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Thesis 1: Mathematics is difficult!

Figure: Pixelio.de

“I hope that the popular press will continue
to portray mathematics as being like a
diamond:
extremely hard material, but valuable and
highly prized both for its industrial
applications and for its intrinsic beauty.”

— Prof. Harold P. Boas, 2003
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BOOK Proofs . . .

http://www.jwuniverse.co.uk/



Thesis 2: There are many types of proof

simple — complicated
surprisingly simple — surprisingly complicated

short — long
with an idea — routine
entertaining — boring

correct — nearly correct (= wrong)
elementary — technical

“trivial” — tricky
using a computer — visual

new — old
geometric — algebraic

. . .



Thesis 3: Proofs have history

The “Four Color Theorem”
— Guthrie 1852
— Kempe 1879 : Heawood 1890
— Heesch 1969 — Appel, Haken, Koch, 1976
— Robertson, Sanders, Seymour, Thomas, 1996
— Werner, Gonthier 2004

http://www.freewebs.com/desargues/4ct1.htm
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Thesis 3: Proofs have history

“Fermat’s Last Theorem” :
For n ≥ 3

xn + y n = zn

has no solutions
in positive integers
x , y and z .

— Fermat, 1637
— Wiles, Taylor 1993

(published 1995).

http://www.amazon.com



Thesis 4: We need proofs

The equation
z3 = x3 + y 3

has no solution. (Euler 1753)

The equation
z4 = x4 + y 4 + u4

has no solution either? (Euler 1772)

. . . it does:

4224814 = 958004 + 2175194 + 4145604 !

(Elkies 1986)
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Thesis 4: We need proofs

http://rjlipton.wordpress.com/



Thesis 5:
Proofs should not be done in public!

“Proofs should be communicated only by consenting adults
in private”
— Victor Klee (U. Washington)

Oberwolfach photo library, http://www.mfo.de
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THE BOOK of Proofs . . .

Paul Erdős (1913-1996)
Oberwolfach photo library, http://www.mfo.de

K. H. Hofmann for “Proofs from THE BOOK”
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Two-Coloring Proofs
Theorem.
The “chessboard without corners”
cannot be covered by dominos.

Proof:
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Two-Coloring Proofs
Theorem.
The “10× 10 chessboard”
cannot be covered by quadrominos.

Proof:
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Two-Coloring Proofs
Theorem. [Conway & Lagarias 1990]
The following board cannot be covered by triminos.

. . . and there is no coloring proof for this!
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Two-Coloring Proofs

Theorem. [Conway & Lagarias 1990]
The triangular board cannot be covered by triminos.

Proofs:

• group-theoretic proof
(using “Conway’s tiling group”, 1990)

• elementary proof
(by Doug West, 1991)
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Odd Dissections of a Square

Theorem. [Thomas 1968/Monsky 1970]
A square cannot be cut into an odd number of equal-area
triangles!



Odd Dissections of a Square

Proof — Part 1: We color the rational plane:
[Thomas 1968/Lenstra]

Color a point (x , y ) according to which entry of

(x , y , 1) = (
a
b
,
c
d
, 1)

is the oddest
(that is, contains the largest power of 2 in the denominator):

• blue: if x is the oddest of the three numbers,

• green: if y is odder than x and at least as odd as 1,

• red: if both x and y have an even numerator.



Odd Dissections of a Square
Color the plane:

Postscript graphics by Ronald Wotzlaw



Odd Dissections of a Square
Color the plane:







Odd Dissections of a Square
Lemma 1: On any line there are only two colors.

Postscript graphics by Ronald Wotzlaw



Odd Dissections of a Square
Lemma 2: Every dissection has a rainbow triangle!



Odd Dissections of a Square
Lemma 2: Every dissection has a rainbow triangle!



Odd Dissections of a Square

Lemma 3: The area A =
p
q
of any rainbow triangle has

even denominator.

Using the 2-adic valuation of the reals
to measure how odd a real number is
the whole plane can be colored so that

• the corners of the unit square have the right colors,

• every line has only two different colors, and

• no rainbow triangle has area 1
2n+1 .

Thus a square cannot be divided into triangles of area 1
2n+1 !
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Enumerating the Rationals

Cantor: The fractions can be enumerated!

Cantor: The reals cannot be enumerated!

Georg Cantor (1845–1918)
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Enumerating the Rationals
Cantor: The fractions can be enumerated!
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104 Sets, functions, and the continuum hypothesis

manager’s surprise (he is not a mathematician) this works; he can still put
up all guests plus the new arrival x!

. . .
x g1

g2

Now it is clear that he can also put up another guest y, and another one z,
and so on. In particular, we note that, in contrast to finite sets, it may well
happen that a proper subset of an infinite setM has the same size asM . In
fact, as we will see, this is a characterization of infinity: A set is infinite if
and only if it has the same size as some proper subset.
Let us leave Hilbert’s hotel and look at our familiar number sets. The set
Z of integers is again countable, since we may enumerate Z in the form
Z = {0, 1,−1, 2,−2, 3,−3, . . .}. It may come more as a surprise that the
rationals can be enumerated in a similar way.

Theorem 1. The set Q of rational numbers is countable.

! Proof. By listing the set Q+ of positive rationals as suggested in the
figure in the margin, but leaving out numbers already encountered, we see
that Q+ is countable, and hence so is Q by listing 0 at the beginning and
−p

q right after
p
q . With this listing

6
1

4
1

3
1

1
1

2
3

1
3

3
3

4
3

1
6

1
5

1
2

2
1

2
2

3
2

4
2

5
2

1
4

3
4

2
5

2
4

5
1

Q = {0, 1,−1, 2,−2, 1
2 ,− 1

2 , 1
3 ,− 1

3 , 3,−3, 4,−4, 3
2 ,− 3

2 , . . . }. "

Another way to interpret the figure is the following statement:

The union of countably many countable sets Mn is again countable.

Indeed, setMn = {an1, an2, an3, . . .} and list
∞⋃

n=1
Mn = {a11, a21, a12, a13, a22, a31, a41, a32, a23, a14, . . . }

precisely as before.
Let us contemplate Cantor’s enumeration of the positive rationals a bit
more. Looking at the figure we obtained the sequence

1
1 , 2

1 , 1
2 , 1

3 , 2
2 , 3

1 , 4
1 , 3

2 , 2
3 , 1

4 , 1
5 , 2

4 , 3
3 , 4

2 , 5
1 , . . .

and then had to strike out the duplicates such as 2
2 = 1

1 or
2
4 = 1

2 .
But there is a listing that is even more elegant and systematic, and which
contains no duplicates — found only quite recently by Neil Calkin and
Herbert Wilf. Their new list starts as follows:

1
1 , 1

2 , 2
1 , 1

3 , 3
2 , 2

3 , 3
1 , 1

4 , 4
3 , 3

5 , 5
2 , 2

5 , 5
3 , 3

4 , 4
1 , . . . .

Here the denominator of the n-th rational number equals the numerator of
the (n + 1)-st number. In other words, the n-th fraction is b(n)/b(n + 1),
where

(
b(n)

)
n≥0

is a sequence that starts with

(1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, . . .).

This sequence has first been studied by a German mathematician, Moritz
Abraham Stern, in a paper from 1858, and is has become known as “Stern’s
diatomic series.”



Enumerating the Rationals
[Calkin–Wilf 2000]
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106 Sets, functions, and the continuum hypothesis

To answer the first question, we work out that the node b(n)/b(n + 1) has
the two sons b(2n + 1)/b(2n + 2) and b(2n + 2)/b(2n + 3). By the set-up
of the tree we obtain the recursions

b(2n + 1) = b(n) and b(2n + 2) = b(n) + b(n + 1). (1)

With b(0) = 1 the sequence (b(n))n≥0 is completely determined by (1).
So, is there a “nice” “known” sequence which obeys the same recursion?
Yes, there is. We know that any number n can be uniquely written as a sum
of distinct powers of 2 — this is the usual binary representation of n. A
hyper-binary representation of n is a representation of n a sum of powers
of 2, where every power 2k appears at most twice. Let h(n) be the number
of such representations for n. You are invited to check that the sequence
h(n) obeys the recursion (1), and this gives b(n) = h(n) for all n.
Incidentally, we have proved a surprising fact: Let r

s be a reduced fraction,
there exists precisely one integer n with r = h(n) and s = h(n + 1).

For example, h(6) = 3, with the hyper-
binary representations
6 = 4 + 2

6 = 4 + 1 + 1

6 = 2 + 2 + 1 + 1.

Let us look at the second question. We have in our tree

r
r+s

r
s

r+s
s

x
1+x

that is, with x := r
s ,

x

x + 1

We now use this to generate an even larger infinite binary tree (without a
root) as follows:

0
1

0
1

0
1

1
4

4
3

3
4

3
5

5
2

2
5

5
3

4
1

1
5

1
3

3
2

2
3

3
1

1
1

2
1

1
2

1
4

4
3

3
4

3
5

5
2

2
5

5
3

4
1

1
5

1
3

3
2

2
3

3
1

1
1

2
1

1
2

1
4

4
3

3
4

3
5

5
2

2
5

5
3

4
1

1
5

1
3

3
2

2
3

3
1

1
1

2
1

1
2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

In this tree all rows are equal, and they all display the Calkin–Wilf listing
of the positive rationals (starting with an additional 0

1 ).



Enumerating the Rationals

Theorem. The rule

n a
b 7−→

1
n + 1− a

b

generates the sequence

1
1 7→

1
2 7→

2
1 7→

1
3 7→

3
2 7→

2
3 7→

3
1 7→

1
4 7→

4
3 7→ . . .

which contains every positive fraction exactly once.

[Moshe Newman]
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Kneser’s Conjecture

Kneser graph KG (5, 2): the “Petersen graph”
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Kneser’s Conjecture

The graphs KG (n, k) can be colored by n − 2k + 2 colors.

Kneser’s conjecture (1955): Less colors don’t suffice

Oberwolfach photo library, http://www.mfo.de



Kneser’s Conjecture
Proofs:
László Lovász (1978)

. . . using the Borsuk–Ulam Theorem
Imre Bárány (1978)

. . . using the Borsuk–Ulam Theorem
Josh Greene (2002)

. . . using the Borsuk–Ulam Theorem

Oberwolfach photo library, http://www.mfo.de
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Kneser’s Conjecture

http://www.ebay.de



Kneser’s Conjecture

Proof: Let X be a set of n points in general position on an
(n − 2k + 1)-dimensional sphere.
Assume there is a coloring(n

k

)
−→ {1, 2, . . . , n − 2k + 1}.

Define

Ai := {x ∈ Sn−2k+1 : the open hemisphere Hx with pole x
contains a k-subset of X of color i} .

for i = 1, 2, . . . , n − 2k + 1, and

A0 := {all points on the sphere not covered by these}.



Kneser’s Conjecture

[Lyusternik-Shnirel’man 1930]
The Borsuk–Ulam Theorem:
If you cover the d-sphere by d + 1 sets,
all of them open, or all of them closed,
then one of the sets contains antipodal points.



Kneser’s Conjecture

[Greene 2002]
The Borsuk–Ulam Theorem:
If you cover the d-sphere by d + 1 sets,
all of them either open or closed,
then one of the sets contains antipodal points.



Kneser’s Conjecture

[PFTB 2009]
The Borsuk–Ulam Theorem:
If you cover the d-sphere by d + 1 sets,
all but one of which are either open or closed,
then one of the sets contains antipodal points.
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Places

At the desk:

“The mathematician is a mythological beast:
half chair, half human.”

— Simon Golin



Places
At the coffee machine:

“A mathematician is a machine
that converts coffee into theorems.”

— Paul Erdős
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Places

Foto: Sven Paustian/Piper
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Berlin Mathematical School, http://www.math-berlin.de



K. H. Hofmann for “Proofs from THE BOOK”
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