the end of the last subsection,
the main task will be the proof of (3.4.76). Note that we have already come
across a similar inequality in the proof of Proposition 3.3.7, where we derived
an inverse estimate for Mi = 0 and monotonically increasing and Lipschitz con-
tinuous κi, κ

−1
i : R→ R, i = 1, 2, in one space dimension. The proof of (3.4.76)

in this case could be carried out with the same arguments as used there.

In the following, we prove that (3.4.76) holds in one space dimension if Mi

and κi, i = 1, 2, are as in the setting of the implicit-explicitly time-discretized
Richards equation (3.4.6)–(3.4.8). To achieve this we need to look more closely
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at the concrete monotonic behaviour of the solutions ui(λ) of (3.4.35)–(3.4.37)
for varying λ in 1D. The latter can be carried out after we have established the
following regularity result for these solutions.

Lemma 3.4.20. Let Ω1 = (a, b) and Ω2 = (b, c) for a < b < c and i = 1, 2.
Suppose that Mi : R→ R satisfies the conditions in Theorem 3.4.12. Then for
any λ ∈ R the weak solution ui(λ) ∈ Vi of (3.4.35)–(3.4.37) is also a strong
solution of (3.4.35)–(3.4.37) satisfying ui(λ) ∈ C2(Ωi).

Proof. Let i = 1, 2. The conditions on Mi guarantee the unique solvability of
(3.4.35)–(3.4.37) in the weak sense (see Remark 3.4.4). Since (3.4.33)–(3.4.34)
is also uniquely solvable in the weak sense (f|Ωi

∈ L2(Ωi) is always assumed)

and the Sobolev embedding theorem (2.5.36) provides ui(λ), u∗i ∈ C(Ωi) in 1D,
we also have

Mi(ui(λ) + u∗i ) ∈ C(Ωi) (3.4.78)

because Mi : R→ R is continuous. The weak form of (3.4.35) reads
∫

Ωi

Mi(ui(λ) + u∗i ) vi dx+

∫

Ωi

ui(λ)′ v′i dx = 0 ∀vi ∈ V 0
i . (3.4.79)

Now consider i = 1. Due to (3.4.78) the primitive
∫ ·
a M1(u1(λ) + u∗1) ds is in

C1(Ω1) ∩ V1 such that weak partial integration (A.2.11) gives
∫

Ω1

M1(u1(λ) + u∗1) v1 dx = −
∫

Ω1

(∫ ·

a
M1(u1(λ) + u∗1) ds

)
v′1 dx ∀v1 ∈ V 0

1 .

Consequently, (3.4.79) provides
∫

Ω1

(
u1(λ)′ −

∫ ·

a
M1(u1(λ) + u∗1) ds

)
v′1 dx = 0 ∀v1 ∈ V 0

1 (3.4.80)

or equivalently
a1(w1, v1) = 0 ∀v1 ∈ V 0

1 (3.4.81)

for the function w1 ∈ V1 ⊂ C(Ω1) defined by

w1 = u1(λ)−
∫ ·

a

∫ x

a
M1(u1(λ) + u∗1) ds dx .

In case of i = 2 we can argue in the same way as for i = 1 by replacing the
homogeneous Dirichlet boundary a by c. Now, again for both i = 1, 2, it is well
known that the energy scalar product ai(·, ·) induces an equivalent norm on Vi

(see (A.2.13)) such that (3.4.81) entails

(wi, ϕi)Ωi = 0 ∀ϕi ∈ C∞
0 (Ωi)

for the L2-scalar product with the dense subset C∞
0 (Ωi) of L2(Ωi) (or of V 0

i ). We
conclude wi = 0 in L2(Ωi), and since wi, ui(λ) ∈ C(Ωi) we obtain the identities

ui(λ) =

∫ ·

a

∫ x

a
Mi(ui(λ) + u∗i ) ds dx and ui(λ)′′ = Mi(ui(λ) + u∗i ) (3.4.82)

pointwise on Ωi and with a replaced by c for i = 2.
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Lemma 3.4.21. Let Ω1 = (a, b) and Ω2 = (b, c) for a < b < c and i = 1, 2.
Suppose that Mi : R→ R satisfies the conditions in Theorem 3.4.12 and κi is a
monotonically increasing real function. Then for real η ≥ µ the solutions ui(η)
and ui(µ) of (3.4.35)–(3.4.37) satisfy

ui(η) ≥ ui(µ) on Ωi (3.4.83)

u1(η)
′ ≥ u1(µ)′ on Ω1 (3.4.84)

u2(η)
′ ≤ u2(µ)′ on Ω2 . (3.4.85)

Proof. For the proof of (3.4.83) we first consider i = 1. Suppose the func-
tions u1(η) and u1(µ) coincide in a point x ∈ (a, b], then they coincide on the
whole interval [a, x] due to the unique solvability of the convex subproblem
(3.4.35)–(3.4.37) for i = 1 restricted to [a, x] which is guaranteed by the as-
sumptions on M1, see Remark 3.4.4. Since κ1 is monotonically increasing and
u1(η) = u1(µ) for κ1η = κ1µ we can assume κ1η > κ1µ. Then, due to the
continuity of u1(η) and u1(µ) provided by (2.5.36), we conclude u1(η) > u1(µ)
on an interval (x, b] where x is either a or the maximum of the elements in [a, b)
in which u1(η) and u1(µ) coincide. This shows u1(η) ≥ u1(µ) on Ω1.

u2(η) ≥ u2(µ) on Ω2 follows analogously.

We turn to the proof of (3.4.84) and (3.4.85). Since ui(λ)′′ = Mi(ui(λ) + u∗i ),
i = 1, 2, holds for any real λ due to Lemma 3.4.20, we can write

u1(λ)′ =

∫ ·

a
M1(u1(λ) + u∗1) ds (3.4.86)

with the homogeneous boundary condition in a. Due to u1(η) ≥ u1(µ) on Ω1

we also have u1(η) + u∗1 ≥ u1(µ) + u∗1 on Ω1, and since M1 is monotonically
increasing we conclude

u1(η)
′ − u1(µ)′ =

∫ ·

a
(M1(u1(η) + u∗1)−M1(u1(µ) + u∗1)) ds ≥ 0 on Ω1 .

Arguing in the same way for i = 2 we obtain instead

u2(η)
′ − u2(µ)′ =

∫ ·

c
(M2(u2(η) + u∗2)−M2(u2(µ) + u∗2)) ds ≤ 0 on Ω2

with the homogeneous boundary condition in c and the reversed direction of
integration on Ω2.

We remark that it seems unclear whether the estimates (3.4.83) are strict in-
equalities on Ωi if κi, i = 1, 2, are strictly increasing. On the other hand, in the
Richards equation we usually have continuous Mi and Mi ≥ 0 (or even Mi > 0).
Then, due to ui(λ)′′ = Mi(ui(λ)+u∗i ) we obtain (strict) convexity of ui(λ) on Ωi

and therefore (strict) monotonicity of ui(λ)′ on at most two subintervals of Ωi.
Note that this implies ui(0) ≤ 0 (or even ui(0) < 0) on Ωi for i = 1, 2. Finally,
observe that the solutions ui = ui(λ) + u∗i of the inhomogeneous subproblems
(3.4.38)–(3.4.40) also satisfy the inequalities (3.4.83)–(3.4.85).
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The next proposition can be regarded as corresponding to Proposition 3.3.7 for
the problem considered in the last section. As done there, we apply the concrete
form of the harmonic extension operators Hi, i = 1, 2, in one space dimension
in the proof of this crucial result.

Proposition 3.4.22. Let Ω1 = (a, b) and Ω2 = (b, c) for a < b < c and i = 1, 2.
Suppose that Mi : R → R satisfies the conditions in Theorem 3.4.12 and κi is
monotonically increasing and Lipschitz continuous. Then (3.4.76) is satisfied
for Ci = L(κi)

−1 with the Lipschitz constant L(κi) of κi.

Proof. Suppose without loss of generality η > µ. Then, considering first i = 1
we have for any x ∈ (a, b)

(H1η −H1µ)(x) =
η − µ
b− a (x− a)

≥ κ1η − κ1µ

L(κ1)(b− a)
(x− a) =

1

L(κ1)
(H1κ1η −H1κ1µ)(x) ≥ 0

which obviously entails

(M1(u1(η) + u∗1)−M1(u1(µ) + u∗1),H1η −H1µ)Ω1

≥ 1

L(κ1)
(M1(u1(η) + u∗1)−M1(u1(µ) + u∗1),H1κ1η −H1κ1µ)Ω1

because (3.4.83) gives u1(η) + u∗1 ≥ u1(µ) + u∗1 and the monotonicity of M1

provides M1(u1(η)+u∗1)−M1(u1(µ)+u∗1) ≥ 0 on Ω1. Analogously, considering
i = 2 we obtain for any x ∈ (b, c)

(H2η −H2µ)(x) =
η − µ
c− b (c− x)

≥ κ2η − κ2µ

L(κ2)(c− b)
(c− x) =

1

L(κ2)
(H2κ2η −H2κ2µ)(x) ≥ 0

and argue in the same way.

Furthermore, for i = 1 we can estimate from below

∇(H1η −H1µ) =
η − µ
b− a ≥

κ1η − κ1µ

L(κ1)(b− a)
=

1

L(κ1)
∇(H1κ1η −H1κ1µ) ≥ 0

which leads to

a1(u1(η)− u1(µ),H1η −H1µ) ≥ 1

L(κ1)
a1(u1(η)− u1(µ),H1κ1η −H1κ1µ)

since we have ∇(u1(η)−u1(µ)) ≥ 0 on Ω1 due to (3.4.84). In the case i = 2 we
estimate from above

∇(H2η −H2µ) = −η − µ
c− b ≤ −

κ2η − κ2µ

L(κ2)(b− a)
=

1

L(κ2)
∇(H2κ2η −H2κ2µ) ≤ 0

which then gives again

a2(u2(η)− u2(µ),H2η −H2µ) ≥ 1

L(κ2)
a2(u2(η)− u2(µ),H2κ2η −H2κ2µ)

since we now have ∇(u2(η)− u2(µ)) ≤ 0 on Ω2 because of (3.4.85).
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Collecting the results of this and the previous subsections we obtain the main
theorem of this section. It states the convergence of the Robin method (3.4.15)–
(3.4.18) for the domain decomposition problem (3.4.6)–(3.4.8) and its original
version (3.4.2)–(3.4.4) concerning the Richards equation and, in addition, it
asserts the well-posedness of these problems in one space dimension.

Theorem 3.4.23. Let γ1 = γ2 > 0, a < b < c and Ω1 = (a, b) and Ω2 = (b, c).
Suppose Mi : R→ R are monotonically increasing and Lipschitz continuous and
κi : R → R are monotonically increasing, Lipschitz continuous and invertible
with Lipschitz continuous κ−1

i for i = 1, 2.

Then the Robin method (3.4.20)–(3.4.23) provides sequences (uk
1)k≥1 as well

as (uk
2)k≥0 of iterates converging in V1 and in V2, respectively, to the unique

solution of the domain decomposition problem (3.4.12)–(3.4.14).

Furthermore, the domain decomposition problem (3.4.9)–(3.4.11) has a unique
solution to which the sequences (κ−1

1 uk
1)k≥1 and (κ−1

2 uk
2)k≥0 of the retransformed

iterates converge in V1 and in V2, respectively.

Finally, both domain decomposition problems (3.4.12)–(3.4.14) and (3.4.9)–
(3.4.11) are well-posed with respect to the data f ∈ L2([a, c]).

Proof. Let i = 1, 2. By Theorem 3.4.2 the conditions on Mi : R→ R guarantee
the unique solvability of the subproblems (3.4.20)–(3.4.21) and (3.4.22)–(3.4.23)
as well as (3.4.64). In one space dimension the Robin method (3.4.20)–(3.4.23)
and the altered Robin method (3.4.56)–(3.4.59) coincide so that Theorem 3.4.12
is applicable. With the given conditions on Mi : R → R and κi : R → R we
obtain the Lipschitz continuity (3.4.65) of the Steklov–Poincaré operators by
Proposition 3.4.15 and their strong monotonicity (3.4.66) by Propositions 3.4.16
and 3.4.22.

Now, Theorem 3.4.12 provides a converging sequence (λk
2)k≥0 ⊂ Λ for which

we have uk
2 = u2(λ

k
2) + u∗2 for the iterates uk

2 , k ≥ 0, from the Robin method
(3.4.20)–(3.4.23) by Proposition 3.4.7. Due to Proposition 3.4.14 the conver-
gence λk

2 → λ for k →∞ in Λ entails the convergence uk
2 → u2 for k →∞ in V2

to the unique solution u2 = u2(λ)+u∗2 on Ω2 of the domain decomposition prob-
lem (3.4.12)–(3.4.14) since λ is the unique fixed point of Tγ (Proposition 3.4.8
and Theorem 3.4.12).

Since (λk
2)k≥0 converges in Λ, so does (λk

1)k≥1 because we have

λk+1
1 = (γI + S1)

−1(γI − S2)λ
k
2 ∀k ≥ 0 (3.4.87)

due to (3.4.45) and the operators γI − S2 : Λ → Λ′ and (γI + S1)
−1 : Λ′ → Λ

are continuous. For the latter this is a consequence of the strong monotonicity
(3.4.66) of S1 which provides

〈(γI + S1)η − (γI + S1)µ, η − µ〉 ≥ (ci + γ)‖η − µ‖2Λ ∀η, µ ∈ Λ

with 〈γI(η−µ), η−µ〉 = γ‖η−µ‖2Λ (see (3.4.55)), i.e. the Lipschitz continuity
of (γI + S1)

−1. Now, with λk
2 → λ for k →∞ and (3.4.87) we obtain a λ̄ ∈ Λ
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such that we have λk
1 → λ̄ for k →∞ and

(γI + S1)λ̄ = (γI − S2)λ . (3.4.88)

However, we also have (3.4.46) which gives

λk+1
2 = (γI + S2)

−1(γI − S1)λ
k+1
1 ∀k ≥ 0

such that we obtain
(γI − S1)λ̄ = (γI + S2)λ (3.4.89)

and adding (3.4.88) to (3.4.89) gives λ̄ = λ.

Now, with the same reasoning as above for i = 2 we obtain the convergence
uk

1 → u1 for k →∞ of the iterates uk
1 from the Robin method (3.4.20)–(3.4.23)

in V1 to the unique solution u1 = u1(λ)+u∗1 on Ω1 of the domain decomposition
problem (3.4.12)–(3.4.14).

Finally, the unique solvability of (3.4.12)–(3.4.14) entails the unique solvabil-
ity of the original problem (3.4.9)–(3.4.11) by Proposition 3.4.1, and Theo-
rem 1.5.15 provides the convergence of the retransformed iterates to this unique
physical solution p on Ω with p|Ωi

= pi in Vi, i = 1, 2.

As far as the continuous dependency of ui or pi on the data f ∈ L2([a, c]) is
concerned for i = 1, 2, observe first that the convex subproblems (3.4.38)–
(3.4.40) are well-posed due to Proposition 2.4.11. (This can also be obtained
directly by testing the difference of (3.4.38) for two solutions corresponding to
different right hand sides with the difference of these solutions). Then another
application of Theorem 1.5.15 leads to the well-posedness of the retransformed
subproblems and therefore of (3.4.9)–(3.4.11).

Remark 3.4.24. With a glance at Remark 2.3.17, we note that Theorem 3.4.23
can be extended to more generalized situations in which there are space-depen-
dent parameter functions on Ωi like the porosity ni(·) as a factor in front of θi(pi)
and the hydraulic conductivity Kh,i(·) as a factor in front of ki(pi) in (3.4.2)
for i = 1, 2. In contrast to Remark 2.3.17, however, we need to make sure
that these functions fit into our one-dimensional theory, in particular into the
regularity and the monotonicity results in Lemmas 3.4.20 and 3.4.21.

Going through the proofs of these lemmas, it becomes clear from (3.4.78)
and the proof of (3.4.84) and (3.4.85) that we need to choose nonnegative
ni(·) ∈ C(Ωi) while Kh,i(·) should be Lipschitz continuous on Ωi, i = 1, 2, with
Kh,i(·) ≥ c > 0 as always. Then Kh,i(·)−1 is Lipschitz continuous on Ωi and
therefore an element of H1(Ωi) with (Kh,i(·)−1)′ ∈ L∞(Ωi) (see e.g. [15, p. 25]).
Therefore, the product function

Kh,1(·)−1

∫ ·

a
n1(s)M1((u1(λ) + u∗1)(s)) ds

appearing in (3.4.80) instead of the primitive of M1(u1(λ) + u∗1) is Lipschitz
continuous on Ω1 and in V1, too. Altogether, we obtain

ui(λ) =

∫ ·

a
Kh,i(x)

−1

∫ x

a
ni(s)Mi((ui(λ) + u∗i )(s)) ds dx
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and (Kh,i ui(λ)′)′ = niMi(ui(λ) + u∗i ) instead of (3.4.82) pointwise on Ωi for
i = 1, 2 with a replaced by c for i = 2. Now, with this result the proof of
Lemma 3.4.21 can be carried out in the same way.

Remark 3.4.25. Unfortunately, we cannot extend our theory of the last two
subsections to higher space dimensions because it is based on a contraction ar-
gument for the proof of Theorem 3.4.12, which requires the strong monotonicity
(3.4.66) of the Steklov–Poincaré operators. This property may not hold in 2D
since the same counterexamples as given in Subsection 3.3.4 apply in our more
general situation if we set Mi = 0 for i = 1, 2.

As already pointed out in Remark 3.4.17, our nonlinear Steklov–Poincaré op-
erators Si defined in 3.4.42 already contain the nonlinearities κi, i = 1, 2, due
to the definition of ui(λ) as the solutions of (3.4.35)–(3.4.37). Therefore, they
do not reduce to the Steklov–Poincaré operators of Section 3.3 but to the com-
position Siκi in (3.3.31) with the definition (3.3.29) of the well-known linear
operators Si for i = 1, 2.

Despite this lack of rigidness of the notation, it should not confuse since it is jus-
tified by the different requirements of the convergence theory for the Dirichlet–
Neumann method (3.3.33)–(3.3.37) and the Robin method (3.4.20)–(3.4.23).
Recall that the convergence of the former could only be proved by the linear-
ity of the preconditioner S2 for the unsymmetric Steklov–Poincaré interface
equation (3.3.32), whose solution λ2 is the limit of the corresponding sequence
(λk

2)k≥0 of transformed variables and occurs as a transformed physical pres-
sure λ2 = u2|Γ = κ2(p2|Γ) = κ2(p1|Γ). In contrast, the convergence of the latter
is based on the symmetric interface equation (3.3.31) to which (3.4.42) reduces
for Mi = 0, i = 1, 2. Here, the sequence (λk

2)k≥0 of interface values in Theo-
rem 3.4.12 consists of physical variables converging to the solution pi, i = 1, 2,
in the form λk

2 → p1|Γ = p2|Γ = λ for k → ∞ with λ as in (3.3.31). And since
for general Mi 6= 0, the Steklov–Poincaré operators are nonlinear anyway, they
are defined in (3.4.42) as to contain both nonlinearities Mi and κi for i = 1, 2.

Our treatment of the domain decomposition problem (3.3.11)–(3.3.13) in Propo-
sition 3.3.7 is based on the special properties of the harmonic extension oper-
ators Hi, i = 1, 2. Note, however, that the theory in this section and Re-
mark 3.4.24 also guarantee the convergence of the nonlinear Dirichlet–Neumann
method (3.3.33)–(3.3.37) if we replace ki(pi) in (3.3.11) by Kh,i(·) ki(pi) with
space-dependent functions Kh,i(·) as in Remark 3.4.24. This can easily be seen
if we consider the function κ := κ1κ

−1
2 : R→ R which has the same properties

as κ1 and κ2 such that Propositions 3.4.15, 3.4.16 and 3.4.22 can be applied
on the nonlinear operator S1κ1κ

−1
2 : Λ → Λ′ in Subsection 3.3.3. Then, well-

posedness of (3.3.11)–(3.3.13) can be obtained analogously as in the proof of
Theorem 3.4.23.

Remark 3.4.26. With regard to Theorem 3.4.12 we note that in Lions and
Mercier [66] there has been done some nice analysis on a nonlinear ADI method
given by the operator

Tδ = (I + δB)−1(I − δA)(I + δA)−1(I − δB) : H → H
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with δ > 0 for inclusion problems

u ∈ H : C(u) ∋ 0 (3.4.90)

involving a monotone operator C = A + B on a Hilbert space H on which A
and B are maximal monotone. The severe restriction which is imposed in [66]
is the assumption that (3.4.90) is solvable. Then, strong convergence of the
sequence given by a u0 ∈ H and the iteration uk+1 = Tδu

k, k ≥ 0, to the
solution u of (3.4.90), which then turns out to be unique, can be proved e.g.
if B is strongly monotone.

We remark that one can alter the proofs in [66] such that they cover the situation
of (possibly multivalued monotone) operators A,B : H → H ′ and I replaced
by the Riesz operator I : H → H ′. Then the results are also applicable to
our situation above with H = Λ, A = S1 and B = S2, however, as already
emphasized, with the assumption that a solution of (S1 + S2)λ = 0 exists.

Remark 3.4.27. At the end of our discussion on the convergence of the Robin
method in the continuous setting and in view of Remark 3.4.26 it seems to be in
order to comment on Lions [65], which one might regard as the classical reference
concerning the Robin method. In this paper, proofs for the convergence of the
Robin method (in different topologies and in different spaces) can be found for
linear cases and an arbitrary number of subdomains.

Nice variants of these proofs, which are based on “energy type” estimates, can
be found in Quarteroni and Valli [75, pp. 135–137, 242–244] for the special case
of two subdomains and a single Robin parameter γ = γ1 = γ2 > 0. The idea
is to deduce that the sequence of error norms tends to 0 by proving that the
series of these norms converges. Therefore, one needs to assume the existence
of a solution and one does not obtain convergence rates.

Unfortunately, these classical proofs do not seem to work for our problems
related to the Richards equation. The drawback one encounters if one follows
this approach is that the main part in the spatial derivative of the Richards
equation (see e.g. (3.4.1) and (3.4.2)) does not generate a monotone operator,
i.e. we do not have

∫

Ωi

(
ki(p

1
i )∇p1

i − ki(p
2
i )∇p2

i

)
∇(p1

i − p2
i ) ≥ 0

for p1
i , p

2
i ∈ H1

∂Ω∩∂Ωi
(Ωi) and positive ki ∈ L∞(Ωi) in general, not even if the

functions ki are monotonically increasing for i = 1, 2. This can be different if
the relative permeabilities ki are functions of ∇pi rather than functions of pi

with pi ∈ H1
∂Ω∩∂Ωi

(Ωi), i = 1, 2, for example if they generate (possibly different)
p-Laplacians. In the latter case, the corresponding operators are well-known to
be strictly monotone, i.e., with a change to the usual notation for p-Laplacians,
we have ∫

Ωi

(
|∇u1

i |pi−2∇u1
i − |∇u2

i |pi−2∇u2
i

)
∇(u1

i − u2
i ) > 0
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for real numbers 1 < pi < ∞, now, and functions u1
i , u

2
i ∈ W 1,pi

∂Ω∩∂Ωi
(Ωi) with

u1
i 6= u2

i for i = 1, 2. (We refer to [81, p. 71/72] or [102, p. 568] for more details.)
The corresponding relative permeability functions

ki : ui 7→ |∇ui|pi−2 , i = 1, 2 ,

lead to nonlinear versions of Darcy’s law (1.2.3) in case of full saturation and
have been considered in Chipot and Lyaghfouri [26]. In that sense, an ana-
logue of the domain decomposition problem (3.3.11)–(3.3.13) for p-Laplacians
related to different pi with 1 < pi < ∞, i = 1, 2, can be given a hydrological
interpretation.

Moreover, again assuming the existence of a solution to such a problem, the
proof in [75, pp. 135–137], given in a differential form, can in principle be carried
over to the situation of different p-Laplacians. However, one needs to assume
that the “normal fluxes” of the solution and of the initial iterate across Γ belong
to L2(Γ) as well as their traces and the traces of all iterates on Γ provided by
the Robin method. The latter is guaranteed by

pi ≥
2d

d+ 1
, i = 1, 2 ,

with the space dimension d according to Theorem A.2.2. But still, the unique
solvability of the Robin problems involved is not clear in all cases since the
trace spaces generated by W 1,pi(Ωi), i = 1, 2, on Γ (and their norms) do not
coincide for p1 6= p2. Here, one probably needs to impose further regularity
assumptions in order to succeed as in the proof given in [75, pp. 242–244] for
the weak formulation of the problem.

3.4.5 Robin method applied to the time- and space-discretized
Richards equation, convergence and numerical treatment

In this subsection we take a close look at the Robin method for the time-
discretized Richards equation, its space discretization and the numerical treat-
ment how we perform it. We obtain convergence of the discrete Robin method in
one space dimension. The considerations here will be completed in Section 4.2
where we finally include gravity.

Note that for the Dirichlet and Neumann subproblems as in Section 3.3 the
space discretization and the numerical treatment is clear even in the nonlinear
case of the Richards equation (without gravity) since they have already been
discussed in Section 2. This is not true for the Robin subproblems which are
even nonlinear in the stationary case of Section 3.3 due to the contribution of
the physical pressure which is the retransformed unknown on the interface. Un-
fortunately, we do not have a suitable discretization and a numerical treatment
for the altered Robin method (3.4.56)–(3.4.59), let alone a treatment based on
convex analysis. We do not even know if the corresponding continuous subprob-
lems are well-posed in general. Nevertheless, in one space dimension the Robin
method and its altered version coincide and the convergence proof in Subsec-
tions 3.4.3 and 3.4.4 can be successfully translated into discrete arguments.
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Robin method for the implicit-explicitly time-discretized Richards
equation

With regard to the numerical treatment of the Robin method for the implicit-
explicitly time-discretized Richards equation, we consider it once again in con-
crete terms here since this has not been done in complete detail in Subsec-
tion 3.4.1. Neglecting constants as well as the porosity n and the hydraulic
conductivity Kh, our time-discretized Richards equation in the Kirchhoff–trans-
formed version reads

Mi(ui)−Mi(ũi)

τ
− div

(
∇ui − kri(Mi(ũi))ez

)
= 0 on Ωi (3.4.91)

for i = 1, 2 with the time step size τ > 0, see (3.2.19). Here, the time-discretized
(unknown) water flux for the present time step expressed in the transformed
variables is

vi = −(∇ui − kri(Mi(ũi))ez) =: −ṽi , i = 1, 2 .

Let us consider Neumann data v · n = fN ∈ L2(γN ) (which is flow of water
out of Ω) on a subset γN ⊂ ∂Ω as well as homogeneous Dirichlet values on
γD := ∂Ω\γN with γNi := ∂Ωi ∩ γN and nontrivial γDi := ∂Ωi ∩ γD for i = 1, 2.
(Inhomogeneous Dirichlet data and boundary conditions of Signorini’s type
can be included according to Chapter 2 where this case has been extensively
discussed.)

In this setting, we look for ui ∈ Ṽi := H1
γDi

(Ωi) (with the corresponding trace

space Λ), where ũi ∈ H1(Ωi), i = 1, 2, is supposed to be known from the
previous time step. As indicated in (3.4.5) and in Remark 3.4.3, the Robin
interface conditions (3.4.16) and (3.4.18) are replaced by

ṽk+1
1 · n + γ1 κ

−1
1 (uk+1

1 ) = ṽk
2 · n + γ1 κ

−1
2 (uk

2) on Γ (3.4.92)

ṽk+1
2 · n− γ2 κ

−1
2 (uk+1

2 ) = ṽk+1
1 · n− γ2 κ

−1
1 (uk+1

1 ) on Γ . (3.4.93)

We derive a weak formulation of (3.4.92) by testing (3.4.92) with µ ∈ Λ and
setting vi = Riµ with linear continuous extension operators Ri : Λ → Ṽi

for i = 1, 2. First, Green’s formula (1.5.9) (or (A.2.12) in the weak sense) gives
∫

Ωi

(div ṽi) vi dx = −
∫

Ωi

ṽi∇vi dx+

∫

γNi

ṽi · ni vi dσ+

∫

Γ
ṽi ·ni µdσ (3.4.94)

for i = 1, 2, with the outward normal ni of Ωi and div ṽi = τ−1(Mi(ui)−Mi(ũi))
as well as ṽi · ni = −fN on γNi . Therefore, skipping the indices k and k + 1 in
(3.4.92) as done in the proof of Theorem 3.4.2, the weak form of the left hand
side in (3.4.92) reads

τ

∫

Γ
ṽ1 · n µdσ + τ γ1

∫

Γ
κ−1

1 (u1)µdσ

=

∫

Ω1

M1(u1) v1 dx+ τ

∫

Ω1

∇u1∇v1 dx+ τ γ1

∫

Γ
κ−1

1 (u1)µdσ − ℓ̃1(v1)
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with

ℓ̃1(v1) :=

∫

Ω1

M1(ũ1) v1 dx+ τ

∫

Ω1

kr1(M1(ũ1))ez∇v1 dx− τ
∫

γN1

fN v1 dσ .

Analogously, setting n2 = −n1 = −n in (3.4.94), we obtain the weak form of
the right hand side in (3.4.92) as

τ

∫

Γ
ṽ2 · n µdσ + τ γ2

∫

Γ
κ−1

2 (u2)µdσ

= −
(∫

Ω2

M2(u2) v2 dx−
∫

Ω2

M2(ũ2) v2 dx+ τ

∫

Ω2

∇u2∇v2 dx

− τ
∫

Ω2

kr2(M2(ũ2))ez∇v2 dx+ τ

∫

γN2

fN v2 dσ

)
+ τ γ2

∫

Γ
κ−1

2 (u2)µdσ

which can be regarded as a continuous linear functional ℓ̃2 on Ṽ1 if one considers
v2 = R2 trΓv1 and µ = trΓv1. We denote by

ci(ũi, vi) :=

∫

Ωi

kri(Mi(ũi))ez∇vi dx (3.4.95)

the influence of the gravitation in the functionals ℓi, i = 1, 2. Altogether, setting
ℓ1 := ℓ̃1 + ℓ̃2, the weak form of (3.4.92) reads

(M1(u1), v1)Ω1+τγ1(κ
−1
1 u1, trΓv1)Γ+τa1(u1, v1) = ℓ1(v1) , v1 = R1µ , ∀µ ∈ Λ .

Choosing v1 ∈ V 0
1 in this equation gives

(M1(u1), v1)Ω1 + τa1(u1, v1) = (M1(ũ1), v1)Ω1 + τc1(ũ1, v1)− τ(fN , v1)γN1

(3.4.96)
by which the weak formulation of (3.4.91) in V 0

1 is recovered (the scalar product
in L2(γN1) is denoted by (·, ·)γN1

). Therefore, just as (3.4.24) in the proof of
Theorem 3.4.2, the variational equality

u1 ∈ Ṽ1 : (M1(u1), v1)Ω1 +τγ1(κ
−1
1 u1, trΓv1)Γ +τa1(u1, v1) = ℓ1(v1) ∀v1 ∈ Ṽ1

(3.4.97)
is equivalent to one iteration step of the Robin method for (3.4.91) in subdo-
main Ω1 with the Robin transmission condition (3.4.92). Due to n2 = −n,
the weak form of the corresponding subdomain problem on Ω2 with the Robin
condition (3.4.93) turns out to be completely symmetric to (3.4.97). Therefore,
we deal with (3.4.97) in the following.

Remark 3.4.28. The boundedness of kri ∈ L∞(R) and the conditions on
Mi : R → R, i = 1, 2, in Theorem 3.4.2 guarantee the boundedness of ℓ1
(see Propositions 2.5.11 and 2.5.12) and the unique solvability of (3.4.97). If
M1 : [uc,∞) → R is monotonically increasing, continuous and bounded as in
Chapter 2, this is still true as long as M2, κ2 and u2 are such that ℓ1 ∈ Ṽ ′

1 . Note,
however, if κ−1

1 : (uc,∞) → R is as in case of the Brooks–Corey functions, i.e.
unbounded around the singularity uc (see (1.3.24) or Figure 1.9), we cannot
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guarantee the unique solvability of (3.4.97). In fact, we do not even have well-
definedness κ−1

1 u1 ∈ L2(Γ) with u1 ∈ Ṽ1 in this case for certain u1 with ranges
around the critical value uc. But, again, if M2, κ2 and u2 are such that ℓ1 ∈ Ṽ ′

1 ,
then one can still consider the related minimization problem as in (3.4.27). The
convex function Ψ1 : [uc,∞) → R occurring in this problem is continuous in
uc because κ−1

1 has a finite integral on (uc,−1). Therefore, this minimization
problem is uniquely solvable. We point out that, just as for the generalized
saturation, this even works in the limit cases considered in Subsections 1.4.2
and 1.4.4. And again, we can solve the corresponding problems on the discrete
level robustly in these limit cases (see later in this subsection). Nevertheless,
we assume here that κ1 : R→ R has the properties as in Theorem 3.4.2. Then,
with the additional convex functional ψ1 on Ṽ1 as defined in (3.4.25), which
has the directional derivative as in (3.4.26), the variational equality (3.4.97)
(with τ = 1 for simplicity) is equivalent to finding the minimum of F1 as given
in (3.4.28) on Ṽ1.

Space discretization of the subproblems in the Robin method

Now we turn to the space discretization of (3.4.97), more concretely its dis-
cretization with linear finite elements in a corresponding finite element space
S1

j ⊂ Ṽ1, j ≥ 0, with the set of nodes N 1
j . This has already been dealt with in

Section 2.5 except for the contribution (κ−1
1 u1, trΓv1)Γ coming from the direc-

tional derivative of ψ1. With a glance at (2.5.12) and (2.5.44), one finds that
in light of Section 2.5, the “correct” discretization of this term must be given
by the lumped L2(Γ)-scalar product on the restrictions of the functions in S1

j

on Γ, which is the integral over the S1
j -interpolant of κ−1

1 (u1) · v1 over Γ. In

concrete terms, with an assumed discrete solution u1,j ∈ S1
j and v ∈ S1

j as in

Section 2.5, we discretize (κ−1
1 u1, trΓv1)Γ by

∫

Γ

∑

p∈N 1
j

κ−1
1 (u1,j(p)) v(p)λ

(j)
p dx =

∑

p∈N 1
j ∩Γ

κ−1
1 (u1,j(p)) v(p)hΓ,p

with the weights

hΓ,p :=

∫

Γ
λ(j)

p dσ ∀p ∈ N 1
j

which vanish for p /∈ Γ. Obviously, this discretization corresponds to discretiz-
ing ψ1 : Ṽ1 → R, given via the convex function Ψ1 in (3.4.25), by ψ1,j : S1

j → R
defined as

ψ1,j : v 7→
∑

p∈N 1
j ∩Γ

Ψ1(v(p))hΓ,p ∀v ∈ S1
j . (3.4.98)

It is analogous to the discretization of φ1 in (3.4.28) by φ1,j as in (2.5.2).
With the properties of Ψ′

1 = κ−1
1 : R → R in Theorem 3.4.2 one can first

guarantee the unique solvability of the obtained discretization of (3.4.97) in
S1

j as in Subsection 2.5.1. Furthermore, one can derive the convergence of

u1,j ∈ S1
j to the solution of (3.4.97) in the norm ‖ · ‖1,Ω1 in Ṽ1 for j → ∞
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analogously as in Subsection 2.5.2, which shall not be carried out here. Recall,
however, that we are not really interested in this convergence result for the
time-discretized Richards equation with Robin boundary values, but rather in
the question whether the Robin method on the space-discretized level converges.
(Note that the influence of the previous iterate u2 in the second subdomain is
still hidden in ℓ1.) We will address this question and give a positive answer to
it at the end of this subsection.

As far as the numerical realization of the discretized functional ℓ1 is concerned,
we approximate the above integrals after the finite element discretization by
interpolation of M1(ũ1) or M1(ũ1) v in S1

j and fN in S1
j restricted to Γ. As a

consequence, a numerical treatment with the mass matrix given by the entries

∫

Ω1

λ(j)
p λ(j)

q dx for p, q ∈ N 1
j

or its lumped version (with the entries
∫
Ω1
λ

(j)
p dx for p ∈ N 1

j on the diagonal,

and the same on Γ instead of Ω1) is possible. The same applies to ℓ̃2. In case
of a nonconstant porosity n(·) or a nonconstant hydraulic conductivity Kh(·)
on Ω1 quadrature rules need to be applied to the integral (M1(u1), v1)Ω1 and
the bilinear form a1(u1, v1) in (3.4.97), too, see Subsection 2.5.3.

For the time being we can consider the contributions (3.4.95) from the gravi-
tation in the linear functional to be vanishing. Our further treatment of these
terms in the finite element discretization will be explained in Section 4.2.

Numerical treatment of the space-discretized subproblems

In the following, we deal with the numerical treatment of the discretized vari-
ational equality which, as just seen, results in a finite-dimensional convex min-
imization problem of finding the minimum u1,j ∈ S1

j of the functional

v 7→ φ1,j(v) + τγ1ψ1,j(v) +
1

2
τa1(v, v) − ℓ1(v) ∀v ∈ S1

j . (3.4.99)

On the one hand, we have φ1,j(v) + τγ1ψ1,j(v) = φ1,j(v) for all v ∈ S1
j whose

support does not intersect Γ, i.e. for all nodes in N 1
j \Γ we are in the situation

of the problems dealt with in our numerical Sections 2.6 and 2.7. On the other
hand, if we replace φj by φ̃j := φ1,j + τγ1ψ1,j in these sections, we can transfer
the considerations therein to the present case.

More concretely, recall by the Gauss–Seidel step (2.6.7) or (2.6.12) that the
convex function Φ in (2.5.2) may well depend on the nodes p ∈ Nj in the
Gauss–Seidel method as long as we have the decoupling structure in (2.6.2),
which is enforced by the definition (3.4.98) of ψ1,j for nodes p ∈ N 1

j ∩ Γ, too.
In addition, as emphasized at the beginning of Subsection 2.7.2, this general-
ization Φp instead of constant Φ for all p ∈ Nj is also covered by the theory of
monotone multigrid.
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As far as the practical realization of the Gauss–Seidel method is concerned,
note that we only need to write the additional summand

τγ1Ψ
′
1(w

ν
l−1(pl) + zl)hΓ,pl

with Ψ′
1 = κ−1

1

on the right hand side of (2.6.13). Consequently, the nonlinear monotonically
increasing (multi-)function Hl in (2.6.15) (possibly given on R for M1 : R→ R)
needs to be replaced by the function

FΓ(·) := Hl(·) + τγ1κ
−1
1 (·)hΓ,pl

hpl

(3.4.100)

on (uc,∞) (or R) so that for pl ∈ Γ the intersection of the graph of FΓ and the
line given by G−w̄l

in Figure 2.1 has to be calculated instead of (2.6.16). Obvi-
ously, this also works for unbounded κ−1

1 : (uc,∞) → R according to Brooks–
Corey as in (1.3.24), see Figure 1.9. In fact, the Gauss–Seidel iteration converges
to a unique minimum of (3.4.99) in this case of the fully discrete Richards equa-
tion according to Brooks–Corey and even in the limit cases (cf. Subsections 1.4.2
and 1.4.4), too, see Glowinski [45, pp. 142–147]. Compare this with our con-
siderations on the continuous setting as noted in Remark 3.4.28. We point
out that even if Hl = 0 in the case of the stationary problems considered in
Subsection 3.3.5, the subproblems in the Robin method applied to them are
always nonlinear due to the convex functional ψ1 : Ṽ1 → R such that nonlinear
Gauss–Seidel steps as just described always occur for nodes p ∈ N 1

j ∩ Γ.

As far as the coarse grid corrections in the monotone multigrid for the mini-
mization of (3.4.99) are concerned, we have already emphasized that they can
be carried out with an additional convex contribution on p ∈ N 1

j ∩ Γ. A dif-
ferent critical point (uα instead of uc) occurs if altered Brooks–Corey functions
(from Subsection 1.4.3) are used in the nondegenerate case. For the constrained
Newton linearization as in (2.7.14) we obviously have to calculate Ψ′′

1 = (κ−1
1 )′.

In addition, for the estimates as in (2.7.7) we also need Ψ′′′
1 = (κ−1

1 )′′ in case of
p ∈ N 1

j ∩Γ and FΓ : (uc,∞)→ R. More concretely, we use a global threshold L̃

and compute ũc as in Subsection 2.7.4 with L = L̃/2. Then we compute uc by

τγ1κ
−1
1 (uc)

hΓ,pl

hpl

= L (3.4.101)

(which can be done explicitly in case of the Brooks–Corey functions) and choose
u′c = max(ũ, uc) in order to obtain an estimate as in (2.7.7) on [u′c,∞) with the
global Lipschitz constant L̃ and with F ′

Γ instead of Φ′′
p.

Remark 3.4.29. As already indicated in Remark 1.4.1, in case of different
bubbling pressures pb,i in different subdomains for i = 1, 2, . . . , n, one only
needs to take into account the different scaling factors ur,i = −pb,i(̺gz0)

−1 in
the stiffness matrix for the numerical treatment of the subproblems (compare
(1.3.15) and (1.3.18)). Otherwise, nothing else needs to be changed in the latter.
In addition to that, only the Kirchhoff transformations and their inverses on
each subdomain need to be altered because the physical pressure should be
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measured not in units of −pb,i but in units of p0 which is common for all
subdomains. (For convenience one can set the unit p0 = ̺gz0, i.e. as the
pressure equivalent to the pressure of a water column with the height z0.)

As a convention introduced in Section 1.3 by the definition of the adimensional
parameter functions, the generalized pressures ui on the subdomains are always
given in units of −pb,i and so are κ−1

i (ui). (Recall that pb,i always corresponds
to −1 in the scaled functions in (1.3.20)–(1.3.26).) Therefore, for i = 1, 2, . . . , n
in case of n subdomains, the conversion of the units can be seen by multiplying 1
in

κ−1
i (ui) [−pb,i] ·

(
[p0]

[−pb,i]
· [−pb,i]

[p0]

)
= κ−1

i (ui)
[−pb,i]

[p0]
[p0] ,

i.e. κ−1
i (ui) needs to be multiplied by −pb,i/p0 = ur,i in order to get pi in

the unit p0 and analogously, pi given in this unit needs to be multiplied by
p0/(−pb,i) = u−1

r,i before applying κi to it. Note that this has to be done
for the Dirichlet and the Robin transmission conditions (3.3.34) and (3.4.16)
or (3.4.18), respectively, in each iteration step. In addition, this must be done
for the transformation of the initial or Dirichlet boundary conditions into the
generalized pressure in each subdomain as well as for the retransformation of
the solutions ui in the subdomains into the physical pressure measured in the
common unit p0.

Convergence of the Robin method for the time- and space-discretized
Richards equation

As in the discrete case for the Dirichlet–Neumann method discussed in Re-
mark 3.3.9, we also obtain a convergence result for the discrete Robin method,
the proof of which shall be sketched here. Again, the considerations follow
those of the continuous case and are more complicated than for the Dirichlet–
Neumann method. First, we discretize the transmission problem (3.4.12)–
(3.4.14) analogously as in Remark 3.3.9 with the discretization

∑

p∈N i
j

Mi(ui,j(p)) v(p)hp , ui,j, v ∈ Si
j

of (Mi(ui), vi)Ωi via the lumped L2-scalar product and use the (corresponding)
discretization of the Robin steps (3.4.20)–(3.4.21) and (3.4.22)–(3.4.23) as de-
scribed above. Accordingly, the nonlinear discrete Steklov–Poincaré operators
Si,j : Λj → (Λj)′ are given by

〈Si,jλ, µ〉 :=
∑

p∈N i
j

Mi((ui,j(λ) + u∗i,j)(p)) (Ri,jµ)(p)hp

+ ai(ui,j(λ) + u∗i,j, Ri,jµ)− (f,Ri,jµ)Ωi ∀µ ∈ Λj

for i = 1, 2, j ≥ 0, with the notation as in Remark 3.3.9. Then Proposi-
tions 3.4.6, 3.4.7 and 3.4.8 can be established in the discrete case, too. Since
the altered discrete Robin method is equal to our discretized Robin method in
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one space dimension (we do not have a general suitable discretization of the
altered Robin method), Theorem 3.4.12 can be carried over to the discrete case
in 1D. Our basic Lemma 3.4.13 also holds on a discrete level. For the proof
of the discrete versions of Propositions 3.4.14 and 3.4.15 (in arbitrary dimen-
sions) we can use j-independent H1-estimates for lumped L2-scalar products
on Ωi, i = 1, 2, which can be found e.g. in Elliott et al. [35] or in Blowey and
Elliott [17]. Proposition 3.4.16 and Corollary 3.4.18 can be proved analogously
in the discrete setting.

We need to take a closer look at the proof of Lemma 3.4.21, where we used
“continuous arguments” based Lemma 3.4.20 and on the strong formulation of
(3.4.35)–(3.4.37). The latter does not have a straightforward discrete analogue
in a strong sense so that, for example, (3.4.86) is false on the discrete level.
However, we can also establish the results in Lemma 3.4.21 here by translating
the ideas used there into “discrete arguments”. Note that the discretization
of (3.4.35) with λ ∈ Λj reads

∑

p∈N i
j

Mi(ui,j(λ)(p)) v(p)hp +

∫

Ωi

ui,j(λ)′v′ dx ∀v ∈ Si
j , v|Γ = 0 . (3.4.102)

Let a := p0 < p1 < · · · < pn =: b, n ∈ N, be the nodes in N 1
j ∩ [a, b]. In order

to prove
ui,j(η)(p) ≥ ui,j(µ)(p) ∀p ∈ N i

j (3.4.103)

with η ≥ µ for i = 1, we carry out an induction in which one step looks
as follows. We test (3.4.102) with v ∈ S1

j satisfying v(p) = 1 for all nodes
p < pk and vanishing on all others, once the inequality ui,j(η)(p) ≥ ui,j(µ)(p)
for all p < pk and k with 1 ≤ k ≤ n is known. Consequently, since

∑

p0≤p≤pk

(
M1(u1,j(η)(p)) −M1(u1,j(µ)(p))

)
v(p)hp ≥ 0

holds, we obtain

∫ p1

a
(u1,j(η) − u1,j(µ))′v′ dx+

∫ pk

pk−1

(u1,j(η)− u1,j(µ))′v′ dx ≤ 0

from (3.4.102) and therefore ui,j(η)(pk) ≥ ui,j(µ)(pk). For the proof of

u1,j(η)
′ ≥ u1,j(µ)′ on (pk−1, pk) , 1 ≤ k ≤ n , (3.4.104)

we can also use induction. Testing (3.4.102) by λp, p ∈ N i
j , λp(b) = 0, gives

(
Mi(ui,j(η)(p)) −Mi(ui,j(µ)(p))

)
v(p)hp = ∆j

(
ui,j(η)− ui,j(µ)

)
(p) ≥ 0

for a discrete Laplacian ∆j which provides the same discretization as central
differences for the second derivatives. With this inequality one can easily deduce
(3.4.104) by induction for k = 1, . . . , n while using ui,j(η)(a) = ui,j(µ)(a) = 0
and (3.4.103). The proofs of (3.4.103) and (3.4.104) with ≥ replaced by ≤
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for i = 2 are analogous for the second subdomain. In addition, they work for
nonconstant porosity n(·) and hydraulic conductivity Kh(·) if we use a quadra-
ture by replacing hp in (3.4.102) by n(p)hp and approximate Kh between two
successive nodes by a constant value (compare Remark 3.4.24).

Now, Proposition 3.4.22 can be carried over to the discrete case with the same
constants which are independent of j ≥ 0. Altogether, if we collect all the
results we can prove the following discrete analogue of Theorem 3.4.23 as in the
continuous setting.

Theorem 3.4.30. Assume that the conditions as in Theorem 3.4.23 are sat-
isfied and the domain decomposition problem (3.4.12)–(3.4.14) as well as the
Robin method (3.4.20)–(3.4.23) are discretized as described above.

Then this discretization of the Robin method provides sequences (uk
1,j)k≥1 and

(uk
2,j)k≥0 of finite element iterates converging in S1

j and in S2
j , respectively, to

the unique solution of the discretized domain decomposition problem (3.4.12)–
(3.4.14) which, moreover, is well-posed with respect to the data f ∈ L2([a, c]).

The lack of a convergence result ui,j → ui, i = 1, 2, for j → ∞ and the
basic problems around the connection to the untransformed discretized problem
(3.4.9)–(3.4.11) have already been addressed in Remark 3.3.9.

3.4.6 Numerical tests in 2D: Robin method vs. Dirichlet–Neu-
mann method and applied to the Richards equation with-
out gravity

In this subsection we present some numerical results on the performance of
the Robin method that we obtained for some model problems related to the
Richards equation in two space dimensions. As in Subsection 3.3.5 for the
Dirichlet–Neumann method, it turns out that the algorithm can also be applied
successfully in cases for which we do not have a proof of its convergence.

In the first part of this subsection we test the Robin method in the same situa-
tion as done for the Dirichlet–Neumann method in Subsection 3.3.5. This leads
to a comparison of these two methods in the Yin Yang case considered there
which we extend by applying these iteration techniques in the same case with
nonlinearities that differ from each other even more than in Subsection 3.3.5.
Although both procedures can be applied successfully to these domain decompo-
sition problems, it turns out that the Dirichlet–Neumann method shows better
convergence results in these cases than the Robin method. Nevertheless, due
to our analytical results from this section, we go on to test the Robin method
in cases such as (3.4.2)–(3.4.4) involving two nonlinearities θi, ki : R → R
for i = 1, 2 in the subproblems. Therefore, in the second part of the subsection
we present numerical results obtained by the application of the Robin method
to the Richards equation without gravity in a heterogeneous setting with two
different soil types. The performance of the method for this two-dimensional
time-dependent case is quite satisfying.
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Comparison of Robin method and Dirichlet–Neumann method

With the following numerical results the performance of the Robin method and
the Dirichlet–Neumann method when applied to the model problem in Subsec-
tion 3.3.5 can be compared. In the first example concerning the Robin method
we use the same data, parameter functions and meshes as in that subsection.
The discretization by piecewise linear finite elements is carried out as discussed
in Subsection 3.4.5. Recall that in contrast to the Dirichlet–Neumann method
in Section 3.3 the resulting problems on the subdomains are nonlinear for the
Robin method in general. They are treated by a monotone multigrid solver
which we also described in Subsection 3.4.5. More concretely, we use trun-
cated monotone multigrid with a V (3, 3)-cycle, i.e. containing 3 presmoothing
and 3 postsmoothing steps as explained on page 123. The threshold in (3.4.101)
is chosen as L = 108. As a stopping criterion for this local solver we require
the relative error to satisfy

|uj
i − u

j−1
i |1,Ωi

|uj−1
i |1,Ωi

≤ 10−12 , i = 1, 2 , (3.4.105)

for the last multigrid iterate uj
i with j ≥ 1 where | · |1,Ωi is the energy norm

on Ωi induced by the bilinear form ai(·, ·).
The convergence rates ρ for the Robin method in Figures 3.10 and 3.12 have
been obtained in the same way as for the Dirichlet–Neumann method in Fig-
ures 3.7 and 3.9 (see (3.3.59)–(3.3.60)). Here, the Robin parameter γ needs to
be chosen on another scale than the damping parameter ϑ for the Dirichlet–
Neumann method. But as in the latter case there also seems to be an opti-
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Figure 3.10: ρ vs. Robin parameter γ on levels 1 to 6
Robin method for the case in (3.3.58)
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Figure 3.11: γopt vs. refinement level
Robin method for (3.3.58)
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Figure 3.12: ρopt vs. refinement level
Robin method for (3.3.58)

mal choice of the parameter which depends on the refinement level, and there
seems to be an interval inside of which the parameter has to be chosen in or-
der to guarantee reasonable convergence rates, see Figure 3.10. To achieve this
we need larger parameters γ on higher levels which corresponds to a bigger
damping needed for the Dirichlet–Neumann method on higher levels (compare
Figure 3.7). Unfortunately, however, in contrast to the Dirichlet–Neumann
procedure this effect does not seem to stabilize on higher levels for the Robin
method (note the logarithmic scale in Figure 3.10). Figures 3.11 and 3.12 show
the behaviour of the optimal Robin parameter γopt and the optimal convergence
rate ρopt = ρ(γopt) on levels 1 to 7.

We remark that apart from the size of the hydraulic conductivity Kh in (3.3.57),
which occurs as a factor in front of the Laplacians in (3.4.15) and (3.4.17) and
therefore in front of the normal derivatives in (3.4.16) and (3.4.18), respectively,
we do not have further a priori indicators for the order of magnitude of the
optimal Robin parameters. (Concerning the linear theory on this topic we refer
to Wachspress [93] and Discacciati [33, pp. 102–105].)

The model problem in Subsection 3.3.5 that we considered so far is heteroge-
neous in the sense that different pore size distribution factors (3.3.58) are given
on Ω1 and Ω2. However, the bubbling pressure pb = −1 corresponding to the
discontinuity in the derivative of the nonlinearities ki(pi) in (3.3.57) and the
hydraulic conductivities Kh as an additional factor in front of ki are the same
in both subdomains. In the following, we extend this model problem such that
it also contains different bubbling pressures pb,i (see (1.2.9), (1.2.11) and Sec-
tion 1.3 for details) and hydraulic conductivities Kh,i in Ωi for i = 1, 2. More
concretely, we consider the case of sand in Ω1 and clay in Ω2 given in Table 3.1
which we shall call strongly heterogeneous case.

As in Subsection 3.3.5 we choose one meter of a water column as the pressure
unit for pb,i and Kh,i are given in [m/s]. The data in Table 3.1 are hydrologically
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Ωi λi pb,i Kh,i

i = 1 (sand) 0.694 −0.073 6.54 · 10−5

i = 2 (clay) 0.165 −0.373 1.67 · 10−7

Table 3.1: Strongly heterogeneous case

quite extreme since they are covering the whole range of possible soil parameters
according to the USDA (United States Department of Agriculture) soil texture
triangle, see Rawls et al. [77, Tables 5.3.2 and 5.5.5]. In order to distinguish this
strongly heterogeneous case from the heterogeneity (3.3.58) in the first model
problem above we call the latter mildly heterogeneous case form now on.

Note that Kh,1 and Kh,2 in Table 3.1 are smaller than Kh = 0.002 chosen in
the previous example and, in addition, differ from each other by two orders of
magnitude. Therefore, we also alter the right hand side f (as in (3.3.56) given
in the unit [1/s]) in order to obtain a solution which has approximately the
same range as the one from the previous example in Figure 3.6. We define f as

f(x) =





−2.5 · 10−3 on B1

5 · 10−5 on B2

0 elsewhere.

(3.4.106)

Moreover, we choose a smaller ellipticity constant c = 0.01 for the nonlinearity
in (3.3.57) than in the mildly heterogeneous case.

For the numerical treatment of different bubbling pressures in different subdo-
mains see Remarks 1.4.1 and 3.4.29. Other than that, the solvers are the same
as used in the mildly heterogeneous case. Figure 3.13 shows the numerical so-
lution p on Ω of the domain decomposition problem (3.3.11)–(3.3.13) in the
strongly heterogeneous case of Table 3.1, calculated on about 235,000 nodes as
in Figure 3.6 for the case (3.3.58). Here, the range of p is [−56.1, 0.0] in Ω1 and
[−36.2, 3.0] in Ω2 and thus resembles the range of the solution in the previous
example.

Again, but now more obvious than in Figure 3.6 (where this has been indi-
cated by a black line), the plot contains a “crater” corresponding to a circular
area in Ω in which the soil is not fully saturated (i.e. where pi < pb,i holds
for i = 1, 2). The boundary Σ of this area, which is the free boundary separat-
ing the unsaturated from the saturated regime, is given by pi = pb,i, i = 1, 2,
in Ωi. In particular, even though this can only be guessed from Figure 3.13,
this free boundary has a nontrivial two-dimensional intersection with the inter-
face Γ = Ω1 ∪ Ω2 because we now have pb,1 6= pb,2. More concretely, the same
pressure may result in a maximal saturation in Ω2 (which contains the source
and the smaller bubbling pressure) but not in Ω1. Still, as can be seen along
Σ ∪ Ω2 and despite the strong effect of the Kirchhoff transformation across Σ,
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Figure 3.13: Solution p on Ω in the
strongly heterogeneous case
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the solution pi ∈ H1(Ωi) is smooth across Σ∪Ωi for i = 1, 2. However, it is ob-
vious that p is not smooth across Γ which reflects that (3.3.13) rather enforces
the continuity of the normal fluxes across the interface such that we have

∂p1

∂n
6= ∂p2

∂n
on Γ in general .

This contrasts the situation in the saturated region in Figure 3.6 where (3.3.13)
also entails the continuity of the normal derivatives of p across Γ because of the
constant bubbling pressure and hydraulic conductivity on Ω.

Despite the strong impact of the heterogeneities in Table 3.1 on the solution
in Figure 3.13 we do not obtain worse convergence results for our domain de-
composition methods in this model problem compared to the mildly hetero-
geneous case. On the contrary, the Dirichlet–Neumann method applied to
the strongly heterogeneous case shows an unexpected and surprisingly good
behaviour. Figures 3.14–3.16 and Figures 3.17–3.19 were obtained for the
Dirichlet–Neumann and the Robin iteration, respectively, in the same way as
described above for the mildly heterogeneous case.

As can be seen in Figure 3.14, the Dirichlet–Neumann method provides ex-
tremely good optimal convergence rates (ρopt = 0.012) on the first two levels
with almost no damping (ϑopt = 0.9875). Moreover, we can allow a considerable
overrelaxation (i.e. ϑ > 1) and still obtain convergence. The situation on the
third level is worse but still much better than in the mildly heterogeneous case
in Figure 3.7. Surprisingly, the convergence results improve again on level 4,
and even on levels 5 and 6 they are better than on the third level. As in the
previous example, but now with considerably better values, the optimal damp-
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Figure 3.14: ρ vs. damping parameter ϑ on levels 1 to 6
Dirichlet–Neumann method for the case in Table 3.1
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Figure 3.15: ϑopt vs. refinement level
Dirichlet–Neumann for Table 3.1
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Figure 3.16: ρopt vs. refinement level
Dirichlet–Neumann for Table 3.1

ing parameter (ϑopt = 0.86) and the optimal convergence rates (ρopt = 0.136 on
the 6th and ρopt = 0.132 on the 5th and the 7th level) stabilize on higher levels,
see Figures 3.15 and 3.16.

Figures 3.17–3.19 show that the Robin method applied to the new model prob-
lem behaves similarly as in the mildly heterogeneous case. In contrast to the
latter, the Robin parameter γ has to be chosen on a smaller scale now which
reflects the smaller hydraulic conductivities used in Table 3.1. (As indicated
above, the hydraulic conductivities Kh,i, i = 1, 2, are factors in front of the
Laplacians in (3.4.15) and (3.4.17), which means they also appear as factors
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Figure 3.17: ρ vs. Robin parameter γ on levels 1 to 6
Robin method for the case in Table 3.1

203



1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4x 10
−5

Figure 3.18: γopt vs. refinement level
Robin method for Table 3.1
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Figure 3.19: ρopt vs. refinement level
Robin method for Table 3.1

in front of the normal derivatives in (3.4.16) and (3.4.18), respectively.) As
already seen in Figure 3.10, level-independence of the convergence rates occurs
if and only if the Robin parameter is bigger than the optimal parameter γopt

related the the finest level considered. In addition, as in the mildly heteroge-
neous case, we also observe in Figures 3.18 and 3.19 that γopt and ρopt do not
seem to stabilize on higher levels. If one regards the continuous situation as the
limit of the discrete settings, these results could provoke the hypothesis that
our 1D-convergence result on the Robin method in Theorem 3.4.23 cannot be
generalized to higher dimensions.

With regard to the original problem (3.3.11)–(3.3.13) related to the Richards
equation, one might be interested in the convergence rates ρp for the domain
decomposition methods measured in the physical variables pi, i = 1, 2, i.e.
after the application of the inverse of the Kirchhoff transformation. Recall
that in general this retransformation is ill-conditioned for physical pressures
corresponding to the unsaturated regime or at least having a similar effect for
small ellipticity constants c > 0 in (3.3.57) (see Subsections 1.4.1 and 1.4.3).
However, the values c = 0.1 and c = 0.01 used in our two examples do not seem
to be small in this sense. If we calculate the convergence rates ρp in the same
way as the convergence rates ρ, i.e. by replacing u by p in (3.3.59) and (3.3.60),
it turns out that in neither case nor method the convergence rates ρ and ρp

seem to differ more than by a few percentage points. The optimal parameters
can also vary a bit, but qualitatively the same results as above are obtained
for the convergence rates ρp. In general the situation is different for c = 0, see
Remark 3.4.31.

As already indicated in Subsection 3.3.5, we do not obtain convergence of our
methods if we do not have uniform ellipticity, i.e. for c = 0. We even observe
numerical instabilities in this case which occur if small generalized pressure
values in iteration histories happen to be too close to the critical generalized
pressure uc corresponding to the physical pressure p = −∞. Furthermore,
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the smaller c > 0 is chosen the worse the convergence rates become — again
with the exception of the Dirichlet–Neumann method applied to the strongly
heterogeneous case for which the convergence rates ρ (measured in u) even seem
to remain stable in case of a very small ellipticity constants such as c = 10−100.
In contrast to these observations we can always choose c = 0 in our time-
dependent cases which are still to come.

Despite the very good convergence behaviour of the Dirichlet–Neumann method
in the strongly heterogeneous case we apply the Robin method to the time-
dependent numerical examples concerning the Richards equation in the rest of
this subsection and in Chapter 4. This decision is mainly motivated by the fact
that, in contrast to the Dirichlet–Neumann method (Proposition 3.3.8), our
convergence results for the Robin method in Theorem 3.4.23 include spatial
problems arising from a time-discretization of the Richards equation at least in
the uniformly elliptic case c > 0. Our aim is to test how far our 1D-convergence
theory of this section can be numerically maintained in two space dimensions.

Robin method applied to the Richards equation without gravity

In the following, we present a numerical example which we obtained for the
Robin method applied to the Richards equation without gravity in a hetero-
geneous setting with two different soil types in two subdomains. Our analyt-
ical and numerical approaches to such a problem have been provided in Sec-
tions 3.4.1 and 3.4.5. In contrast to the examples above, the spatial problems
which we encounter now are transmission problems of the kind (3.4.2)–(3.4.4)
or (3.4.6)–(3.4.8) which contain an additional nonlinearity related to the satu-
ration.

Ω2 (loamy sand)

Ω1 (sandy loam)

Figure 3.20: Coffee filter like domain Ω

Concretely, we consider the domain Ω ⊂ R2 depicted in Figure 3.20 which re-
sembles a coffee filter. We assume that the top subdomain Ω1 is filled with
sandy loam while the bottom subdomain Ω2 contains loamy sand. As be-
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fore in the strongly heterogeneous case in Table 3.1, the corresponding hy-
drological data are chosen according to the USDA soil texture triangle, see
Rawls et al. [77, Tables 5.3.2 and 5.5.5]. Since now the saturation occurs ex-
plicitly in the equations (3.4.2) or (3.4.6) we also need to specify the residual
water contents θm,i and the porosity-values ni for i = 1, 2 (compare the original
equation (1.2.7) and (1.2.9)). The maximal water contents θM,i are constant
with θM,i = 1 for i = 1, 2 according to Rawls et al. [77, Table 5.1.1]. However,
the variation of these values is neither significant nor does it effect the perfor-
mance of the Robin method in a way as done by the other soil parameters λi,
pb,i and Kh,i, i = 1, 2, which influence the spatial derivative in (3.4.2). Alto-
gether, the heterogeneities for our coffee filter example are given in Table 3.2.
Here, we use the unaltered Brooks–Corey functions p 7→ θ(p) and θ 7→ kr(θ)
according to Burdine given in Sections 1.2 and 1.3 (as opposed to the ones in
Subsection 1.4.3) which corresponds to the situation of (3.3.57) with c = 0, i.e.
to the degenerate Richards equation.

Ωi ni θm,i λi pb,i Kh,i

i = 1 (sandy loam) 0.453 0.091 0.378 −0.147 6.06 · 10−6

i = 2 (loamy sand) 0.437 0.080 0.553 −0.087 1.66 · 10−5

Table 3.2: Soil parameters for the coffee filter example

The domain Ω is situated in the quadrilateral [−1, 1] × [−0.74, 0.56] and the
top boundary is [−1, 1] × {−0.74} (the z-axis is directed downward although
we do not yet deal with gravity here). We start with a practically dry soil as
the initial condition given by p0 = −20 on Ω except for p0 = 100 on the subset
[−0.21, 0.21] × {−0.74} of the top boundary, see Figure 3.21. The latter is
treated as a Dirichlet boundary γD with constant data pD = 100 for all time
steps (as before the pressure unit is one meter of a water column). Apart from
the bottom boundary γS situated on [−0.25, 0.25]× {0.56}, which is chosen as
a Signorini-type boundary where outflow is possible, we assume homogeneous
Neumann boundary conditions v · n = 0 on ∂Ω\(γD ∪ γS). This situation
results in an evolution process with an increasing saturation due to flow of
water into Ω with possible outflow across γS until Ω is fully saturated and a
stationary solution is obtained.

We treat the problem as described in Subsection 3.4.5 using an implicit time dis-
cretization (since there is no gravity) with the constant time step size τ = 1 [s]
and a space discretization with linear finite elements. The discrete Robin prob-
lems for the Richards equation in each time step result in convex minimization
problems which are solved by monotone multigrid with a V (3, 3)-cycle (see
page 123). We use 4 levels of a grid hierarchy with 112 nodes on the coarse
grid in Figure 3.20 and about 5500 nodes on the finest grid with a mesh size of
h = (10 · 24)−1 = 1/160 obtained by uniform refinement. Moreover, a constant
Robin parameter γ = 3 · 10−4 suggested by numerical experiments is chosen.
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Figure 3.21: t = 0

In Figures 3.22–3.33 one can see the evolution of the physical pressure at equidis-
tant time steps (except for the last one) in heightplots on the left and colourplots
on the right. One can clearly detect the wetting front (cf. [13, p. 303]), where
a pressure difference of almost ∆p = 20 occurs, moving from the top to the
bottom. More concretely, the wetting front marks the free boundary which
separates the unsaturated from the fully saturated regime and, thus, around
which we encounter the pressure difference between the initial condition p0 and
the bubbling pressure pb,i on Ωi for i = 1, 2. We need 684 time steps until the
stationary situation with a fully saturated Ω is reached. At about t = 133 the
wetting front reaches the interface and starting with t = 473 the top subdomain
Ω1 is fully saturated. The range of p is between −20 and 100 until shortly be-
fore the last time step and in the stationary case it is in the interval [26.3, 100]
on Ω1 and [0.0, 32.2] on Ω2. As in the solution of the strongly heterogeneous
Yin Yang case in Figure 3.13, one can see in the heightplots that the physical
pressure is nonsmooth across the interface, at least in the saturated regime.

The stopping criteria for the multigrid solver and the Robin method are given
according to (3.4.105) and (3.3.59), respectively, at each time step, now of course
with the initial condition given by the previous time step. Figures 3.34 and 3.35
show averaged (as well as maximal) multigrid convergence rates ρm,1 and ρm,2

(as well as ρM,1 and ρM,2) per time step for Ω1 and Ω2, respectively, which are
determined in the following way. For each domain decomposition step l ∈ N in
a fixed Ωi, i = 1, 2, the geometric mean

ρ̄l,j =

(
j∏

k=2

ρk

)1/j

of the approximated rates

ρk =
|uk

i − uk−1
i |1,Ωi

|uk−1
i − uk−2

i |1,Ωi

, i = 1, 2 ,
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Figure 3.22: t = 60

Figure 3.23: t = 120

Figure 3.24: t = 180
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Figure 3.25: t = 240

Figure 3.26: t = 300

Figure 3.27: t = 360
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Figure 3.28: t = 420

Figure 3.29: t = 480

Figure 3.30: t = 540
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Figure 3.31: t = 600

Figure 3.32: t = 660

Figure 3.33: t = 684
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Figure 3.34: Multigrid convergence
rates per time step in Ω1

(top: maximal, bottom: averaged)
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Figure 3.35: Multigrid convergence
rates per time step in Ω2

(top: maximal, bottom: averaged)

with the multigrid iterates uk
i is calculated for k ≥ 2 as long as ρ̄l,j increases.

(Here, again, | · |1,Ωi is the energy norm on Ωi, and we set ρ̄l,1 = 0 if one
multigrid step is needed only.) With the maximum obtained in this way, which
we call ρ̄l, we determine ρm,i and ρM,i as

ρm,i =
1

n

n∑

l=1

ρ̄l and ρM,i = max
1≤l≤n

ρ̄l , i = 1, 2 ,

where n is the number of Robin steps needed for the corresponding time step.
Since we use the solution from the previous time step as the initial condition
for the next time step, we already have a good approximation for the solution
at that time step. With this choice we obtain fast multigrid convergence as
one can see from Figures 3.34 and 3.35. Here, ρM,i often occurs in the first few
Robin steps, and the multigrid convergence rates can improve quite a lot for
higher accuracies in the domain decomposition iteration history (where finally
often one multigrid step is enough). This explains that the difference between
ρM,i and ρm,i can be quite considerable.

Figure 3.36 displays the average convergence rates ρ for the domain decom-
position iteration given by the Robin method at each time step. The conver-
gence rates are calculated as in the examples on the Yin Yang domain, see
(3.3.59) and (3.3.60), now of course with the initial condition given by the pre-
vious time step. For t ∈ [138, 472], when the location of the wetting front
has a nontrivial intersection with the interface Γ, the convergence rates vary
quite a lot between around 0.3 and 0.9. These big variations can also be ob-
served in the Robin iteration history at various time steps. In Figures 3.37
and 3.38 we illustrate two examples of such cases for t = 197 and t = 443
where we have the average convergence rates 0.56 and 0.63, respectively. One
can see that different error reduction rates (i.e. convergence rates) are obtained
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Figure 3.36: Convergence rates ρ per time step for the Robin method

for different accuracies, i.e. absolute errors

(
2∑

i=1

ai(u
k
i − un

i , u
k
i − un

i )

)1/2

, k = 0, ..., n − 1 , (3.4.107)

(un
i being the last Robin iterate) in the iteration history. We assume that

these effects occur because the pressure values for nodes directly at the wetting
front probably depend quite sensitively on the solution of the previous time
step, the precise Robin conditions at the interface and the required accuracy
given by the stopping criterion. In addition, our measuring (3.3.59)–(3.3.60) of
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Figure 3.37: Error (3.4.107) vs. Robin
iteration step at time t = 197
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Figure 3.38: Error (3.4.107) vs. Robin
iteration step at time t = 443
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the convergence rates in the generalized variables ui seems to be particularly
sensitive in this respect, see Remark 3.4.31 below.

In general the first convergence rate in the iteration history is considerably
smaller than the following ones for any time step. In particular, for time
steps t < 133 the error reduction in the first Robin step is such that it al-
ready provides an almost vanishing average convergence rate. For t ≥ 473,
when Ω1 is fully saturated and the wetting front is entirely located in Ω2, the
convergence rates do no longer oscillate, neither with respect to t nor in the
iteration history for fixed t. Furthermore, they increase as the wetting front ap-
proaches the Signorini-type boundary until the stationary solution is attained
at t = 684 (for t > 684 vanishing convergence rates are observed as expected).

Remark 3.4.31. As in the first part of this subsection concerning the examples
on the Yin Yang domain, one might again be interested in the convergence rates
measured in the physical variables pi rather than in the generalized pressure
variables ui, i = 1, 2, as done so far. Since we have chosen c = 0 in the
coffee filter example, one needs to be more careful here than in the Yin Yang
examples because the inverse transformations κ−1

i , by which ui is transformed
into pi for i = 1, 2, are ill-conditioned for small generalized pressure values
now, compare Figures 1.7 and 1.8. As can be seen in these figures, small
perturbations in ui can result in big variations of pi in the unsaturated regime.

Therefore, the stopping criterion (3.3.59) expressed in pi may correspond to
a much more restrictive stopping criterion in ui which might require a higher
accuracy than provided by the local solvers given by (3.4.105). In the example
above, a certain absolute error (3.4.107) in ui usually corresponds to a much
bigger absolute error calculated in pi, i = 1, 2. In fact, they can differ by several
orders of magnitude. We even observe numerical instabilities if we choose the
same accuracy 10−12 in the stopping criterion (3.3.59) with ui replaced by pi.
If, instead, we choose the stopping criterion

(∑2
i=1 ai(p

n
i − pn−1

i , pn
i − pn−1

i )
)1/2

(∑2
i=1 ai(p

n−1
i , pn−1

i )
)1/2

< 10−9 (3.4.108)

rather than (3.3.59) and measure the convergence rates as in (3.3.60) with ui re-
placed by pi, we obtain a time evolution (with 684 time steps) which practically
does not differ from the one above (i.e., the first few digits of the obtained pres-
sure values usually coincide). Interestingly, however, the convergence rates ρp

per time step measured in the physical pressure p and displayed in Figure 3.39
do not show as big oscillations as the ones measured in u in Figure 3.36. Con-
siderable oscillations only occur shortly before time step t = 473 when Ω1 is
fully saturated. In addition, the convergence rates measured p are more stable
in the iteration history for fixed time steps than the ones measured in u.

As in the stationary case on the Yin Yang domain the convergence rates de-
teriorate on higher levels. They also deteriorate if we choose more extreme
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Figure 3.39: Convergence rates ρp per time step for the Robin method
measured in physical variables with stopping criterion (3.4.108)

soil parameters such as the ones in Table 3.1. Furthermore, the convergence
rates depend on the choice of the time step size for the variation of which we
have to alter γ as well. (Observe that the time step size occurs as an additional
factor in front of the water flux in the Robin conditions (3.4.16) or (3.4.19),
compare (2.3.2) and (3.4.15).)

In addition, we observe deteriorating convergence rates if the pressure difference
∆p of the wetting front is too big. Note, however, that the situation ∆p = 20
in the coffee filter example with the Dirichlet value p = 100, measured in
meters of a water column, already seems quite extreme. Therefore, we have
hope that the Robin method can at least be successfully applied in reasonable
hydrological settings which are not too extreme. The next chapter is devoted
to the construction of such an example.
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Chapter 4

Numerical results for the
Richards equation with
gravity, various soils and
surface water in 2D

4.1 Introduction

In this last chapter we extend our solution method for the Richards equation in
heterogeneous soil such that it also takes the gravitational impact into account.
As a result we obtain a new solver for the Richards equation, which does not
rely on smooth parameter functions or regularization such as the ones based
on Newton’s method which were mentioned in Section 2.2. Furthermore, we
introduce a discrete version for the coupling of the saturated-unsaturated flow
through a porous medium with surface water in a reservoir. At the end of
this chapter we solve the Richards equation in a 2D-setting containing realistic
hydrological ingredients.

The underlying idea of our approach to solve the Richards equation is to sepa-
rate the occurring difficulties and to treat them in different steps. First of all,
by Kirchhoff transformation (see Section 1.3) we “got rid of” the nonlinear-
ity kr(θ(p)) in the spatial derivative of the Richards equation (1.5.1) with the
effect that a robust solver exploiting convexity rather than regularity (see Sec-
tion 2.6 and 2.7) could be applied to the spatial problem in case of homogeneous
soil. The inverse Kirchhoff transformation, which is in general ill-conditioned
if kr(θ(p)) can be arbitrarily small, and therefore the effect of a very small
factor kr(θ(p)) in the Richards equation (1.5.1), is then separated from the so-
lution process and only occurs in the retransformation in order to obtain the
physical pressure from the generalized pressure variable in which the solution
was calculated.
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Of course, with regard to the full Richards equation in heterogeneous soil, this
approach still entails two difficulties that have to be dealt with. First, the spatial
solver can only be applied to homogeneous soil. Therefore, we introduced non-
overlapping domain decomposition methods (Dirichlet–Neumann and Robin
method) in Section 3 for further treatment of the occurring nonlinear spatial
problems in heterogeneous settings as in Definition 3.2.7. Secondly, we needed
to treat the gravitational impact in the Richards equation (1.5.1) explicitly in
the time discretization (2.3.2) in order to obtain a convex minimization problem
to which our monotone multigrid solver can be applied.

It is well known that an explicit treatment of a convective term usually leads
to instabilities in the numerical solution of the spatial problems which can be
addressed by upwind techniques for small time step sizes. We will apply such
a technique, more concretely an artificial viscosity method, in the framework
of our finite element discretization of the Richards equation in Section 4.2. As
a result, our numerical example therein shows that the problem posed by our
explicit treatment of the gravitational term can be successfully addressed by
this technique. Furthermore, the theoretical restriction on the time step size
can be violated in this numerical example without encountering instabilities.

Finally, in Section 4.3 we apply our developed solver in a 2D-setting to the
Richards equation with 4 different soils, boundary conditions of Signorini’s type
and surface water which is included via the reservoir model discussed in Re-
mark 1.5.1. This final example contains both inflow from the surface water into
the domain of the porous medium and outflow into the surface water and shall
illustrate the applicability of our solver to realistic hydrological situations.

4.2 Treatment of the Richards equation with gravity
in homogeneous soil

This section is devoted to the concrete treatment of the gravitational term
div
(
kr(M(u))ez

)
in our numerical solution of the homogeneous Richards equa-

tion (1.5.2). The theoretical presentation of this approach will be given in Sub-
section 4.2.1 followed by a numerical test of our method in Subsection 4.2.2.
The method is needed in order to achieve stability of the numerical solution
and it is based on an appropriate finite element discretization of the explicitly
time-discretized gravitational term in (2.3.2). Such a discretization is obtained
by adding a diffusion matrix to the straightforward discretization of that term
which leads to upwind differences when interpreted as a finite difference scheme
in special uniform settings. Our approach exploits the special direction of the
convection given by the earth’s gravitation and is refined by a lumping of the
occurring convection matrix. It turns out that the restriction on the time step
size, i.e. the CFL condition, imposed by the explicit treatment of the gravita-
tion requires the time step size to be an order of magnitude smaller than the
mesh size in realistic hydrological situations. The numerical example in Subsec-
tion 4.2.2, however, demonstrates that the method can be applied successfully
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in case of realistic hydrological data without the occurrence of numerical insta-
bilities even if the CFL condition is violated considerably.

4.2.1 Upwind finite element discretization of the gravitational
term by an artificial viscosity method

In this subsection we present an approach how one can easily and appropri-
ately deal with the gravitational term div

(
kr(M(u))ez

)
in the numerical treat-

ment of the Richards equation (1.5.2). Recall that we already decided to treat
the gravitational impact in a relatively simple way, i.e. explicitly in the time
discretization of (1.5.2), on the right hand side in the linear functional of a
variational inequality, see (2.3.2) and (3.4.96).

However, it is well known in the linear case already that a numerical treatment
of an elliptic equation with a convective term is unstable if the latter is not
space-discretized properly, which means that the sum of the stiffness matrix
and the matrix coming from the convective part should result in an M -matrix
(see e.g. Kornhuber and Schütte [60, p. 53] and Fuhrmann and Langmach [41]).
In this sense we seek an appropriate space discretization of

∫

Ω
kr(M(un−1))ez∇v dx =

∫

Ω
kr(M(un−1)) vz dx = (kr(M(un−1)), vz)L2(Ω)

(4.2.1)
in the linear functional (2.3.7) on the right hand side of (2.3.2). Note that the
treatment of this term should lead to a stable scheme in particular if it has a
considerable impact in the Richards equation (1.5.2) compared to the diffusion
term div∇u. Therefore, we take a look at the scalar conservation law

wt + kr(w)z = 0 (4.2.2)

to which the Richards equation (1.5.2) reduces if we ignore the diffusion term
and set w := M(u).

Equations like (4.2.2) have been intensively studied both on the continuous and
the discrete level, see for example Johnson [52] or Kröner [62] to which we refer
in the following. It is well known for kr ∈ C1(R) that classical C1-solutions
w of (4.2.2) are (at least locally) constant on characteristics which are curves
t 7→ (γ(t), t) in the z-t-plane with the property γ′(t) = kr′(w(γ(t), t)) for t > 0,
see [62, p. 16]. Since we can assume kr′ > 0 in case of the Brooks–Corey
model (1.2.9) and (1.2.10), this already suggests that the information trans-
port given by the equation (4.2.2) goes from the left to the right on the z-axis
within time, see Figure 4.1. This fact should also be reflected by a discretiza-
tion of (4.2.2) as a necessary condition for stability and convergence, compare
[62, Ex. 2.1.20]. Therefore, in the framework of finite difference discretizations,
one should choose backward differences or equivalently an upwind discretiza-
tion of the spatial derivative kr(w)z in (4.2.2), see Kröner [62, Ex. 2.2.7] and
Fuhrmann and Langmach [41, Sec. 6]. More concretely, with wn

i := w(zi, tn),
i = 0, . . . ,K, K ∈ N, z0 < z1 < · · · < zK and n = 0, . . . ,N , t0 < t1 < . . . < tN
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Figure 4.1: Upwind discretization

as in Subsection 2.3.1 such a finite difference discretization would read

wn
i − wn−1

i

tn − tn−1
+
kr
(
wn−1

i

)
− kr

(
wn−1

i−1

)

zi − zi−1
= 0 (4.2.3)

together with certain initial and boundary conditions, see Figure 4.1.

Our aim is to reproduce (4.2.3) on the level of our finite element discretization
of (1.5.2) in (2.3.2) and (3.4.96). As a first step to achieve this note that, as
just seen, the convective part in the Richards equation (1.5.2) has a given fixed
direction along the z-axis, independently of the dimension of Ω. Therefore, in
2D one should choose triangulations Tj, j ≥ 0, of Ω in which each triangle has
an edge on a vertical line parallel to the z-axis in the y-z-plane. In other words,
the triangulations should be arranged within vertical stripes in the y-z-plane
as depicted in Figure 4.2.

With the notation as in Subsection 2.5.1 a straightforward finite element dis-
cretization of (4.2.1) could be given by Sj-interpolations of the known function
kr(M(un−1)) and of the test function v in this integral. This would lead to the
matrix

C := (cpq)p,q∈Nj =

(∫

Ω
λq

∂

∂z
λp dx

)

p,q∈Nj

. (4.2.4)

Note that (4.2.1) was obtained after an application of Green’s formula which was
not the case for (4.2.2). However, this just leads to a rearrangement of terms
by the application of the negative transposed matrix −CT instead of C and
additionally occurring boundary terms. We come back to this fact later in this
section. Since the integral (4.2.1) is on the right hand side of the equation cor-
responding to (4.2.2) we seek upwind difference quotients for −kr(M(un−1(·)))
coming from suitable modifications in the discretization of that term.

In cases with congruent equilateral orthogonal triangles around an inner node
p ∈ Nj in Figure 4.2 one can easily check that the matrix (4.2.4) produces
central differences (up to a constant factor depending on j) of −kr(M(un−1(·)))
for p on the vertical lines in z-direction but also “side effects” coming from
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Figure 4.2: Vertical stripes for Tj and horizontal lumping in Ω = (a, b)× (c, d)

(neighbouring) nodes q on the neighbouring vertical lines. To “eliminate” the
latter, one can carry out a lumping of the L2-scalar product (4.2.1) in y-direction
which we describe now. Here we need to assume that Ω is a rectangle with
edges parallel to the y-axis or the z-axis. Then, by Fubini’s theorem (see e.g.
[82, pp. 164–167]), setting w := M(un−1) now, we can write

∫

Ω
kr(w) vz dx =

∫ b

a
F (y) dy (4.2.5)

with

F (y) :=

∫ d

c
(kr(w) vz)(y, z) dz ∀y ∈ [a, b] a.e.

and some real a < b and c < d. We approximate the integral on the right hand
side of (4.2.5) by an interpolation of F in a space of linear finite elements on
the y-axis with nodes yi, i = 0, 1, . . . , L, L ∈ N, given by and located on the
vertical lines corresponding to our triangulation, see Figure 4.2. The resulting
nodal basis functions in one space dimension which are independent of z are
denoted by λy

i . We obtain

∫ b

a
F (y) dy ≈

∫ b

a

L∑

i=0

F (yi)λ
y
i (y) dy =

L∑

i=0

F (yi) ·
1

2
(hi + hi+1)
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if we denote hi := yi − yi−1 for all i = 1, . . . , L and set h0 = hn+1 = 0. Now,
for yi, i = 0, 1, . . . , L, we approximate the integral F (yi) by interpolating both
kr(w) and v in Sj restricted to the vertical line parallel to the z-axis through the
point (yi, c). The corresponding nodal basis functions in 1D with their support
on this line (and related to the nodes (yi, zik) with the order zik < zik+1 for
k = 0, . . . ,K − 1) shall be denoted by λik, k = 0, . . . ,K, with K ∈ N as above.
The related nodes (yi, zik) shall be ordered by zik−1 < zik with hik := zik−zik−1

for k = 1, . . . ,K, as for example q2 = (yi, zik−1), p = (yi, zik) and q′2 = (yi, zik+1)
in Figure 4.2. Consequently, with v = λil, l = 0, . . . ,K, we have

F (yi) =

∫ d

c
(kr(w)(λil)z)(yi, z) dz ≈

K∑

k=0

kr(w(yi, zik))

∫ d

c
λik(λil)z dz

with

∫ d

c
λik(λil)z dz =





1
2 for l = k + 1

−1
2 for l = k − 1

0 else .

Altogether, by this lumping we replace the matrix C in (4.2.4) by

C̃ := (c̃pq)p,q∈Nj

with

c̃pq =





1
4 (hi + hi+1) for q = q2

−1
4(hi + hi+1) for q = q′2

0 else

(4.2.6)

where q2 and q′2 are given according to Figure 4.2. Just as C, the matrix C̃
gives central differences (up to a j-independent factor) for inner nodes p ∈ Nj,
but now without additional contributions from vertical lines on which p is not
situated. More concretely, for such a point this lumping is obtained by the
definition

c̃pq2 := cpq2 + cpq3

c̃pq′2
:= cpq′2

+ cpq′3
(4.2.7)

c̃pp := cpp + cpq1 + cpq′1

with the setting and the notation as in Figure 4.2 if we have a constant mesh
size h = hi = hik for all i = 1, . . . , L and k = 1, . . . ,K.

Now, it is well known that one can get one-sided differences from central dif-
ferences by adding an artificial viscosity term, i.e. a diffusion term or central
differences for second derivatives, see [62, Ex. 2.2.6]. Therefore, we introduce
the one-dimensional diffusion matrix

D :=

(∫

Ω

∂

∂z
λq

∂

∂z
λp dx

)

p,q∈Nj

(4.2.8)
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which (after multiplication with h−2) leads to central differences for second
derivatives of −kr(M(un−1(·))) in z-direction for inner nodes p ∈ Nj, without
further “side effects” coming from neighbouring points if we are in the uniform
situation as in Figure 4.2 with a constant mesh size h = hi = hik for i = 1, . . . , L
and k = 1, . . . ,K. In this setting one can easily verify that the sums of matrices

K := C − h

3
D (4.2.9)

and

K̃ := C̃ − h

2
D (4.2.10)

give upwind difference quotients for −kr(M(un−1(·))) in z-direction, i.e. the
discretization (4.2.3), for inner nodes p ∈ Nj when multiplied with 3/(2h2)
(and with “side effects” in case of (4.2.9)).

For nodes p ∈ Nj on the leftmost and the rightmost vertical line on ∂Ω half
of the upwind difference quotients from the inner nodes occur. Unfortunately,
this is not the case for nodes on the top and the bottom horizontal line on ∂Ω.
Interestingly, however, the latter can be interpreted after an application of
Green’s formula to (4.2.1). Then we obtain an additional integral on ∂Ω but
the contributions for p ∈ Nj in the corresponding matrix −KT or −K̃T on the
bottom line lead to upwind difference quotients for −kr(M(un−1(·))) in this
node now, whereas they vanish for p ∈ Nj on the top line (while the situation
for all the other nodes does not change).

Both discretizations of (4.2.1) given by (4.2.9) and (4.2.10) are also applicable
for domains Ω ⊂ R2 which are not rectangles if a certain value for h related
to the mesh size and big enough to ensure stability of the scheme is chosen.
(We even choose h locally in case of non-uniform meshes.) Note, however,
that (4.2.10) could only be derived by Fubini’s theorem for the special rect-
angular cases considered above. Nevertheless, one can in principle use both
definition (4.2.6) and (4.2.7) in more general cases, too. Whatever possibility is
pursued, one should always choose vertical stripes for the triangulations of Ω in
order to account for the direction of gravity in the space discretization of (4.2.1).
Finally, we remark that our method of adding artificial viscosity terms given
by the one-dimensional diffusion matrix (4.2.8) in (4.2.9) and (4.2.10) is just
a special example of the streamline upwind Petrov–Galerkin method described
in Johnson [52]. Since in our case the direction of convection is parallel to a
coordinate axis and fixed for all times, that method can be more easily realized
here.

Finally, it is well known that upwind discretizations (4.2.3) for the solution of
(4.2.2) with kr′ > 0 lead to so-called monotone schemes if the CFL (Courant,
Friedrichs, Lewy) condition is satisfied, see [62, pp. 50/51, 66]. This condition is
a restriction on the time step size τ := tn−tn−1 in (4.2.3) which must be chosen
small enough compared to the mesh size h = zi − zi−1 (we assume constant τ
and h here). It reads

τ < h

(
sup
w∈R

|kr′(w)|
)−1

(4.2.11)
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and is the price that has to be paid if explicit time discretizations are applied
to convective terms as done in (4.2.3) and for the Richards equation in (2.3.2).
If (4.2.11) is satisfied, however, the monotone scheme (4.2.3) is stable and con-
vergent, see [62, pp. 72, 91].

In order to get an impression of the size of the factor (supw∈R |kr′(w)|)−1 in
(4.2.11) for realistic situations, we take a look at concrete hydrological examples
for the relative permeability function kr(·). First, recall that the Brooks–Corey
model (1.2.9) and (1.2.10) provides

kr′(θ) = e(λ)

(
θ − θm

θM − θm

)e(λ)−1

and therefore

sup
w∈R

|kr′(w)| = e(λ) · 1 = 3 +
2

λ
=

{
5 for λ = 1

23 for λ = 0.1
(4.2.12)

if we choose e(λ) according to Burdine in (1.2.10), compare Figure 1.2. Here we
have chosen extreme values λ = 1 (coarse sand) and λ = 0.1 (fine clay) for the
pore size distribution factor, compare Rawls et al. [77, Table 5.3.2]. However,
our numerical example to which we turn in the next subsection, suggests that
the theoretical bounds in (4.2.11) given by (4.2.12) are quite pessimistic in
practical situations and that larger time step sizes can be used without visible
drawbacks concerning the numerical stability.

4.2.2 Numerical test: Richards equation with gravity

In the following, we present a numerical example which shall illustrate the per-
formance of the artificial viscosity method described in the previous subsection,
more concretely the lumped version given by the matrix in (4.2.10). As the do-

Figure 4.3: Initial condition p = −20, finest grid, gravity along right axis
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main we choose the unit square Ω = [0, 1]2 in the y-z-plane where the z-axis
(i.e. the direction of gravity), is directed downwards (to the right in Figure 4.3)
and the y-axis is directed to the left as in Figure 4.3. Therein, one can see
the initial condition p = −20 (in meters of a water column, i.e. a practically
dry soil) on the finest grid with h = 1/32 on the fourth refinement level. The
coarse grid and uniform refinement are chosen such that equilateral orthogonal
triangles occur within vertical stripes as proposed above (compare Figure 4.2).

We assume homogeneous soil parameters in Ω, more concretely we choose the
parameters of sand as given by the USDA soil texture triangle in Rawls et al. [77,
Tables 5.3.2 and 5.5.5], see Table 4.1. With regard to the parameter functions
the (unaltered) Brooks–Corey model (1.2.9) and (1.2.10) shall be applied here.

Ω = [0, 1]2 n θm λ pb Kh

soil: sand 0.437 0.046 0.694 −0.073 6.54 · 10−5

Table 4.1: Soil parameters of sand for the Richards equation with gravity

We choose a constant inflow −v · n = 0.002 [m/s] on γi := {0} × [0.25, 0.5]
(i.e. on the right face of Ω) and homogeneous Neumann boundary data v ·n = 0
on ∂Ω\γi which can already be resolved on the coarse grid. As a consequence,
the time evolution depicted in Figures 4.4–4.12 in heightplots on the left and
colourplots on the right (with gravity directed downwards) shows an increasing
physical pressure while the saturated regime in Ω extends more and more.

Due to the mass matrix arising from the spatial discretization of the saturation
term (see for example (2.5.44)) the occurring spatial Neumann problems are
uniquely solvable for each time step t ≤ 810. Our spatial solver is the monotone
multigrid as used in Subsection 3.4.6 for the local problems in the coffee filter
example with the same stopping criterion given in (3.4.105). Recall that the
gravitational impact only occurs in the right hand side of the discrete spatial
problems. As usual the solution of such a problem serves as the initial iterate
for the next time step.

Starting with the solution for the first time step t = 10, the evolution of the
physical pressure in Figures 4.4–4.12 is given at equidistant time steps until
for t = 810 the domain is almost fully saturated. As in the coffee filter example
in Subsection 3.4.6, we obtain a quite sharp moving wetting front, where a pres-
sure difference of almost 20 occurs and which represents the interface between
the saturated and the unsaturated regime of Ω. Moreover, we observe a pres-
sure decline from the face γi where inflow is imposed to the wetting front which
increases in time. For t = 810 we have pmax = 10.9 in the central node of γi

and pmin = −14.5 in the left bottom corner of Ω while the pressure practically
vanishes for all nodes on the left face of Ω where the domain is fully saturated.
Note that we have a constant flow of water into the domain and we do not al-
low outflow. Therefore, it is no surprise that the multigrid no longer converges

225



Figure 4.4: t = 10

Figure 4.5: t = 110

Figure 4.6: t = 210
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Figure 4.7: t = 310

Figure 4.8: t = 410

Figure 4.9: t = 510
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Figure 4.10: t = 610

Figure 4.11: t = 710

Figure 4.12: t = 810
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for the next time step t = 820, for which the maximal amount of fluid in the
domain would be exceeded due to the constant inflow.

The (constant) time step size τ = 10 [s] used in this example is three orders of
magnitude larger than the upper bound given by the CFL condition (4.2.11)
which is

h

(
3 +

2

λ

)−1

≈ 1

32
· 1

5.88
≈ 1

188

in our case (see (4.2.12) and Table 4.1). Surprisingly, we do not observe any
visible numerical instabilities in the corresponding graphics if we further in-
crease the time step size τ and decrease the mesh size h. For example, we can
still solve the problem with h = 2−10, i.e. on the 9th level, and varying big
time step sizes up to τ = 810 without encountering instabilities. Remarkably,
these effects are the same if we use clay (compare Table 3.1) instead of sand
in the model problem. In that case, we do not obtain a wetting front as in
Figures 4.4–4.12 but rather a uniform decline of the pressure from the right
face of Ω to the boundary of the dry regime p = −20 in Ω. However, this
decline is steeper than the wetting front in sand since the range of the pressure
is two orders of magnitude larger in clay. Observe that we obtained a stronger
theoretical time step restriction (4.2.12) for clay than for sand. Altogether, the
results show the practicability and the stabilizing effect of our upwind method
for the gravitation as discussed in the previous subsection. In addition, the
theoretical bounds for the time step sizes given by the CFL condition (4.2.11)
seem to be too pessimistic at least for realistic hydrological data.

Figure 4.13: Solutions with gravity (surface graph)
and without gravity (lines) at time t = 710

In Figure 4.13 one can see the effect of the gravitation in our model problem.
The surface graph in this figure represents the above solution of our problem
with gravity at the time t = 710. The graph given by lines was obtained

229



at the same time for the same problem without gravity. With regard to the
next numerical example, we remark that we obtain a solution for which the
pressure values coincide in the first few digits with the corresponding ones in
Figures 4.4–4.12 if we apply the Robin method to this homogeneous problem. In
the following last section we consider a heterogeneous problem for the Richards
equation with gravity and surface water.

4.3 Numerical example: Richards equation in four
different soils with surface water

The following last section of this work is devoted to the presentation of a numer-
ical example for the Richards equation in a heterogeneous setting in two space
dimensions including surface water. This example simulates a situation which
one may call hydrologically realistic in principle. The results suggest that our
algorithm might well be suitable for the solution of more practical groundwater
flow problems.

Before we turn to the presentation of our example we explain how we treat the
coupling of the Richards equation with surface water numerically. Recall that
in Remark 1.5.1 we already introduced the model we use for this coupling in the
continuous setting. It is based on the assumption of mass conservation (1.5.8)
and uses a simple reservoir model for the surface water, compare Figure 1.16.
Loosely speaking, the flow of water out of (or into) the domain increases (or
decreases) the height of the water reservoir, which in turn has an effect on the
shape of the Dirichlet boundary and the size of the Dirichlet boundary values
given by the hydrostatic pressure.

T1

T2

Ω

∂Ω

γh

h(t)

Figure 4.14: Flow across γh ⊂ ∂Ω between T1 and T2 affects lake height h(t).

More concretely, with a glance at Figure 4.14, we call γh the part of the bound-
ary between the top points T1 and T2 through which (independent of time)
flow of water contributes to the height h(t) of a lake between T1 and T2. Now,
choosing a suitable γ̃h ⊂ ∂Ω with γh ⊂ γ̃h and a v ∈ H1

∂Ω\γ̃h
(Ω) with the trace

trγh
v = 1, we can approximate the integral on the right hand side of (1.5.8) as
∫

γ̃h

v · n v dσ = −
∫

Ω
M(u)t v dx−

∫

Ω
∇u∇v dx+

∫

Ω
kr(M(u))ez∇v dx

if γ̃h\γh has a small Hausdorff measure and the functions involved are smooth
enough, compare (1.5.13). This gives rise to the following explicit time dis-
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cretization of (1.5.8). With a slight abuse of notation we call u(tn) the semi-
discrete solution for a time step tn, n ≥ 0, corresponding to un in (2.3.2). We
denote u(t−1) := u0 with the initial condition u0 and choose a constant time
step size τ = tn − tn−1, n = 1, . . . ,N . Then, with given solutions u(tn) and
u(tn−1), n ≥ 0, the new approximated volume V (tn+1) of the lake is defined as

V (tn+1) = V (tn)−
∫

Ω
(M(u(tn))−M(u(tn−1))) v dx− τ

∫

Ω
∇u(tn)∇v dx

+ τ

∫

Ω
kr(M(u(tn)))ez∇v dx . (4.3.1)

Finally, using the same notation as in Subsection 2.5.1, we carry out the space
discretization of (4.3.1) in the finite element space Sj for a j ≥ 0. As a test
function we choose

v =
∑

p∈Nj∩γh

λp

which has a support in a neighbourhood of γh only, and the discretization of
the three integrals on the right hand side of (4.3.1) is carried out as already
described earlier. The discretization of the first integral is given via the mass
matrix as in (2.5.44), the second one is given with the help of the stiffness matrix
as usual and the third integral is discretized via the matrix K̃ in (4.2.10) as
explained in Subsection 4.2.1.

In order to translate the volume V (tn+1) (now obtained by the fully discrete
version of (4.3.1)) into the new height h(tn+1) of the lake in our implementation
we use the following simplified geometry model. First, we assume that γh can
be approximated by a part of a semi-circle line with a certain radius r > 0
which should be sufficiently accurate at least for small heights of a lake. Then
we can write

V (tn+1) =

∫ h(tn+1)

0
2
√
r2 − (r − s)2 ds

and we just approximate the right hand side by numerical integration. Con-
cretely, for a fixed small interval length ∆s and k ≥ 1 with k∆s ≤ r we
approximate ∫ k ∆s

(k−1)∆s
2
√
r2 − (r − s)2 ds ≈ Ik

where Ik is obtained by the trapezoidal rule applied to the integral. Then we
set h(tn+1) := k′∆s if

k′∑

k=1

Ik ≥ V (tn+1) >

k′−1∑

k=1

Ik

and h(tn+1) := 0 if V (tn+1) ≤ 0. Otherwise V (tn+1) is too big for our geometry
model which does not occur in our example below. Now, with h(tn+1) we obtain
the Dirichlet boundary γD(tn+1) ⊂ γh together with the Dirichlet boundary
values given by the hydrostatic pressure of the water in the lake above each
Dirichlet node. The rest of the top boundary, which is not covered by the lake,
is treated as a boundary of Signorini’s type, compare Subsection 1.5.1.
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Figure 4.15: Fine grid, four layers of soil
from top to bottom as in Table 4.2

Figure 4.16: Initial condition:
dry soil and surface water

With regard to our concrete example, Figure 4.15 shows the domain Ω ⊂ R2

decomposed into the four subdomains Ω1, Ω2, Ω3 and Ω4 (from the top to
the bottom) which we use for our model problem. The width of the domain
is 2 [m] and the height from the bottom to the highest point of Ω is approxi-
mately 1.214 [m]. The z-axis points downwards in gravitational direction. As
always in this work we apply the Brooks–Corey model according to Burdine
for the equations of state (1.2.9) and (1.2.10). We choose the soil parameters
of sand, loamy sand, sandy loam and loam given in Table 4.2 (compare Rawls
et al. [77, Tables 5.3.2 and 5.5.5]) as the parameters in the layers of soil corre-
sponding to Ω1, Ω2, Ω3 and Ω4. Figure 4.15 already shows the finest grid (with
the mesh size h = 0.038) which we obtain on the third refinement level with
585 nodes in each subdomain.

Ωi ni θm,i λi pb,i Kh,i

i = 1 (sand) 0.437 0.046 0.694 −0.073 6.54 · 10−5

i = 2 (loamy sand) 0.437 0.080 0.553 −0.087 1.66 · 10−5

i = 3 (sandy loam) 0.453 0.091 0.378 −0.147 6.06 · 10−6

i = 4 (loam) 0.463 0.058 0.252 −0.112 3.67 · 10−6

Table 4.2: Soil parameters for the heterogeneous problem with surface water

As the initial condition depicted in Figure 4.16 in a colourplot we choose
p = −10 (meters of a water column) corresponding to an initially dry soil in Ω
except for the nodes on the top boundary which are covered by surface water
(red in Figure 4.16) where a hydrostatic pressure from the lake is given. The
height of the lake at the time t = 0 is 0.1686 [m], the radius of the circle line
by which we approximate γh is r = 1.2 [m].

As already indicated above, the part of the top boundary which is not covered by
the lake is treated as a boundary of Signorini’s type for all time steps (compare
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also the situation in Theorem 3.2.4 and Remark 3.2.5). In the time evolution
we impose a constant inflow of −v · n = 3 · 10−4 [m/s] across the lower half of
the left boundary of Ω1. On the rest of the left boundary of Ω as well as on the
right and the bottom part of ∂Ω homogeneous Neumann boundary conditions
v · n = 0 are assumed for all time steps. For the time evolution we choose the
constant time step size τ = 10 [s].

The spatial problems for each time step are solved by the Robin method in
which one iteration step for the four subdomains looks as follows. First, for any
iterate uk, k ≥ 1, provided by the method on Ω, and the solution u0 from the
previous time step we abbreviate

uk
i := uk

|Ωi
, i = 1, 2, 3, 4 .

Now, given an iterate uk, k ≥ 0, on Ω, we determine uk+1
1 according to

(3.4.15)–(3.4.16) and uk+1
2 according to (3.4.17)–(3.4.18), in which the inter-

face with the Robin boundary condition for the unknown uk+1
2 also contains

the connected component ∂Ω2 ∩ ∂Ω3 of ∂Ω2\∂Ω, where the previous iterate uk
3

on Ω3 contributes to the right hand side in (3.4.18) as well. The subsequent
iterates uk+1

3 and then uk+1
4 are obtained analogously as uk+1

2 and uk+1
1 , respec-

tively. We choose the constant parameter γ = 10−4 suggested by numerical
experiments for the Robin method at all time steps.

As the inner solver for the homogeneous problem on each subdomain Ωi for
i = 1, 2, 3, 4, we apply the monotone multigrid method described in Subsec-
tion 3.4.5 and already used for the coffee filter example in Subsection 3.4.6.
Again, the stopping criterion for the multigrid is given by (3.4.105).

In order to account for the realistic nature of our model problem in this section
we use another stopping criterion and another way of measuring the perfor-
mance of the Robin method than in Subsection 3.4.6. To this end, we first
estimate a global convergence rate ρ of the Robin method for all time steps,
carrying out the whole calculation for the time evolution with the quite restric-
tive stopping criterion

(∑4
i=1 ai(p

n
i − pn−1

i , pn
i − pn−1

i )
)1/2

(∑4
i=1 ai(p

n−1
i , pn−1

i )
)1/2

< 10−8 (4.3.2)

in which we denote pn
i := pn

|Ωi
for the nth iterate pn of the domain decomposition

iteration. We refer to Remark 3.4.31 for a discussion on a stopping criterion
given in terms of the physical pressure p rather than the generalized pressure u.
As before, the corresponding bilinear forms ai(·, ·), i = 1, 2, 3, 4, are induced via
the related stiffness matrices given by the problem on the subdomains Ωi. In
what is to come, the norm arising from these forms on Sj shall be denoted by

‖p‖ :=

(
4∑

i=1

ai(pi, pi)

)1/2

, p ∈ Sj , pi := p|Ωi
, i = 1, 2, 3, 4 .
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In the computation where the stopping criterion (4.3.2) was used we observed
that

‖pk+1 − pk‖ ≤ ρ ‖pk − pk−1‖ , 1 ≤ k ≤ n− 1 , (4.3.3)

usually holds with the maximal rate ρ = 0.95 for succeeding iterates of the
Robin iteration at any time step. Now, in addition to (4.3.3) we assume that
this convergence rate is globally valid for this problem in the sense that for any
time step we have

‖p − pk+1‖ ≤ ρ ‖p− pk‖ , k ≥ 0 ,

with the exact solution p of the discrete spatial problem. Then we can write

(1− ρ)‖p − pk‖ ≤ ‖p− pk‖ − ‖p − pk+1‖ ≤ ‖pk+1 − pk‖ , k ≥ 0 ,

and assuming ‖p‖ ≈ ‖pk‖, which is justified if initial iterates are chosen in a
neighbourhood of p, we get

‖p − pk‖
‖p‖ ≤ 1

1− ρ ·
‖pk+1 − pk‖
‖pk‖ , k ≥ 0 .

Now, in order to determine p at least up to a relative accuracy of 1% we choose
the stopping criterion

‖pk+1 − pk‖
‖pk‖ < 0.0005 (4.3.4)

and obtain
‖p − pk‖
‖p‖ <

1

1− 0.95
· 0.0005 = 0.01 . (4.3.5)

Figure 4.41 shows the number of iterations obtained with this stopping cri-
terion per time step (recall τ = 10) for the time evolution displayed in Fig-
ures 4.17–4.40. Note that in these figures the evolution is given columnwise in
time. Except for the last column we have chosen constant time intervals ∆t in
each column which are, however, increased considerably later in the evolution.

One can observe a quite fast evolution in the first 20 time steps, in which the
lake loses more than half of its height while its water flows quickly into the first
soil layer which is sand. With regard to the fast evolution at the beginning
as compared to later time steps observe that the hydraulic conductivity of the
soil gets smaller from layer to layer if we go downwards. Between t = 800 and
t = 4320 the water level is below 0.01, and it is equal to 0 (e.g. for t ∈ [940, 1160])
or oscillating in the interval [0, 0.0012] between t = 930 and t = 2410. Later
the water level rises again slowly while the saturated area of the soil increases
gradually (the colour blue in the graphics represents the initial pressure p = −10
while we have p ≈ 0 in the yellow regions, orange for p ≈ 1 and red for p ≈ 2).
At t = 12790 (Figure 4.39) the surface water has reached its initial height
h = 0.1686 again, and at t = 13420 (Figure 4.40) the pressure has been equalized
in the right bottom corner of Ω and the domain is fully saturated with the range
p ∈ [0, 2.2] while the lake can already be regarded as overflowing.
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Figure 4.17: t = 10

Figure 4.18: t = 40

Figure 4.19: t = 70

Figure 4.20: t = 100

Figure 4.21: t = 200

Figure 4.22: t = 400

Figure 4.23: t = 600

Figure 4.24: t = 800
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Figure 4.25: t = 1000

Figure 4.26: t = 1500

Figure 4.27: t = 2000

Figure 4.28: t = 2500

Figure 4.29: t = 3000

Figure 4.30: t = 4000

Figure 4.31: 5000

Figure 4.32: t = 6000
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Figure 4.33: t = 7000

Figure 4.34: t = 8000

Figure 4.35: t = 9000

Figure 4.36: t = 10000

Figure 4.37: t = 11000

Figure 4.38: t = 12000

Figure 4.39: t = 12790

Figure 4.40: t = 13420
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Figure 4.41: Number of iterations per time step of the Robin method
with stopping criterion (4.3.4) for a relative accuracy (4.3.5) of 1%

The time evolution is also reflected by Figure 4.41 where the number of Robin
iterations needed per time step is given for the stopping criterion (4.3.4). Mostly
we obtain iteration numbers below 15. In the first few time steps, however, they
are considerably bigger, for example at least 20 for t ∈ [40, 240] with a maximum
of 38 for t = 100. With regard to this fact, we point out that starting with
t = 40 the wetting front coming from the lake already crosses the interface
between the first and the second layer. (Recall that the wetting front is the
border between the fully saturated and the unsaturated regime.) Furthermore,
a solution from the previous time step as the initial iterate for the next time
step is certainly further away from the next solution at small time steps, where
we observe a fast evolution.

We remark that at t = 1300 the wetting front coming from the surface water
reaches the third layer, and at around t = 5000 the wetting front reaches the
bottom layer at the left boundary of the domain. At around t = 2300 a topology
change of the previously disconnected parts of the saturated regime of Ω takes
place. Starting at about t = 10000 the layers Ω1 and Ω2 are fully saturated,
and so is Ω3 at around t = 11700. The last peak (with the iteration number 15)
in Figure 4.41 is obtained at t = 13420 (see Figure 4.40).

Our time step size τ = 10 is chosen three orders of magnitude larger than
prescribed by the CFL condition (4.2.11) for linear cases, which would require
τ < 0.0015 if we set h as the smallest side length of a triangle in z-direction
(see Figure 4.15) and λ = λ4 from Table 4.2 in (4.2.12). With a glance at
Figures 4.17–4.40 and Figure 4.41, the choice of τ = 0.0015 would require about
106 time steps for the same evolution process leading to a time resolution which
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seems far too fine for this problem. In addition, we would need unrealistically
long calculation times of several weeks for the computation of this problem with
the stopping criterion (4.3.4) on a PC. Note that we also solved our problem
above (using τ = 10) with the much bigger accuracy (4.3.2) which took about
a day of computation while the calculation with the stopping criterion (4.3.4)
only lasted a few hours.

We do observe some numerical instabilities (i.e. unrealistic physical pressure
values p < −10) in the solution of some spatial problems in our example above.
They occur in nodes of certain triangles when the wetting front crosses that
area, for example at the left boundary or in the right top corner of Ω. These
critical triangles contain angles which are (possibly much) bigger than π/2.
We point out that we also observe such instabilities if we choose bigger mesh
sizes or smaller time steps such as τ = 0.02 (CFL time step for the first level).
They even occur if we carry out numerical experiments with a wetting front
around critical triangles using the CFL time step τ = 0.0015. Moreover, we
also observe such instabilities if we compute the same example without gravity.
These observations suggest that the instabilities which we obtained in our model
problem are not due to the gravitational term but rather due to the grid quality
which we have not optimized here. We assume that such problems might require
grids which satisfy the Delaunay or a similar property, see Delaunay [31] and
Fuhrmann and Langmach [41].

Altogether, the nature of our example and the numerical results we obtained
demonstrate that the solution method we propose for the Richards equation in
heterogeneous soil with surface water can be successfully applied to a realistic
hydrological model problem.
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Zusammenfassung (deutsch)

Dreh- und Angelpunkt der vorliegenden Arbeit ist die Richardsgleichung. Diese
ist eine nichtlineare elliptisch-parabolische partielle Differentialgleichung zur
Beschreibung des Grundwasserflusses in porösen Medien im gesättigten wie
im ungesättigten Fall. Eine der beiden Nichtlinearitäten, die relative Perme-
abilität, führt zu einer Degeneriertheit in der Ortsableitung, da sie für kleine
Druckwerte beliebig klein werden kann. Weiterhin können die Parameterfunk-
tionen große Steigungen enthalten und für extreme Bodenparameter zu Sprung-
funktionen degenerieren. Da zudem die Parameterfunktionen vom Bodentyp in
Teilbereichen des Rechengebiets abhängen, erhalten wir heterogene Probleme
mit springenden Nichtlinearitäten.

Angesichts dieser Eigenschaften der Nichtlinearitäten streben wir eine Lösungs-
methode für die Richardsgleichung an, welche völlig ohne Linearisierung aus-
kommt. Dazu ist es nötig, das Problem in Teilprobleme zu zerlegen, welche
getrennt voneinander gelöst werden können. Als erstes wird dafür der homo-
gene Fall ortsunabhängiger Parameterfunktionen betrachtet, für den wir durch
Kirchhoff–Transformation die quasilineare Richardsgleichung in eine semilinea-
re Gleichung transformieren können, welche nun gleichmäßig elliptisch im Ort
ist. Die erhaltene Gleichung wird dann implizit im Hauptteil und explizit im
Gravitationsanteil der Ortsableitung in der Zeit diskretisiert. Dies führt auf
Ortsprobleme, welche äquivalent zu eindeutig lösbaren konvexen Minimierungs-
problemen sind. Letztere lassen eine Diskretisierung mit linearen finiten Ele-
menten zu, für die Existenz und Eindeutigkeit sowie Konvergenz der diskreten
Lösungen gezeigt werden kann. Die entstandenen diskreten Probleme können
mit monotonen Mehrgitter–Methoden effizient und robust bezüglich extrem
variierender Bodenparameter gelöst werden.

Im heterogenen Fall führen verschiedene Kirchhoff–Transformationen in den
Teilgebieten mit homogenem Boden auf ein Gebietszerlegungsproblem. In die-
sem sind konvexe Minimierungsprobleme auf den Teilgebieten mit nichtlinearen
Übergangsbedingungen auf den Gebietsgrenzen gekoppelt. Konkret fordern die
Übergangsbedingungen die Stetigkeit des physikalischen Drucks sowie des Nor-
malenflusses über die Gebietsgrenze. Mittels dieser Größen lassen sich nicht-
lineare iterative Verfahren wie die Dirichlet–Neumann– und die Robin–Methode
definieren. Ohne weitere Linearisierung werden diese Verfahren durch eine
Weiterentwicklung der linearen Steklov–Poincaré–Theorie analysiert. Im Falle
von nichtdegenerierenden relativen Permeabilitäten auf zwei Teilgebieten im
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Eindimensionalen erhalten wir folgende Konvergenzaussagen sowohl im Kon-
tinuierlichen als auch im Diskreten. Die genügend gedämpfte Dirichlet–Neu-
mann–Methode sowie die Robin–Methode konvergieren für die stationäre Ri-
chardsgleichung ohne Gravitation, und das zugehörige Gebietszerlegungsprob-
lem ist wohlgestellt. Weiterhin konvergiert die Robin–Methode für die zeit-
diskretisierte Richards–Gleichung, und auch hier erhalten wir die Wohlgestellt-
heit des Gebietszerlegungsproblems. Obwohl unsere auf einem Kontraktionsar-
gument basierende Beweismethode im Zweidimensionalen versagt, erhalten wir
befriedigende numerische Resultate für die Anwendung der Methoden auf die
untersuchten Probleme in zwei Raumdimensionen.

Schließlich wird eine geeignete Upwind–Diskretisierung für den explizit zeit-
diskretisierten Gravitationsterm mittels finiter Elemente entwickelt. Damit las-
sen sich die Ortsprobleme der zeitdiskretisierten Richardsgleichung numerisch
stabil lösen, wobei Zeitschrittbeschränkungen in der Praxis akzeptabel bleiben.
Ein numerisches Beispiel in zwei Dimensionen zur Lösung der Richardsgleichung
mit vier verschiedenen Böden und Oberflächenwasser sowie realistischen hydro-
logischen Daten zeigt die Anwendbarkeit unserer Lösungsmethode.
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Appendix

In this appendix we collect some basic definitions and well-known results that we
use in this work. For more information we give some literature on the subjects
mentioned here. In general the definitions and theorems can be applied to
Ω ⊂ Rd for any d ∈ N. In Section 1.5 we specify the properties of the domains
Ω ⊂ Rd we would like to consider. Here we give the relevant definitions, one
of which (C1-polyhedron) is needed in Gauss’s theorem whereas the other one
(Lipschitz domain) is most prominent in the theory of Sobolev spaces.

A.1 Gauss’s theorem

One central ingredient in the whole theory of partial differential equations is
certainly Gauss’s theorem, from which Green’s formulas of partial integration
are obtained. We quote this theorem from [55, p. 380] where the following
conditions on the boundary ∂Ω are imposed, see [55, p. 376].

Definition A.1.1. Let Ω be an open set in Rd.

a) A point a ∈ ∂Ω is called a regular point of ∂Ω if there is a neighbourhood
U ⊂ Rn of a and a C1-function q : U → R with ∇q(x) 6= 0 for all x ∈ U
such that

Ω ∩ U = {x ∈ U : q(x) < 0} .
An element of ∂Ω is called a singular point if it is not a regular point.
The collection of all regular points of ∂Ω is called the regular or smooth
boundary ∂rΩ of Ω. Analogously, ∂sΩ := ∂Ω\∂rΩ is called the singular
boundary.

b) Ω is called a C1-polyhedron if its singular boundary ∂sΩ is a (d−1)-nullset.

See [55, pp. 376/377] for the proof of the fact that the smooth boundary of
a C1-polyhedron is an orientable C1-hypersurface. In this context we also
refer to [55, pp. 115/116] for the definition of a (differentiable) manifold, to
[55, pp. 360–369] for measurability of subsets of manifolds and the definition
of a (Hausdorff) nullset, furthermore to [3, p. 13] for the (d − 1)-dimensional
Hausdorff measure of a smooth surface in Rd.
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Now we can state Gauss’s theorem, also known as the divergence theorem.
Later on we will encounter it again in a weak form (see (A.2.12)).

Theorem A.1.2. Let Ω ⊂ Rd be a bounded C1-polyhedron and F : Ω → Rd a
vector field with the following properties:

a) F is continuous on Ω and continuously differentiable on Ω,

b) divF is integrable on Ω,

c) F is integrable on ∂Ω.

Then the following holds:

∫

Ω
divF dx =

∫

∂Ω
F · n dσ .

Note that property b) is satisfied if divF is bounded on Ω and property c) holds
if ∂Ω is a measurable hyperface. As a consequence of this theorem we give the
following version of partial integration in Rd.

Theorem A.1.3. Let Ω ⊂ Rd be a bounded C1-polyhedron with Hausdorff mea-
surable ∂Ω, G : Ω → Rd a continuous vector field and v : Ω → R a continuous
scalar function, both continuously differentiable on Ω. Furthermore, let divG
and the partial derivatives of v be bounded on Ω. Then the following holds:

∫

Ω
div(G(x)) v(x) dx = −

∫

Ω
G(x)∇v(x) dx +

∫

∂Ω
(G(x) · n(x)) v(x) dσ(x) .

Proof. The result follows immediately by considering the vector field F := G ·v
in Theorem A.1.2 and applying the product rule div(G·v) = div(G) v+G∇v.

Note that for G = ∇u with a sufficiently smooth scalar function u we ob-
tain Green’s first formula. Instead of requiring properties a) and b) in Theo-
rem A.1.2, one often confines oneself to vector fields with coordinate functions
from the well-known space C1(Ω) (as done in Section 1.5), which we define in
the following (see [98, p. 7]). Hausdorff measurability of ∂Ω provided, Gauss’s
theorem clearly holds for such vector fields. In the following we define these
spaces along with some other well-known function spaces.

Definition A.1.4. For any Ω ⊂ Rd we denote by C(Ω) the space of all contin-
uous functions f : Ω→ R.
If Ω is compact, then C(Ω) equipped with the norm ‖f‖∞ := supx∈Ω |f(x)| is
a Banach space.
Now let Ω be open. We call α = (α1, ..., αd) ∈ Nd

0 a multi-index and define
|α| := α1 + · · ·+ αd. By the expression

Dαf :=
∂α1 . . . ∂αd

∂xα1
1 . . . ∂xαd

d

f
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we abbreviate the corresponding partial derivative of a function f : Ω→ R if it
exists.
In case Dαf exists and is continuous for any multi-index α with |α| ≤ k ∈ N0,
the function f is called k times continuously differentiable. The space of all
these functions is denoted by Ck(Ω) (note C0(Ω) = C(Ω)).
In addition, we define the space of all infinitely differentiable functions with
compact support as

C∞
0 (Ω) := {f ∈ ∩k∈NC

k(Ω) : supp f is compact} .

For open and bounded Ω ⊂ Rd we define

Ck(Ω) := {f ∈ Ck(Ω) : Dαf has a continuous extension on Ω for all |α| ≤ k} .

Equipped with the norm

‖f‖Ck(Ω) :=
∑

|α|≤k

‖Dαf‖∞

Ck(Ω) is a Banach space. Finally, we define the sets

C∞(Ω) := ∩k∈NC
k(Ω) and C∞(Ω) := ∩k∈NC

k(Ω) .

It makes sense not to define Ck(Ω) as the space of all k times continuously
differentiable functions f : Ω → R, whose one-sided partial derivatives Dαf
exist on ∂Ω. This is because there may be points in ∂Ω where, according
to the shape of Ω, certain one-sided partial derivatives Dαf cannot even be
defined (e.g. in the north pole of a circle in R2). However, if a one-sided partial
derivative Dαf of an f ∈ Ck(Ω) can be defined in a point in ∂Ω, by the mean
value theorem it is equal to the extension of Dαf on Ω in that point.

A.2 Sobolev spaces

For what is to come, we refer to the standard literature Adams [1], Lions and
Magenes [64] and Wloka [101] as well as to Alt [3], Werner [98] and Ziemer [104].
In particular, we follow the exposition in the compendium by Brezzi and Gi-
lardi [21] and the appendix in Quarteroni and Valli [75] according to which
most of our notation is chosen.

Lp-spaces

Let 1 ≤ p < ∞ and Ω ⊂ Rd be open and bounded. By Lp(Ω) we denote the
well-known Banach space of all equivalence classes f of Lebesgue measurable
functions on Ω which coincide almost everywhere in Ω and for which |f |p is
Lebesgue integrable. Lp(Ω) is endowed with the norm

‖f‖Lp(Ω) :=

(∫

Ω
|f(x)|p dx

)1/p

.
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For p = 2 this gives the Hilbert space L2(Ω) with the scalar product

(f, g)L2(Ω) :=

∫

Ω
f(x) g(x) dx .

Considering functions only except for a Lebesgue nullset, it is commonplace
not to distinguish between the functions and their equivalence class. The space
L∞(Ω) is defined as the space of all essentially bounded functions f on Ω with

‖f‖∞ := inf{M > 0 : |f(x)| ≤M almost everywhere in Ω} <∞ .

Now, for a multi-index α (see Definition A.1.4) and a function f ∈ Lp(Ω), a
function g ∈ Lp(Ω) with the property

∫

Ω
g v dx = (−1)|α|

∫

Ω
f Dαv dx ∀v ∈ C∞

0 (Ω) (A.2.1)

is called the weak derivative Dαf of f . If such a g exists, it is unique, and if
we have f ∈ Ck(Ω) for |α| ≤ k and a C1-polyhedron Ω, integration by parts
(see Theorem A.1.3) gives g = Dαf in the classical sense of Definition A.1.4.
We note that in general, by considering f as a continuous linear functional in
the sense of the right hand side of (A.2.1) on the space C∞

0 (Ω), equipped with
a certain locally convex topology τ , Dαf can always be defined as an element
of the dual (C∞

0 (Ω), τ)′.

Sobolev spaces of natural order

For k ∈ N0 the Sobolev space W k,p(Ω) is the space of all functions in Lp(Ω)
whose weak derivatives up to the order k also belong to Lp(Ω), i.e.

W k,p(Ω) := {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) for all |α| ≤ k} .

W k,p(Ω) is a Banach space with respect to the norm

‖v‖k,p :=

(
∑

|α|≤k

‖Dαv‖pLp(Ω)

)1/p

for 1 ≤ p <∞ and
‖v‖k,∞ := max

|α|≤k
‖Dαv‖∞

for p =∞. If p <∞ then W k,p(Ω) is reflexive.

For p = 2 we write Hk(Ω) instead of W k,2(Ω) and ‖ · ‖k instead of ‖ · ‖k,2.
Hk(Ω) is a Hilbert space with the scalar product

(v,w)Hk(Ω) :=
∑

|α|≤k

(Dαv,Dαw)L2(Ω) .

It is crucial to have a notion of boundary values for Sobolev functions, i.e. for
elements ofW k,p(Ω). As a first step towards that, one defines the spaceW k,p

0 (Ω)
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as the closure of C∞
0 (Ω) with respect to the norm ‖ · ‖k,p for 1 ≤ p < ∞. For

k = 0 we obtain W 0,p
0 (Ω) = W 0,p(Ω) = Lp(Ω) (see [1, p. 31]), but for k ∈ N

and p > 1, W k,p
0 (Ω) is always a proper subset of W k,p(Ω) if Rd\Ω has a positive

Lebesgue measure (see [1, pp. 56–63]). Again, for p = 2, we write Hk
0 (Ω) instead

of W k,p
0 (Ω). The most prominent case of the Hilbert spaces Hk

0 (Ω) ⊂ Hk(Ω) is
obtained for k = 1.

The dual space ofW k,p
0 (Ω) is denoted byW−k,p′(Ω) with the conjugate exponent

p′ defined by
1

p
+

1

p′
= 1

for 1 ≤ p ≤ ∞ setting 1
0 := ∞ and 1

∞ := 0. The reason for this notation is

that every element of W k,p
0 (Ω)′ can be interpreted as a sum of distributional

derivatives up to the order k of certain functions coming from the product
space (Lp′(Ω))N where N is the number of multi-indices α with 0 ≤ |α| ≤ k
(see [1, pp. 46–51] for details). However, a similar identification for W k,p(Ω)′

is not possible if W k,p
0 (Ω) 6= W k,p(Ω) (compare [21, pp. 1.48, 1.56]). Again, for

p = 2, we write H−k(Ω) = Hk
0 (Ω)′.

It has to be pointed out that the definitions of the spaces Hk(Ω) (sometimes also
Hk,p(Ω)) are by no means consistent in the literature (compare the references
given at the beginning of this section). In Adams [1, p. 44] for example, Hk,p(Ω)
is defined as the completion of the functions in Ck(Ω) with finite ‖ · ‖k,p-norm
with respect to this norm. For 1 ≤ p < ∞, this is shown to be W k,p(Ω) (see
[1, p. 52]). In Werner [98, p. 204], Hk(Ω) is the closure of the Ck(Ω)-functions
in W k,p(Ω) with respect to ‖ · ‖k,p, and in Wloka [101, pp. 96–98], Hk(Ω) is
defined via the Fourier transform (see (A.2.2)). In these two cases, Hk(Ω) can
be a proper subspace of W k,2(Ω), however, we always have Hk(Ω) = W k,2(Ω)
if the boundary ∂Ω is smooth enough (see [1, pp. 54–56]), for example to allow
a continuous linear extension operator FΩ : W k,2(Ω) → W k,2(Rd) (consult
[101, pp. 99/100]). For bounded Ω ⊂ Rd a sufficient condition to obtain this is
the Lipschitz boundary (see [1, pp. 66/67] and [19, p. 31]), which we define in
the following.

Lipschitz boundary

Recall that a subset S of the boundary ∂Ω is called a graph of a function
f : V ⊂ Rd−1 → R if for a fixed i ∈ {1, . . . , d} the i-th coordinate xi of any
x ∈ S can be written as f applied to the other coordinates of x, considered as
a vector in V .

Definition A.2.1. A set Ω ⊂ Rd is called a Lipschitz domain and ∂Ω a
Lipschitz (continuous) boundary if for any x ∈ ∂Ω there is a neighbourhood Ux

of x such that Ux ∩ ∂Ω is the graph of a scalar Lipschitz function f on an
open subset of Rd−1. Lipschitz continuous subsets or submanifolds Σ ⊂ ∂Ω are
defined accordingly.
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This definition is important, in particular since we consider bounded domains
Ω ⊂ Rd. For bounded Lipschitz domains, the so-called strong local Lipschitz
property and consequently the cone property hold. The latter is the essen-
tial property of Ω required in the well-known embedding theorems of Sobolev
[1, p. 97] and Rellich [1, p. 144]. Lipschitz continuous boundaries are also
needed for the trace theorem A.2.3 and the Poincaré inequality (A.2.13) which
we note below.

Real order Sobolev spaces

For the trace theorem Sobolev spaces “of fractional order” s ∈ R+
0 are needed.

For p = 2 this can be achieved via the Fourier transform û of u ∈ L2(Rd) by
extending the result

Hk(Rd) =

{
u ∈ L2(Rd) :

∫

Rd

|û(ξ)|2(1 + |ξ|2)k <∞
}

(A.2.2)

(see [98, p. 218]) to all nonnegative reals and then by considering restrictions of
these functions on Ω ⊂ Rd. Using so-called tempered distributions this can even
be done for all s ∈ R (see e.g. [64, pp. 30–32] and [101, pp. 95–100]). Another
abstract approach for 1 ≤ p <∞ is to interpolate between the spaces W k,p(Ω)
and W k+1,p(Ω) in order to get W s,p(Ω) for k < s < k + 1. If Ω is bounded
and ∂Ω is smooth enough (see [1, pp. 67, 214]), W s,p(Ω) with s = k + σ and
0 < σ < 1 turns out to be isomorphic to the space of all functions in W k,p(Ω)
with finite Sobolev–Slobodeckij–norm

‖u‖s,p =


‖u‖pk,p +

∑

|α|=k

∫

Ω

∫

Ω

|Dαu(x)−Dαu(y)|p
|x− y|d+σp

dx dy




1/p

. (A.2.3)

The spaces W s,p
0 (Ω) are again defined as the closure of the C∞

0 (Ω)-functions in
W s,p(Ω) and the duals W s,p(Ω)′ are called W−s,p′(Ω). In case of p = 2 and the
definition via Fourier transform, the latter is a theorem. For p = 2 again, Hilbert
spaces Hs(Ω) := W s,2(Ω) and Hs

0(Ω) := W s,2
0 (Ω) and H−s(Ω) = W−s,2(Ω) are

defined. It turns out that C∞(Ω) is dense in Hs(Ω) regardless of how regular
the boundary ∂Ω is (consult [101, p. 74]). If Ω is a Lipschitz domain we also
have the density of C∞(Ω) in Hs(Ω) (see [27, p. 114]).

Trace spaces

If ∂Ω is a sufficiently smooth hypersurface, trace spacesW s,p(∂Ω) can be defined
using spaces W s,p(Ω̃) with Ω̃ ⊂ Rd−1 and parameter functions constituting ∂Ω
via parameter regions Ω̃ (see [64, pp. 34–37] and [1, 214–217]). For polygons
in R2 this is done in [21, pp. 1.56–1.60], where W s,p(Σ) for smooth subsets
Σ ⊂ ∂Ω are defined accordingly. Finally, W s,p

0 (Σ) is defined as the closure of
traces v|Σ of C∞(Ω)-functions v vanishing in a neighbourhood of ∂Ω\Σ. Now,
unfortunately, for s ≥ 0 and 1 < p < ∞ such that s − 1/p ∈ N0, functions in
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W s,p
0 (Σ) do not necessarily have extensions in W s,p(∂Ω) that vanish on ∂Ω\Σ.

Therefore, the space of all functions v ∈ W s,p(Σ) allowing trivial extensions
ṽ ∈W s,p(∂Ω) is defined as

W s,p
00 (Σ) := {v ∈W s,p(Σ) : ṽ ∈W s,p(∂Ω)} (A.2.4)

with the norm
‖v‖W s,p

00 (Σ) := ‖ṽ‖W s,p(∂Ω) . (A.2.5)

If ∂Ω\Σ has a positive Hausdorff measure, the space W s,p
00 (Σ) is strictly con-

tained in W s,p
0 (Σ) if and only if s ≥ 0 and 1 < p <∞ such that s− 1/p ∈ N0.

In this case (compare [21, pp. 1.57–1.60] and [75, p. 7]) we have

‖v‖W s,p(Σ) ≤ ‖v‖W s,p
00 (Σ) ∀v ∈W s,p

00 (Σ) . (A.2.6)

In general the spaces W s,p(Σ) and W s,p
00 (Σ) are reflexive Banach spaces for

s ≥ 0 and 1 ≤ p < ∞. In case of W s,p(Σ) the Sobolev–Slobodeckij–norm,
analogously defined as in (A.2.3), provides an equivalent norm. Furthermore,
we always have W s,p

0 (∂Ω) = W s,p(∂Ω), and for s ≥ 0 and 1 ≤ p < ∞ the dual
space W s,p

0 (Σ)′ is denoted by W−s,p′(Σ). For p = 2 we obtain again Hilbert
spaces Hs(Σ), Hs

0(Σ), Hs
00(Σ) and H−s(Σ).

Embedding and trace theorems

Now, with all these definitions and facts, we can state the main theorems
which we use in this work. Unless otherwise stated they apply for bounded
and connected Ω ⊂ Rd with a smooth boundary ∂Ω, i.e. a C∞-manifold, or
a polygon Ω ∈ R2 (see [21, pp. 1.29, 1.30, 1.56]). Furthermore, we assume
Σ ⊂ ∂Ω to be a connected smooth or polygonal subset of ∂Ω throughout in
what is to come. First we note a version of Sobolev’s embedding theorem (con-
sult [21, pp. 1.52, 1.55, 1.56, 1.60]), which we need for the trace spaces W s,p(Σ).
As usual, by A →֒ B between two vector spaces A and B we indicate that A is
naturally included in B and the corresponding linear map is continuous, i.e. a
continuous embedding.

Theorem A.2.2. Let 0 ≤ r ≤ s, 1 < p ≤ q < ∞ and Ω ⊂ Rd, Σ ⊂ ∂Ω as
above. Then s− d−1

p ≥ r − d−1
q implies the continuous embedding

W s,p(Σ) →֒W r,q(Σ)

and s > d−1
p implies the compact embedding

W s,p(Σ) →֒ C(Σ) .

The following theorem is called trace theorem and gives a precise meaning to
the notion of the restriction on Σ ⊂ ∂Ω of a Sobolev-function on Ω. It consists
of two parts giving also an extension result and thus making clear the space of
all restrictions.
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Theorem A.2.3. Let 1 ≤ p ≤ ∞, s > 1
p and s − 1

p /∈ N. Then the following
holds:

a) There is a unique continuous linear map trΣ : W s,p(Ω) → W s−1/p,p(Σ),
such that trΣv = v|Σ for each v ∈ C(Ω) ∩W s,p(Ω).

b) There is a continuous linear map RΣ : W s−1/p,p(Σ)→W s,p(Ω), such that
trΣRΣµ = µ for each µ ∈W s−1/p,p(Σ).

In this work the trace theorem is frequently applied, mainly for s = 1 and p = 2.
In this case the theorem is also valid for bounded and open Ω and Lipschitz
continuous ∂Ω or Σ (see [75, p. 339]). Now, for s and p as in Theorem A.2.3,
the following definition of Banach spaces of Sobolev functions vanishing on Σ
is necessary for our purposes:

W s,p
Σ (Ω) := {v ∈W s,p(Ω) : trΣv = 0} and Hs

Σ(Ω) := W s,2
Σ (Ω) . (A.2.7)

It turns out that W s,p
0 (Ω) = W s,p

∂Ω (Ω) (see [21, p. 1.66]).

Note in Theorem A.2.3 that trΣ is surjective and RΣ is injective. Consequently,
the trace theorem provides a useful characterization of W s−1/p,p(Σ) as the space
of all restrictions v|Σ := trΣv of the functions v ∈ W s,p(Ω). Furthermore,
observe that by definition (A.2.4) of W s,p

00 (Σ) we have

v ∈W s,p
∂Ω\Σ(Ω) ⇐⇒ v|Σ ∈W s,p

00 (Σ) . (A.2.8)

The trace operator trΣ gives the trace inequality

‖v|Σ‖W s−1/p,p(Σ) ≤ C1‖v‖s,p ∀v ∈W s,p(Ω)

with C1 = ‖trΣ‖. In addition, considering (A.2.5) and (A.2.8) it provides

‖v|Σ‖W s−1/p,p
00 (Σ)

= ‖ṽ|Σ‖W s−1/p,p(∂Ω) ≤ C2‖v‖s,p ∀v ∈W s,p
∂Ω\Σ(Ω) (A.2.9)

with C2 = ‖tr∂Ω‖, thus a trace inequality for W
s−1/p,p
00 (Σ), too (compare this

result with (A.2.6)). However, although the extension operator RΣ gives

‖RΣµ‖1 ≤ C3‖µ‖W s−1/p,p(Σ) ≤ C3‖µ‖W s−1/p,p
00 (Σ)

∀µ ∈W s−1/p,p
00 (Σ)

with C3 = ‖RΣ‖, this does not entail the equivalence of the norms ‖ · ‖
W

s−1/p,p
00 (Σ)

and ‖ · ‖W s−1/p,p(Σ) on W
s−1/p,p
00 (Σ) if s− 1/p /∈ N. More specifically, we cannot

set µ = v|Σ in (A.2.9) and assume µ̃ = tr∂ΩRΣµ ∀µ ∈ W s−1/p,p
00 (Σ). In fact,

the latter must be false since this would provide the equivalence. But the
C∞(Ω)-functions vanishing in a neighbourhood of ∂Ω\Σ are contained both in

W
s−1/p,p
0 (Σ) and W

s−1/p,p
00 (Σ). Therefore, if s− 1/p /∈ N0, then W

s−1/p,p
00 (Σ) is

a non-closed dense subspace of W
s−1/p,p
0 (Σ).

Finally, using the inequalities just mentioned, it is easy to see that

‖µ‖ := inf{‖u‖1 : u ∈W s,p
∂Ω\Σ(Ω), µ = trΣu} ∀µ ∈W s−1/p,p

00 (Σ) (A.2.10)

provides an equivalent norm on W
s−1/p,p
00 (Σ).
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Normal components in a weak sense

There is also a trace theorem for normal components which we can use for the
notion of weak normal derivatives. For this purpose we define the space

Lp
div(Ω) := {w ∈ (Lp(Ω))d : divw ∈ Lp(Ω)}

for 1 ≤ p <∞ with the graph norm

‖w‖div :=
(
‖w‖p

(Lp(Ω))d + ‖divw‖pLp(Ω)

)1/p
,

wherein we write ‖w‖p
(Lp(Ω))d :=

∑d
i=1 ‖wi‖pLp(Ω) and divw =

∑d
i=1

∂
∂xi
wi with

weak derivatives ∂
∂xi
wi ∈ Lp(Ω) for w = (w1, . . . , wd). In case of p = 2 this

space is called H(divw,Ω). We have (W 1,p(Ω))d ⊂ Lp
div(Ω) with equality only

if d = 1, and (C∞(Ω))d is dense in Lp
div(Ω).

Theorem A.2.4. Let 1 < p <∞. Then the following holds:

a) There is a unique continuous linear operator trn : Lp
div(Ω)→W−1/p,p(∂Ω)

such that trnw = (w · n)|∂Ω for each w ∈ (C(Ω))d ∩ Lp
div(Ω).

b) There is a continuous linear operator Rn : W−1/p,p(∂Ω)→ Lp
div(Ω), such

that trnRnµ = µ for each µ ∈W−1/p,p(∂Ω).

Here, as always, n denotes the unit normal vector on ∂Ω directed outward. We
point out that n exists almost everywhere on ∂Ω since ∂Ω is a Lipschitz bound-
ary (see Ciarlet [28, pp. 32–37]). As in Theorem A.2.3 above, Theorem A.2.4
also holds in case of Σ ⊂ ∂Ω. Then for p = 2, however, we need to replace

W−1/p,p(Σ) by H
1/2
00 (Σ)′ which is larger than H−1/2(Σ) because H

1/2
00 (Σ) is

strictly contained in H1/2(Σ) for nontrivial ∂Ω\Σ. In this case Theorem A.2.4
also holds for C1-polyhedra Ω with a Lipschitz boundary (see [75, p. 339]).

Now, if for u ∈ H1(Ω) we have div(∇u) ∈ L2(Ω) as an additional regularity
condition, then ∇u ∈ H(div,Ω) holds and we obtain ∇u · n ∈ H−1/2(∂Ω) or

∇u · n ∈ H
1/2
00 (Σ)′, defined according to Theorem A.2.4. If the regularity of

u is even higher, one can prove more, for example there is an analogous trace
theorem that assigns each u ∈ H2(Ω) a unique normal derivative ∂u

∂n
∈ H1/2(∂Ω)

or more general ∂u
∂n
∈ H1/2(Σ) (see [21, pp. 1.62–1.65]).

Gauss’s theorem in a weak sense and Poincaré inequality

Using the trace theorems and the density of C∞(Ω) in W 1,p(Ω), one can gener-
alize Gauss’s theorem and Green’s formulas of partial integration to the weak
setting for C1-polyhedra Ω with a Lipschitz boundary. In particular, we have
∫

Ω

∂

∂xi
w v dx = −

∫

Ω
w
∂

∂xi
v dx+

∫

∂Ω
tr∂Ωw tr∂Ωv ni dσ(x) ∀w, v ∈ H1(Ω)

(A.2.11)
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for i = 1, . . . , d with n = (n1, . . . , nd). More generally, for 1 < p < ∞ one
obtains
∫

Ω
divw v dx = −

∫

Ω
w∇v dx+ 〈trnw, tr∂Ωv〉 ∀w ∈ Lp

div(Ω) ∀v ∈W 1,p′(Ω)

(A.2.12)
as a generalization of Theorem A.1.3, which gives a generalization of Gauss’s
theorem A.1.2 by setting v = 1. Here, 〈·, ·〉 denotes the duality pairing between
the relevant trace spaces W−1/p,p(∂Ω) and W 1/p,p′(∂Ω) which can be written
as the usual boundary integral if the first entry has a representation in Lp′(Ω).

In the following, we state the well-known Poincaré inequality (see for example
[30, pp. 127–130] and [75, p. 340]) which is used to prove coercivity of bilinear
forms or equivalence of the energy-norm and the ‖ · ‖1-norm in the space H1

Σ(Ω).
In [30, pp. 129–130] the notion of a positive capacity (which differs from a
measure) of Σ ⊂ ∂Ω is required (see [29, p. 447]), but the proof applies for all Σ
with a positive Hausdorff measure which are regular enough such that the trace
theorem A.2.3 holds and H1

Σ(Ω) can be defined as in (A.2.7).

Theorem A.2.5. Assume that Ω ⊂ Rd is bounded, connected and open and
Σ ⊂ ∂Ω is a Lipschitz manifold with a positive Hausdorff measure. Then there
exists a CΩ > 0 such that

∫

Ω
|∇v(x)|2 dx ≥ CΩ

∫

Ω
v2(x) dx ∀v ∈ H1

Σ(Ω) . (A.2.13)

Spaces of vector-valued functions

For weak formulations of parabolic equations on a time cylinder Q = Ω× (0, T )
with T > 0 one usually considers function spaces on (0, T ) or [0, T ] with values
in a Banach space (V, ‖ · ‖V ), at least almost everywhere on (0, T ). Here, we
give some basic definitions of the spaces that we address in Section 1.6. We refer
to [21, pp. 1.67–1.75] for a survey of these spaces and to [101, pp. 364–390] for
a more extended presentation of the topic.

The space of all continuous functions v : (0, T )→ V is denoted by C((0, T );V ),
the space of all k times continuously differentiable functions v : (0, T ) → V
(defined straightforwardly) is denoted by Ck((0, T );V ) for k ∈ N. Analogously,
the Banach spaces C([0, T ];V ) and Ck([0, T ];V ) are defined with norms just
as for real-valued functions as well as the spaces C∞((0, T );V ), C∞([0, T ];V )
and C∞

0 ((0, T );V ).

A function v : (0, T ) → V , defined almost everywhere on (0, T ), is called mea-
surable if there is a sequence (vn)n∈N ∈ C([0, T ];V ) such that vn(t) → v(t),
n → ∞, holds in V for almost all t ∈ (0, T ). For such measurable functions v,
one can show that ‖v(·)‖V is Lebesgue measurable. For 1 ≤ p < ∞ we denote
by Lp(0, T ;V ) the space of all measurable functions v : (0, T )→ V with

‖v‖Lp(0,T ;V ) :=

(∫ T

0
‖v(t)‖pV

)1/p

<∞ .
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Furthermore, L∞(0, T ;V ) is the space of all measurable functions v : (0, T )→ V
with

‖v‖L∞(0,T ;V ) := ‖ ‖v(·)‖V ‖∞ <∞ .

If V is a Hilbert space with the scalar product ( · , · )V , then L2(0, T ;V ) is a
Hilbert space with the scalar product

(u, v) :=

∫ T

0
(u(t), v(t))V dt ∀u, v ∈ L2(0, T ;V ) .

For functions v ∈ L1(0, T ;V ) one can define the integral
∫ T
0 v(t) dt (Bochner

integral, see [101, pp. 364–377]), which is an element of V satisfying

∥∥∥∥
∫ T

0
v(t) dt

∥∥∥∥
V

≤
∫ T

0
‖v(t)‖V dt .

If V is separable, the dual space Lp(0, T ;V )′ is naturally isometrically isomor-
phic to Lp′(0, T ;V ′).

Now, for k ∈ N and 1 ≤ p < ∞, the Sobolev space W k,p(0, T ;V ) is defined as
the completion of C∞([0, T ];V ) with respect to the norm

‖v‖W k,p(0,T ;V ) :=




k∑

j=0

‖v(j)‖Lp(0,T ;V )




1/p

,

v(j) ∈ C∞([0, T ];V ) denoting the j-th derivative of v. The closure of the space

C∞
0 ((0, T );V ) in W k,p(0, T ;V ) is denoted by W k,p

0 (0, T ;V ). Analogous defini-
tions are possible for indices s ≥ 0 instead of k ∈ N.

If V is separable and reflexive and 1 < p <∞, the dual space of W k,p′

0 (0, T ;V ′)
is denoted by W−k,p(0, T ;V ). Accordingly, for p = 2 we define Hilbert spaces

H1(0, T ;V ) := W k,2(0, T ;V ), H1
0 (0, T ;V ) := W k,2

0 (0, T ;V ) and the dual spaces
H−k(0, T ;V ) := W−k,2(0, T ;V ) of the latter.

It can be proved that for a sequence (vn)n∈N ∈ C∞([0, T ];V ) converging to

v ∈W k,p(0, T ;V ), the sequence of derivatives (v
(j)
n )n∈N, for j = 1, . . . , k, con-

verges to a function in Lp(0, T ;V ), which is then defined as the weak derivative
of v. Thus, as for real-valued functions, W k,p(0, T ;V ) can be identified as the
space of all functions in Lp(0, T ;V ) for which weak derivatives v(j) exist in
Lp(0, T ;V ) up to the order k.

We remark that weak derivatives can also be defined in the distributional sense
generalizing (A.2.1), see [101, pp. 378–382]. In particular, for parabolic prob-
lems with weak solutions u ∈ Lp(0, T ;V ), u′(= ut) is no longer a function in
general and needs to be defined by giving sense to a notion of partial integration
in spaces of vector-valued Sobolev spaces. We define u′ as the continuous linear

operator L ∈W 1,p′

0 (0, T ;V ′)′ = W−1,p(0, T ;V ) given by

L(v) := −
∫ T

0
V ′〈v′(t), u(t)〉V dt ∀v ∈W 1,p′

0 (0, T ;V ′) ,
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where V ′〈 · , · 〉V is the duality pairing between V ′ and V . It can be proved that
‖L‖ ≤ ‖u‖Lp(0,T ;V ) holds.

Finally, we note that Sobolev embeddings and trace theorems can be obtained
for Sobolev spaces of vector-valued functions as well. For example, we have
the continuous embedding W 1,p(0, T ;V ) →֒ C([0, T ];V ) such that in case of
u ∈W 1,p(0, T ;V ) initial values u(0) ∈ V make sense for parabolic problems.
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List of Symbols

a(·, ·), ai(·, ·) bilinear form (on Ωi) 61, 145
〈·, ·〉 duality pairing between Λ′ and Λ 147
As scaling matrix 15
bi(·, ·) nonlinear form on Ωi 145
Cν

j coarse grid correction 109, 112

Ck(Ω) space of k times differentiable functions 244
C∞

0 (Ω) space of smooth functions with 244
compact support

χ, χ1, χ2 right hand side in Steklov–Poincaré 144, 148, 169
equations

χK characteristic function of K 74
∂vF directional derivative of the functional F 64
∂F subdifferential of the functional F 71
dom∂F domain of ∂F 71
e(λ) exponent in Brooks–Corey functions, depending 10

on pore size distribution factor λ
ez direction of gravity and of z-axis 14
η interface value in trace space Λ 134, 146
f right hand side in partial differential equation 8, 145, 164
fN Neumann values 31
Fw translated map F 75
g gravitational constant 9
G1, G2 Green operators on Ω1, Ω2 147
γ, γi, γopt acceleration parameters in Robin’s method 166, 199
γD Dirichlet boundary 31
γN Neumann boundary 31
γS boundary of Signorini’s type 31

Γ interface Ω1 ∩ Ω2 131
hj mesh size on refinement level j ∈ N0 83
hp, hΓ,p weighting factor w.r.t. a node p (∈ Γ) 80, 192
H1, H2 harmonic extension operators on Γ 147
Hk(Ω) Sobolev spaces 246
H1

0 (Ω) Sobolev space (with homogeneous Dirichlet 246
boundary conditions on ∂Ω)

H1
γD

(Ω) Sobolev space (with homogeneous Dirichlet 250

boundary conditions on γD)
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H1/2(Γ) trace space 248

H
1/2
00 (Γ) trace space (corresp. to homogeneous Dirichlet 249

boundary conditions on ∂Ω)
I identity operator 171
I Riesz operator 173
ISj piecewise linear interpolation operator 84
J quadratic functional on a Sobolev space 66
ki(·) nonlinearities related to Ωi, i = 1, 2, in domain 144, 164

decomposition problems
kr(·) relative permeability of the soil 9

w.r.t. saturation θ(p) = M(u)
κ, κΩ, κX Kirchhoff transformation, as superposition 12, 43

operator on Ω, X
κi transformations on Λ, corresp. to Ωi, i = 1, 2, 146, 152, 165

in particular Kirchhoff transformations
K(·) permeability of the soil 9
Kh hydraulic conductivity 9
K convex subset of a Sobolev space 61
Kj discretization of K in Sj 79
KγD

translated convex set K with homogeneous 77
Dirichlet boundary conditions on γD

KD
j translated convex set Kj with homogeneous 82

Dirichlet boundary conditions on γD

ℓ(·) linear functional 62
λ, λi (> 0) pore size distribution factor, corresp. to Ωi 10

(in Chapter 1 and in numerical examples)
λ (∈ [0, 1]) convexity parameter (in Chapter 2) 62
λ, λi (∈ Λ) unknown in Steklov–Poincaré equations, 143, 148, 171

corresponding to Ωi (in Chapter 3)
λk, λk

i (∈ Λ) iterates in Dirichlet–Neumann or (altered) 149, 171, 175
Robin method, corresponding to Ωi

λp, λ
(j)
p nodal basis function at the node p ∈ Nj 79

Λj , ΛD
j nodal basis of Sj, SD

j 79

Λ trace space 134
Λj discrete trace space 153, 195
Lp(Ω) space of Lebesgue integrable functions 245
µ viscosity of water (in Chapter 1), 9

interface value in trace space Λ (in Chapter 3) 137, 147, 165
M = M(u) saturation (w.r.t. generalized pressure u) 12, 13, 21
Mi(·) saturation w.r.t. the generalized pressure on Ωi 164

M̃ = M̃(u) multifunction corresponding to M 71
muj generalized discrete saturation corresp. to uj 95
Mj Gauss–Seidel iteration operator 102
n(·) porosity of the soil 8
nj cardinality of Nj 102
n normal on ∂Ω or ∂Ω1, directed outwards 31, 140

256



Nj set of nodes on refinement level j ∈ N0 79
ND

j , N S
j set of nodes in γD, γS 79

N •
j (v) set of critical nodes of v 110

N ◦
j (v) set of regular nodes of v 110

N i
j (v) discrete phases of v 110

‖ · ‖k norm on Hk(Ω), k ≥ 0 40, 246
‖ · ‖k,Ωi

norm on Hk(Ωi), k = 0, 1, i = 1, 2 132, 165
‖ · ‖X norm on the space X 40, 249
Ω, Ω1, Ω2 domains in Rd (and subdomains) 31, 131
∂Ω boundary of domain Ω 31
p (= p(x, t)) physical pressure in the water 9, 49, 132
pi physical pressure (solution) on Ωi 137, 145, 164
p, pl (∈ Nj) node given by the triangulation Tj 79, 102
p0 pressure unit 14, 24, 194
pb bubbling pressure 10
pr scaling factor 15
pD Dirichlet boundary values for p 32, 34, 49
Φ, ΨS

l , Ψ1 convex functions on R 62, 105, 167
∂Φ, ∂ΨS

l subdifferential of convex functions Φ, ΨS
l 71, 105

φ, ψS , ψ1 convex functionals on a Sobolev space 64, 75, 167
∂v−uφ, ∂vψ1 directional derivatives of functionals φ, ψ1 65, 167
∂φ, ∂ψS subdifferentials of convex functionals φ, ψS 71, 71
φj , ψ

S , ψ1,j discretizations of convex functionals φ, ψS , ψ1 80, 82, 192
∂φj , ∂ψ

S subdifferentials of functionals φj, ψ
S on Sj 82

Q time cylinder Ω× (0, T ) 52
RΣ extension operator w.r.t. Σ ⊂ ∂Ω 250
R1, R2 extension operators related to Ω1, Ω2 165
̺ density of water 8
ρ, ρopt convergence rate 125, 161, 198
(·, ·)j lumped L2-scalar product on Sj 96
(·, ·)Γ L2-scalar product on Γ 165
(·, ·)Ωi scalar product in L2(Ωi) 145
(·, ·)H scalar product in the Hilbert space H 71
S, S1, S2 Steklov–Poincaré operators (w.r.t. Ω1, Ω2) 143, 147, 171
Sj space of linear finite elements at level j ∈ N0 79
SD

j subset of Sj with homogeneous Dirichlet 79

boundary conditions on γD

t (∈ [0, T ]) time variable 8
t (∈ Tj) triangle in Tj 79
tn time step for n ∈ N0 60, 220
τ , τn time step size (for n ∈ N0) 60
T end time of evolution 31
Tγ1,γ2 operator providing Robin iteration step 172
Tγ1,γ2 , Tγ operator providing ADI iteration step 175, 176
Tj triangulation at refinement level j ∈ N0 79
θ = θ(p) saturation (w.r.t. physical pressure p) 10, 16, 20
θm, θM residual and maximal saturation 10

257



θi(·) saturation w.r.t. the physical pressure on Ωi 164
ϑ, ϑopt damping factor in Dirichlet–Neumann method 144, 149, 162
trΣ trace operator (w.r.t. Σ ⊂ ∂Ω) 250
u (= u(x, t)) generalized pressure (solution) 12, 41, 54
ui generalized pressure (solution) on Ωi 147, 164
u0 unit of generalized pressure 14, 24, 194
uc critical generalized pressure 13
ur scaling factor 15
uD Dirichlet boundary values for u 31, 39, 54
uj , ũj ūj finite element solutions 81, 82, 95
uν

j Gauss–Seidel or multigrid iterate 102, 108, 112

u∗i solution of a split off linear problem on Ωi 143, 147, 169
depending only on f

ui(λ) solution of an equation on Ωi depending on a 169, 177
boundary value λ ∈ Λ (also: ui(η), ui(µ))

uk
i domain decomposition iterate, i = 1, 2, k ≥ 0 148, 166
v, w (test) functions in some function space 36, 54, 61
v1, v2 test functions on Ω1, Ω2 137, 146, 165
vj (test) function in Sj (satisfying vj ⇀ v 80, 85

or vj → v in Section 2.5)
w (|γD

= uD) Sobolev function satisfying Dirichlet boundary 74

conditions (in Subsections 2.4.2–2.5.2)
wj (= ISjw) function satisfying discrete Dirichlet boundary 81, 84

conditions (in Subsections 2.5.1, 2.5.2)
wu generalized saturation 72
wūj discrete approximation of wu 95
wν

l intermediate iterate in a Gauss–Seidel step 102, 112, 115
or in a multigrid step

v water flux 8, 10, 15
V , Vi, V

0
i Sobolev spaces on Ωi 134

W k,p(Ω) Sobolev space 47, 188, 246
z z-coordinate (in direction of gravity) 9
z0 unit length in z-direction 14, 24, 194
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