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Abstract

The unsolved question whether there are only exponentially-many comfidhaimpes
of simplicial 3-spheres is crucial for the convergence of models for @&ntym gravity.
Working towards this question, Durhuus and Jonsson (1995) intrddiheerestriction to
“locally constructible” (LC) 3-spheres, and showed that there are exgpnentially-many
LC 3-spheres.
We characterize the LC property fdrspheres (“the sphere minus a facet collapses to a

(d —2)-complex”) and ford-balls. Thus we link it to the classical notions of collapsibility,
shellability and constructibility, and obtain hierarchies of such propertiesifoplicial
balls and spheres. The main corollaries from this study are:
— Not all simplicial 3-spheres are locally constructible.

(This solves a problem by Durhuus and Jonsson.)
— There are only exponentially many shellable simplicial 3-spheres with giverber of

facets. (This answers a question by Kalai.)
— All simplicial constructible 3-balls are collapsible.

(This answers a question by Hachimori.)

1 Introduction

Ambjgrn, Boulatov, Durhuus, Jonsson, and others have wdtkddvelop a three-dimensional
analogue of the simplicial quantum gravity theory, as pitedi for two dimensions by Regge
[40]. (See ] and [41] for surveys.) The discretized version of quantum gravagsiders sim-

plicial complexes instead of smooth manifolds; the metraperties are artificially introduced
by assigning length to any edge. (This approach is due to Weingartgh §nd known as “the-

ory of dynamical triangulations”.) A crucial path integiler metrics, the “partition function
for gravity”, is then defined via a weighted sum over all tgatated manifolds of fixed topol-
ogy. In three dimensions, the whole model is convergent drtlye number of triangulated
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3-spheres withN facets grows not faster th&?, for some constar@. Is this true? How many
simplicial spheres are there wibhfacets, forN large?

This crucial question, which was put into the spotlight adyaGromov [.8, pp. 156-157],
still represents an open problem. Its 2D-analogue, howevas answered long time ago by
Tutte [44] [45], who proved that there are asymptotically fewer th%) N combinatorial types
of triangulated 2-spheres. (By Steinitz’ theorem, &f3,[Lect. 4], this quantity equivalently
counts the maximal planar maps o> 4 vertices, which havdl = 2n— 4 faces, and also the
combinatorial types of simplicial 3-dimensional polytspeith N facets.)

In the following, the adjective “simplicial” will often beroitted when dealing with balls,
spheres, or manifolds, as all the regular cell complexegahydhedral complexes that we con-
sider are simplicial.

Why are 2-spheres “not so many”? Every combinatorial typeafgulation of the 2-sphere
can be generated as follows (Figue First for some eveiN > 4 build a tree ofN triangles
(which combinatorially is the same thing as a triangulattban (N + 2)-gon), and then glue
edges according to a complete matching of the boundary edgescessary condition in order
to obtain a 2-sphere is that such a matchinglaar. Planar matchings and triangulations of
(N + 2)-gons are both enumerated by a Catalan nur@Rep, and since the Catalan numbers

satisfy a polynomial boun@y = N%rl(z,\'l\‘) < 4N, we get an exponential upper bound for the
number of triangulations.
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Figure 1:How to get an octahedron from a tree of 8 triangles (= a triangulated @p-go

Neither this simple argument nor Tutte’s precise count careésily extended to higher
dimensions. Indeed, we have to deal with three differemtot$fwhen trying to extend results
or methods from dimension two to dimension three:

(i) Many combinatorial types of simplicial 3-spheres ar¢ mealizable as boundaries of con-
vex 4-polytopes; thus, even though we observe below tha¢ thiee only exponentially-
many simplicial 4-polytopes witN facets, the 3-spheres could still be more numerous.

(i) The counts of combinatorial types according to the nenmtbof vertices and according to
the numbeN of facets are not equivalent any more. We hame-30 < N < %n(n— 3)
by the lower resp. upper bound theorem for simplicial 3-spbieWe know that there are
more than 297 3-spheres]9 [3]], but less than 209" types of 4-polytopes withm
vertices [L6] [1], yet this does not answer the question for a count in terntkeohumber
N of facets.

(i) While it is still true that there are only exponentialigany “trees ofN tetrahedra”, the
matchings that can be used to glue 3-spheres are not plapanane; thus, they could
be more than exponentially-many. If, on the other hand, w&iot ourselves to “local
gluings”, we generate only a limited family of 3-sphereswaswill show below.
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In the early nineties, new finiteness theorems by Cheedérahd Grove et al. 19 yielded a
new approach, namely, to cowvmanifolds of “fluctuating topology” (not necessarily spb®)
but “bounded geometry” (curvature and diameter boundeiwh fabove, and volume bounded
from below). This allowed Bartocci et al6] to bound for anyd-manifold the number of
triangulations withN or more facets, under the assumption that no vertex had eléugber
than a fixed integer. However, for this it is crucial to redtthe topological type: Already
for d = 2, there are more than exponentially many triangulated @Holds of bounded vertex
degree withN facets.

In 1995, the physicists Durhuus and JonssoH jntroduced the class of “locally con-
structible” (LC) 3-spheres. An LC 3-sphere (with N facetsy sphere obtainable from a tree of
N tetrahedra, by identifying pairs of adjacent trianglesia boundary. “Adjacent” means here
“sharing at least one edge”, and represents a dynamic esqgeirt. Clearly, every 3-sphere is
obtainable from a tree dfl tetrahedra by matching the triangles in its boundary; atingrto
the definition of LC, however, we are allowed to match only thogngles thaare adjacent —
or that havebecomeadjacent by the time of the gluing.

Durhuus and Jonsson proved an exponential upper bound omithieer of combinatorially
distinct LC spheres witlN facets. Based also on computer simulatior$, §ee also [0] and
[2]) they conjectured that all 3-spheres should be LC. A pasiselution of this conjecture
would have implied that spheres withfacets are at mo&N, for a constan€ — which would
have been the desired missing link to implement discretatguagravity in three dimensions.

In the present paper, we show that the conjecture of Durhudid@nsson has a negative an-
swer: There are simplicial 3-spheres that are not LC. (Wi tiowever, we do not resolve the
question whether there are fewer ti@hhsimplicial 3-spheres oN facets, for some consta@t)
Moreover, we establish the following theorem, which reddtes “locally constructible” spheres
defined by physicists to concepts that originally arose pological combinatorics.

Main Theorem 1 (Theorem2.1). A simplicial d-sphere, & 3, is LC if and only if the sphere
after removal of one facet can be collapsed down to a compléxension d- 2. Furthermore,
there are the following inclusion relations between famibésimplicial d-spheres:

{vertex decomposabje_ {shellablg C {constructiblé C {LC} C {all d-spheres.

The inclusions all hold with equality faf = 2: all 2-spheres are vertex-decomposable. We use
the hierarchy in particular faf = 3, in conjunction with the following extension and sharpeni
of Durhuus and Jonsson’s theorem (who discussed only tleadcas3).

Main Theorem 2 (Theorem4.4). For fixed d> 2, the number of combinatorially distinct LC
d-spheres with N facets grows not faster tipdnN.

We will give a proof for this theorem in Sectiaghthe same type of upper bound, with the same
type of proof, also holds for L@-balls withN facets.

Already in 1988 Kalai P9 constructed for everg > 4 a family of more than exponentially
manyd-spheres om vertices; Lee }3] later showed that all of Kalai's spheres are shellable.
Combining this with Theorendt.4and Theoren2.1, we obtain the following asymptotic result:

Corollary. For fixed d> 4, the number of shellable d-spheres grows more than expadignti
with respect to the number n of vertices, but only expondytidth respect to the number N of
facets.



The hierarchy of Theorera.1is not quite complete: It is still not known whether constible,
non-shellable 3-spheres exist (s8€][[ 14]). A shellable 3-sphere that is not vertex-decompos-
able was found by Lockeberg in his 1977 Ph.D. work (reponej@?, p. 742]; see also’[d]).
Again, the 2-dimensional case is much simpler and compistaized: All 2-spheres are vertex
decomposable (seé&q)).

In order to show that not all spheres are LC we study in detaipkcial spheres with a
“knotted triangle”; these are obtained by adding a cone tiverboundary of a ball with a
knotted spanning edge (as in Furch’s 1924 papét; [see also Bing §]). Spheres with a
knotted triangle cannot be boundaries of polytopes. Liskdi34] had shown in 1991 that

a 3-sphere with a knotted triangle is not shellable if the kneattieast3-complicated.

Here “at least 3-complicated” refers to the technical rezuient that the fundamental group of
the complement of the knot has no presentation with lessfthargenerators. A concatenation
of three or more trefoil knots satisfies this condition. I®@PHachimori and Ziegler?[5] [21]
demonstrated that Lickorish’s technical requirement tsnezessary for his result:

a 3-sphere withanyknotted triangle is not constructible.

In the present work, we re-justify Lickorish’s technicatamption, showing that this is exactly
what we need if we want to reach a stronger conclusion, naradlypological obstruction to
local constructibility. Thus, the following result is ebtshed in order to prove that the last
inclusion of the hierarchy in Theoreglis strict.

Main Theorem 3 (Theorem?2.14). A 3-sphere with a knotted triangle is not LC if the knot is at
least3-complicated.

The knot complexity requirement is now necessary, as nostoactible spheres with a
single trefoil knot can still be LC. (See Exam@e7.)

The combinatorial topology of 3-balls and that of 3-sphemesof course closely related —
our study builds on the well-known connections and also agssones.

Main Theorem 4 (Theorem3.1). A simplicial 3-ball is LC if and only if it collapses down to
the boundary minus a facet. We have the following hierarchy:

{vertex decomg. C {shellablé C {constructiblé C {LC} C {collapsiblg C {all 3-balls}.

In particular, we settle a question of Hachimori (see €28, pp. 54, 66]) whether all con-
structible 3-balls are collapsible. The converse does olot[35] [22, p. 54]. All the inclusions
hold with equality for simplicial 2-balls. However, noteathMain Theoren® does not easily
generalize tal > 3, since our proofs for the inclusiofLC} C {collapsiblg (Corollary 3.12)
and for its strictness (Corolla.20 are valid only ford < 3.

A result of Chillingworth can then be re-stated in our languag “if for any geometric
simplicial complexA the support (union)4| is a convex 3-dimensional polytope, thAnis
necessarily an LC 3-ball”, see Theoréh2l From that we derive that any geometric subdi-
vision of the 3-simplex is necessarily constructible, Ifthe vertices of the subdivision lie on
the boundary of the simplex. The result is best possiblesesRudin’s ball is a subdivided
3-simplex with no interior vertex, and Rudin’s ball is comnstiible, but not shellable.



1.1 Definitions and Notations
1.1.1 Simplicial regular CW complexes

In the following, we present the notion of “local constriadity” (due to Durhuus and Jonsson).
Although in the end we are interested in this notion as agdpbefinite simplicial complexes,
the iterative definition of locally constructible complexdictates that for intermediate steps
we must allow for the greater generality of finite “simpliciagular CW complexes”. A CW
complex isregularif the attaching maps for the cells are injective on the baupdsee e.g.q]).

A regular CW-complex isimplicial if for every proper facd=, the interval|0,F] in the face
poset of the complex is boolean. Every simplicial complexd(an particular, any triangulated
manifold) is a simplicial regular CW-complex.

The k-dimensional cells of a regular CW compl€xare calledk-faces the inclusion-
maximal faces are callefdcets and the inclusion-maximal proper subfaces of the faceds ar
calledridges The dimensionof C is the largest dimension of a facgiure complexes are
complexes where all facets have the same dimension. All Ex@p that we consider in the
following are finite, most of them are pure. dxcomplexis a d-dimensional complex. Con-
ventionally, the O-faces are callegrtices and the 1-facesdges (In the discrete quantum
gravity literature, the ridges are sometimes called “h&ige “bones”, whereas the edges are
sometimes referred to as “links”.) If the unid¢@| of all simplices ofC is homeomorphic to a
manifold M, thenC is atriangulationof M; if C is a triangulation of al-ball or of ad-sphere,
we will call C simply ad-ball (resp.d-spherg.

1.1.2 Knots

All the knots we consider aame that is, realizable as 1-dimensional subcomplexes of some
3-sphere. A knot isn-complicatedf the fundamental group of the complement of the knot in
the 3-sphere has a presentation with- 1 generators, but no presentation withgenerators.
By “at leastm-complicated” we meank-complicated for som& > m". There exist arbitrarily
complicated knots: Goodricki[] showed that the connected sumrotrefoil knots is at least
m-complicated.

Another measure of how tangled a knot can be is the bridgexi(sbe [12, pp. 114-117]
or [31, p. 18] for the definition). If a knot has bridge indexthe fundamental group of the
knot complement admits a presentation witigenerators antd — 1 relations g1, p. 82]. In
other words, the bridge index oftecomplicated knot is at least- 1. As a matter of fact, the
connected sum dftrefoil knots ist-complicated, and its bridge index is exadth 1 [14].

1.1.3 The combinatorial topology hierarchy

In the following, we review the key properties from the irgitn
{shellablé C {constructiblé

valid for all simplicial complexes, and the inclusion

{shellablé C {collapsiblg

applicable only focontractiblesimplicial complexes, both known from combinatorial tampy
(see P, Sect. 11] for details).



Shellabilitycan be defined for pure simplicial complexes as follows:

— every simplex is shellable;

— ad-dimensional pure simplicial compl&xwhich is not a simplex is shellable if and only if
it can be written a€ = C; UCy, whereC; is a shellablal-complex,C; is ad-simplex, and
C1NC;is a shellabléd — 1)-complex.

Constructibilityis a weakening of shellability, defined by:

— every simplex is constructible;

— ad-dimensional pure simplicial compleX which is not a simplex is constructible if and
only if it can be written a€ = C, UC,, whereC; andC, are constructiblel-complexes, and
C1NCy is a constructibléd — 1)-complex.

Let C be ad-dimensional simplicial complex. Aelementary collapsés the simultaneous
removal fromC of a pair of faceg o, 2) with the following prerogatives:

— dimX=dimo +1,

— 0o is aproper face of;

— o is not a proper face of any other face@f

(The three conditions above are usually abbreviated in xpeession & is a free face ob”;
some complexes have no free face)Clf.= C — Z — g, we say that the comple collapses
ontothe complexC’. We also say that the complé€xcollapses ontéhe complexD, and write
C\. D, if C can be reduced tD by a finite sequence of elementary collapses. Thedlapse
refers to a sequence of elementary collapsesolapsiblecomplex is a complex that can be
collapsed onto a single vertex.

SinceC’ :=C -2 — g is a deformation retract &, each collapse preserves the homotopy
type. In particular, all collapsible complexes are cortttde. The converse does not hold in
general: For example, the so-called “dunce hat” is a cotifl@e2-complex without free edges,
and thus with no elementary collapse to start with. Howetver,implication “contractible=-
collapsible” holds for all 1-complexes, and also for sHabscomplexes of any dimension.

A connected 2-dimensional complex is collapsible if andyahit does not contain a 2-
dimensional complex without a free edge. In particularZ@limensional complexes, @\, D
andD is not collapsible, the® is also not collapsible. This holds no more for complekeasf
dimension larger than twa[].

1.1.4 LC pseudomanifolds

By ad-pseudomanifoldipossibly with boundary] we mean a finite regular CW-comhethat
is pured-dimensional, simplicial, and such that egdh- 1)-dimensional cell belongs to at most
two d-cells. Theboundaryof the pseudomanifol®, denoteddP, is the smallest subcomplex
of P containing all thgd — 1)-cells of P that belong to exactly ong-cell of P.

According to our definition, a pseudomanifold needs not bienglgcial complex; it might
be disconnected; and its boundary might not be a pseudoofénif

Definition 1.1 (Locally constructible pseudomanifoldlet C be a pured-dimensional sim-

plicial complex withN facets. Alocal constructionfor C is a sequencéy, To, ..., Tn, ..., Tk

(k > N) such thafT; is ad-pseudomanifold for eadhand

(1) Tyis ad-simplex;

(2) ifi <N-—1, thenT;,1 is obtained fron; by gluing a newd-simplex toT; alongside one of
the (d — 1)-cells indT;;



(3) if i > N, thenT;,; is obtained fromT; by identifying a pairo, 1 of (d — 1)-cells in the
boundarydT; that share &d — 2)-cell F;

(4) Ty=C.

We say that is locally constructible or LC, if a local construction fo€ exists. With a little

abuse of notation, we will call each an LC pseudomanifold We also say that is locally

constructechlong T, if T is the dual graph ofy, and thus a spanning tree of the dual graph

of C.

The identifications described in item (3) above are opematibat are not closed with re-
spect to the class of simplicial complexes. Local consimastwhere all steps are simplicial
complexes produce only a very limited class of manifolde Serollary3.17).

However, since by definition the local construction in the emust arrive at a pseudoman-
ifold C thatis a simplicial complex, each intermediate stgpnust satisfy severe restrictions:
for eacht < d,

— distinctt-simplices that are not in the boundary®fhare at most ong@ — 1)-simplex;

— distinctt-simplices in the boundary @t that share more than orfe— 1)-simplex will need
to be identified by the time the construction®fs completed.

Moreover,

— if o,1 are the two(d — 1)-cells glued together in the step fromto Ti+1, 0 andt cannot
belong to the samé-simplex ofT;; nor can they belong to twd-simplices that are already
adjacent inf;.

For example, in each step of the local construction of a &spmo two tetrahedra share more

than one triangle. Moreover, any two distinct interiorigées either are disjoint, or they share

a vertex, or they share an edge; but they cannot share tws attyethree; and they also cannot

share one edge and the opposite vertex. If we glued togetbdydundary triangles that belong

to adjacent tetrahedra, no matter what we did afterwardsyoutd not end up with a simplicial
complex any more. So,

a locally constructible3-sphere is a triangulate8-sphere obtained from a tree of
tetrahedra | by repeatedly identifying two adjacent triangles in the baany.

As we mentioned, the boundary of a pseudomanifold need natadseudomanifold. However,
if P is an LCd-pseudomanifold, thedP is automatically g§d — 1)-pseudomanifold. Never-
thelessgP may be disconnected, and thus, in general, it is not LC. By dtresDurhuus and
Jonsson]3, Theorem 2], the boundary of an LC 3-pseudomanifold is agfidisjoint union of
“cacti” of 2-spheres; any two 2-spheres in such a cactuseshtamost one point. We will call
the points shared by two or more spheres in the boundary ofCGa3-pseudomanifolginch
points (or PPs). The PPs are characterized by the property that theintisike 0T, is not a
1-sphere. (It is a disjoint union of 1-spheres).

Definition 1.2. [Steps of types (i)-(ix) in LC constructions] Any admis&ldtep in a local
construction of a 3-pseudomanifold falls into one of théoiwing nine types:
(i) tree-wise gluing;
(i) identifying two triangles that share exactly 1 edge;
(i) identifying two triangles that share 1 edge and the agfe vertex;
(iv) identifying two triangles that share 2 edges that meet PP;
(v) identifying two triangles that share 2 edges that do ne¢tin a PP;



(vi) identifying two triangles that share 3 edges, all of whwertices are PPs;

(vii) identifying two triangles that share 3 edges, two ofosk vertices are PPs;
(viii) identifying two triangles that share 3 edges, one tiose vertices is a PP;
(ix) identifying two triangles that share 3 edges, none obsévertices is a PP.

By definition, the firsiN — 1 steps of an LC construction of a 3-pseudomanifold are tles oh
type (i). The last step in the construction of an LC 3-sphei& type (ix).

The following table summarizes the distinguished effethe steps:
steptype  no. of interior vertices  no. of connected components of tmelagu

(1) +0 +0
(i) +0 +0
(iii) +0 +0(*)
(iv) +0 +1
(v) +1 +0
(vi) +0 +3
(vii) +1 +2
(viii) +2 +0
(ix) +3 -1

where the asterisk recalls that a type (iii) se#émostdisconnects the boundary, pinchingitin a
point.

2 OnLC Spheres

In this section, we establish the following hierarchy anmmad in the introduction.

Theorem 2.1. For all d > 3, we have the following inclusion relations between families of
simplicial d-spheres:

{vertex decomposabje_ {shellablé C {constructiblé C {LC} C {all d-spheres.

Proof. The first two inclusions are known; the third inclusion fell®from Lemma2.24and is
shown to be strict via Exampl227together with Lemma.25 finally, Corollary 2.23 estab-
lishes the strictness of the fourth inclusion fordcib 3. ]

2.1 Somed-spheres are not LC

Let Sbe any simpliciad-sphere d > 2), andT any spanning tree of the dual graph®fWe
denote byKT the subcomplex of formed by all the(d — 1)-faces ofSthat are not intersected
by T.

Lemma 2.2. Let S be any d-sphere. Then for every spanning tree T of tHegdaah of S,
o KT is a contractible puréd — 1)-dimensional simplicial complex witf=N*2 facets;
e forany facetA of S, S-A \ KT.

Any collapse of al-sphereSminus a facef to a complex of dimension at modt- 1 proceeds
along a dual spanning tr@e To see this, fix a collapsing sequence. We may assume that the
collapse ofS— A is ordered so that the paif&d — 1)-face d-face) are removed first. Whenever
both the following conditions are met:



1. oisthe(d —1)-dimensional intersection of the fac&and’ of S

2. the pair(o, ) is removed in the collapsing sequencesef A,
draw an oriented arrow from the centerXfo the center oE’. This yields a directed spanning
treeT of the dual graph o, whereA is the root. Indeedl is spanningoecause alii-simplices
of S— A are removed in the collapse; itasyclic because the center of eadisimplex ofS— A
is reached by exactly one arrow; itéennectedbecause the only fre@ — 1)-faces ofS— A,
where the collapse can start at, are the pr@ger 1)-faces of the “missing simplex@. We will
say that the collapsing sequeraets along the tree Tin its top-dimensional part). Thus the
complexKT appears as intermediate step of the collapse: It is the @ngtitained after the
N-th pair of faces has been removed fr@s A.

Definition 2.3. By afacet-killing sequenctr ad-dimensional simplicial complek we mean
a sequenc€y,Cy,...,C_1,G of complexes such that= f4(C), Co = C, andC;, 1 is obtained
by an elementary collapse that removes a fieee 1)-face o of C;, together with the unique
facetZ containingo.

If Cis ad-complex, and is a lower-dimensional complex such tl@at\, D, there exists a
facet-killing sequence€y, ..., G for C such thatG \, D. In other words, the collapse 6fonto
D can be rearranged so that the pa{id— 1)-face d-face) are removed first. In particular, for
anyd-complexC, the following are equivalent:

1. there exists a facet-killing sequence @r
2. there exists &complexD with k < d — 1 such thaC \ D.
What we argued before can be rephrased as follows:

Proposition 2.4. Let S be a d-sphere, adda d-simplex of S. Let C be a k-dimensional simpli-
cial complex, with k& d — 2. Then,

S—AN\, C < 3ITst K \C

The right-hand side in the equivalence of Proposifichdoes not depend on tidechosen. So,
for anyd-sphere), eitherS— A is collapsible for every, or S— A is not collapsible for any.

“—— ./

Figure 2: (ABOVE): A facet-killing sequence 08— A, whereSis the
boundary of a tetrahedrod & 2), andA one of its facets. (REHT): The \1
1-complexKT [in black] onto whichS— A collapses, and the directed
spanning tred [in purple] along which the collapse above acts.

One more convention: by aatural labelingof a rooted tre€l'’ on n vertices we mean a
bijectionb:V(T) — {1,...,n} such that ifv is the rootb(v) = 1, and ifvis not the root, there
exists a vertexv adjacent tos such thab(w) < b(v).

We are now ready to link the LC concept with collapsibilityaké ad-sphereS, a facetA
of S, and a rooted spanning tré&eof the dual graph o§, with rootA. SinceSis given, fixingT
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is really the same as fixing the manifalg in the local construction db, and at the same time,
fixing T is the same as fixing .

OnceT, Ty, andKT have been fixed, to describe the first part of a local constructf S
(that is, T4, ..., Ty) we just need to specify the order in which the tetrahedr& béve to be
added, which is the same as to give a natural labelinf. @desides, natural labelings dfare
in bijection with collapse$— A\ KT (thei-th facet to be collapsed is the nodeTofabelledi;
see Propositiod.4).

What if we do not fixT? Supposé& andA are fixed. Then the previous reasoning yields a
bijection among the following sets:

1. the set of all facet-killing sequences®f A,

2. the set of “natural labelings” of spanning treesSpfooted at;

3. the set of the first par{d1, ..., Ty) of local constructions fo8, with T; = A.

Can we understand also the second part of a local constrdctonbinatorially”? Let us start
with a variant of the “facet-killing sequence” notion.

Definition 2.5. A pure facet-massacref a pured-dimensional simplicial compleR is a se-
quencePy, P, ..., R_1,R of (pure) complexes such thiat fy(P), Py = P, andPR, 1 is obtained
by B removing:
(a) a free(d — 1)-faceo of B, together with the unique fac&tcontainingo, and
(b) all inclusion-maximal faces of dimension smaller tlthtihat are left after the removal of
type (a) or, recursively, after removals of type (b).

In other words, the (b) step removes lower-dimensionalt$agetil one obtains a pure complex.
Sincet = f4(P), R has no facets of dimensiahleft, nor inclusion-maximal faces of smaller
dimension; henc& is empty. The otheP’s are pure complexes of dimensidn Notice that
the stepR — B 1 is not a collapse, and does not preserve the homotopy typeniergl. Of
courseR — P 1 can be “factorized” in an elementary collapse followed bymoval of a
finite number ofk-faces, withk < d. However, this factorization is not unique, as the next
example shows.

Example 2.6. Let P be the full triangle{1,2,3}. P admits admits three different facet-killing
collapses (each edge can be chosen as free face), but itsaaimytone pure facet-massacre,
namelyP, 0.

Lemma 2.7. Let P be a pure d-dimensional simplicial complex. Every f&déng sequence
of P naturally induces a unique pure facet-massacre of P.pate facet-massacres of P are
induced by some (possibly more than one) facet-killing sege.

Proof. The map consists in taking a facet-killing sequefige.. ., C;, and “cleaning up” the
Ci by recursively killing the lower-dimensional inclusionaximal faces. As the previous ex-
ample shows, this map is not injective. It is surjective eialy because the removed lower-
dimensional faces are of dimension “too small to be relévaimt fact, their dimension is at
mostd — 1, hence their presence can interfere only with the freeokfeces of dimension at
mostd — 2; so the list of all removals of the forrf{d — 1)-face d-face) in a facet-massacre
yields a facet-killing sequence. n

Theorem 2.8. Let S be a d-sphere; fix a spanning tree T of the dual graph ofh®.s€&cond
part of a local construction for S along T corresponds bijeely to a facet-massacre of'K
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Proof. Fix SandT; Ty andKT are determined by this. Let us start with a local constructio
(T1,..., TN=-1,) TN, ..., Tk for SalongT. Topologically,S= Tn/~, where~ is the equivalence
relation determined by the gluing (two distinct pointsTaf are equivalent if and only if they
will be identified in the gluing). MoreoveK ™ = 3Ty /~, by the definition oK.

Define Py := Ky = dTn/~, andPj := dTnj/~. We leave it to the reader to verify that
k— N and fq(KT) are the same integer (see Lemma), which we calledD; in particular
Pb=0Tx/~=0S/~=0.

In the first LC stepn — Tnai1, Wwe remove from the boundary a free ridgeogether with
the unique paio’,o” of facets ofdTy sharingr. At the same timet and the newly formed
face o are sunk into the interior. This steply — dTy.1 haturally induces an analogous
stepdTnyj/~ — dTngj+1/~, namely, the removal af and of the (unique!)d — 1)-faceo
containing it.

In the j-th LC step,0Tnyj — 9Tn+j+1, We remove from the boundary a ridgéogether
with a paira’, g’ of facets sharing; moreover, we sink into the interior a lower-dimensional
faceF if and only if we have just sunk into the interior all faces tiningF. The induced step
from 0Ty j/~ to dTnyj4+1/~ is precisely a “facet-massacre” step.

For the converse, we start with a “facet-massage” .., Py of KT, and we hav®, = K1 =
0Tn/~. The uniqueg(d — 1)-face gj killed in passing fronP; to P 1 corresponds to a unique
pair of (adjacent!)(d — 1)-facesay, oj’ in dTn+j. Gluing them together is the LC move that
transformsIy j into Ty j1. ]
Example 2.9.In a type (vii) step of a local construction for a 3-sph&n&e remove from the
boundary
— an edge, and the two adjacent triangles that share it;

— the other two edges shared by the previous triangles;

— only one of the three vertices: the one that is not a pinchtpor equivalently, the one that
belonged to no other triangle &y .

We do not remove the pinch point from the boundary, as theynggio other boundary triangles.

Remark 2.10. Summing up:

— The first part of a local construction along a tileeorresponds to a facet-killing collapse of
S—A (that ends irKT).

— The second part of a local construction along a Tremrresponds to a pure facet-massacre
of KT.

— Asingle facet-massacre Kf' corresponds to many facet-killing sequencek bf

— By Proposition2.4, there exists a facet-killing sequencelof if and only if KT collapses
onto somed — 2)-dimensional compleg. ThisC is necessarily contractible, likeT .

SoSis locally constructible along if and only if KT collapses onto som@ — 2)-dimensional
contractible compleg, if and only idKT™ has a facet-killing sequence. What if we do notTix

Theorem 2.11.Let S be a d-sphere (d 3). Then the following are equivalent:

1. SisLC;

2. for some spanning tree T of S,TKs collapsible onto soméd — 2)-dimensional (con-
tractible) complex C;

3. there exists dd — 2)-dimensional (contractible) complex C such that for evagetA of S,
S—-AN\.C;

4. for some faceh of S, S- Aiis collapsible onto 4d — 2)-dimensional contractible complex C.

11



Proof. Sis LC if and only if it is LC along some tre€; thus(1) < (2) follows from Remark
2.10 Besides,(2) = (3) follows from the fact thaB—A \ KT (Lemmaz2.2), whereKT is
independent of the choice & (3) = (4) is trivial. To show(4) = (2), take a collapse of
S— A onto somgd — 2)-complexC; by Lemma2.4, there exists some trde (along which the
collapse acts) so th&— A\, KT andKT \,C. O

Corollary 2.12. Let S be &-sphere. Then the following are equivalent:
1. SisLC;

2. KT is collapsible, for some spanning tree T of the dual graph;of S
3. S—Aiis collapsible for every facei of S;

4. S—Ais collapsible for some facét of S.

Proof. This follows from the previous theorem, together with thet fdnat all contractible 1-
complexes are collapsible. O

We are now in the position to exploit results by Lickorish abecollapsibility.

Theorem 2.13(Lickorish [34]). Let £ be a knot on m edges in theskeleton of a simpliciaB-
sphere S. Suppose that-@ is collapsible, wherd is some tetrahedron in-SL. Then|S — | £
Is homotopy equivalent to a connected cell complex with ocellcand at most ni-cells. In
particular, the fundamental group ¢8 — | £| admits a presentation with m generators.

Now assume that a certain sph&eontaining a knotC is LC. By Corollary2.12 S— A
Is collapsible, for any tetrahedrah not in the knot. Hence by Lickorish’s criterion the
fundamental groupn (|S — | £|) admits a presentation witih generators.

Theorem 2.14. Any 3-sphere with a3-complicated triangular3-edge knot is not LC. More
generally, a3-sphere with an m-gonal knot cannot be LC if the knot is at leasbmplicated.

Example 2.15.As for the “Furch—Bing ball” .5, p. 73] [3, p. 110] 9], drill a hole into a finely
triangulated 3-ball along a triple pike dive of three condee trefoils; stop drilling one step
before destroying the property of having a ball. (See Figlrédd a cone over the boundary.
The resulting sphere has a three edge knot which is a corheata of three trefoil knots.
By Goodrick[.7] the connected sum ah copies of the trefoil knot is at least-complicated.
So, this sphere has a knotted triangle, the fundamentalpgobuvhose complement has no
presentation with 3 generators. Hergeannot be LC.

From this we get a negative answer to the Durhuus—Jonssgectone:
Corollary 2.16. Not all simplicial 3-spheres are LC.

Lickorish proved also a higher-dimensional statementichlig by taking successive sus-
pensions of the 3-sphere in Examglés

Theorem 2.17(Lickorish [34]). For any fixed d> 3, there exists a PL d-sphere S such that
S—Ais not collapsible for any facet of S.

To exploit our Theoren2.11we need a sphei®@such thalS— A is not even collapsible to a
(d —2)-complex. To establish that such a sphere exists, we strendtickorish’s result.

12
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Figure 3: Furch-Bing ball with a (corked) tubular hole along a triple-trefoil knot.e one over the
boundary of this ball is a sphere thanist LC.

Definition 2.18. Let K be ad-manifold, A anr-simplex inK, andA the barycenter of. Con-
sider the barycentric subdivisist(K) of K. Thedual A® of A is the subcomplex o$d(K)
given by all flags

ACACAIC---CA

wherer = dimA, and dimA;, 1 = dimA; + 1 for each.

A* is a cone with apeﬁ\, and thus collapsible. We also have the following known lt€see
e.g. Munkres$7] or Hudson P8, pp. 29-30]).

Lemma 2.19. Let K be a PL d-manifold (without boundary), and let A be a serph K of
dimensionr. Then

e A"isa(d—r)-ball, and

e if Ais aface of ar + 1)-simplex B, then Bis a(d —r — 1)-subcomplex of A*.

We already know from Lemma2.2 that for anyd-sphereS, S— A is collapsible onto &d — 1)-
complex: In other words, via collapses one can alwaysogetdimension down. To geivo
dimensions down is not so easy: Our Theor2rhl states thaS— A is collapsible onto a
(d —2)-complex precisely whe8is LC.

This “number of dimensions down you can get by collapsingi’ loa related to the minimal
presentations of certain homotopy groups. The idea of tketheorem is that if one can get
k dimensions down by collapsing, tlig — 1)-th homotopy group of the complement of any
(d — k)-subcomplex of the sphere cannot be too complicated to pirese

Theorem 2.20.Lett, d with0 <t <d-—2, and let S be a PL d-sphere. Suppose that/s
collapses onto a t-complex, for some fafaif S. Then, for each t-dimensional subcomplex
of S, the homotopy group

Ma-t-1 (19 —1£[)
has a presentation with exactly(£) generators.
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Proof. As usual, we assume that the collaps&efA is ordered so that:
— first all pairs(d-face (d — 1)-face) are collapsed,;
— then all pair(d — 1)-face, (d — 2)-face) are collapsed:;

— finally, all pairs((t + 1)-face t-face) are collapsed.
Let us put together all the faces that appear above, mainggiineir order, to form a unique list
of simplices

A]_,Az, R 7A2M717A2M-

In such a listA; is a free face ofAy; Ag is a free face ofA, with respect to the complex
S—A; — Ap; and so on. In generalyy_; is a face ofAy for eachi, and in addition, ifj > 2i,
Aoi_1 is not a face of\;.

We setXp = Ag = A and define a finite sequenig, ..., Xy of subcomplexes add(S) as
follows:

Xj:=|J{A"st.i€{0,...,2j} andA ¢ £}, forje{1,...,M}.

None of theAy’s can be ing, becausel is t-dimensional and dirAy > dimAgy =t + 1.
However, exactlyf;(£) of the Ayi_1's are in£. Consider howX; differs fromXj_;. There are
two cases:
o If Agj_1isnoting,
By Lemma2.19 settingr =dimAg;j_1, A3;_; is a(d—r)-ball that contains in its boundary
the (d —r — 1)-ball A;. Thus|X;] is just|X;_1| with a (d —r)-cell attached via a cell in
its boundary, and such an attachment does not change thedmngpe.
o If Ayj_1isin £, then
Xj=Xj_1 U Ay;.
As this occurs only when dikyj_; =t, we have that dimdy; =t + 1 and dimdy; =
d—t—1; hencgX;| is just|Xj_1| with a (d —t — 1)-cell attached via its whole boundary.
Only in the second case the homotopy typeXqf changes at all, and this second case occurs
exactly fi(£) times. SinceXy is one point, it follows thaty is homotopy equivalent to a
bouquet off;(£) many(d —t — 1)-spheres.
Now let us list by (weakly) decreasing dimension the faceS tifat do not appear in the
previous listAy, Ao, ..., Aom_1,Aom. We name the elements of this list

Aom+1,Aom+2, AF

(wheres 9, fi(S) = F + 1 because all faces appeari, . . ., Ar).
Correspondingly, we recursively define a new sequence ofosaplexes ofsd(S) setting

Yo := Xy and

v ] Yh1 if Aomyn € £,

h-— { Y1 U Ajy.p, Otherwise.

Since dimAy . h < dimAgwi1 =t, we have thatX;| is just |X,_ 1| with possibly a cell of
dimension at leasl —t attached via its whole boundary. Let us consider the honyogopups
of theY, 's : Recall thatYp was homotopy equivalent to a bouquetfdfe) (d —t — 1)-spheres.
Clearly, for allh,

Mj(Yh) =0foreachj € {1,...,d—t—1}.

14



Moreover, the higher-dimensional cell attachedMp 1| to get|Y;,| corresponds to the addition
of relators to a presentation bfy_;_1(Yh_1) to get a presentation ¢1y_;_1(Ys). This means
that for allh the groupy__1(Yn) is generated by (at mosf)(£) elements.

The conclusion follows from the fact that, by constructidfpy_ is the subcomplex of
sd(S) consisting of all simplices a$d(S) that have no face i€; and one can easily prove (see
[34, Lemma 1]) that such a complex is a deformation retra¢Bof |£|. O

Corollary 2.21. Let S be a d-sphere with @ — 2)-dimensional subcomple®. If the funda-
mental group ofS — |£| has no presentation withyf>(£) generators, then S is not LC.

Proof. Sett =d — 2 in Theoren.20 and apply Theorerd.11 n

Corollary 2.22. Fix an integer d> 3. Let S be &-sphere with an m-gonal knot in its 1-skeleton,
so that the knot is at leagt- 29-3)-complicated. Then th@l — 3)-rd suspension of S is a PL
d-sphere that is not LC.

Proof. Let S be the(d — 3)-rd suspension o8, and let£’ be the subcomplex & obtained
taking the(d — 3)-rd suspension of thex-gonal knot£. Since|S| — |£| is a deformation retract
of |S| —|£&'|, they have the same homotopy groups. In particular, thedimahtal group of
S| — | €| has no presentation with- 24-2 generators. Now' is (d — 2)-dimensional, and

fa_o(€) =293 f1() =m- 2973,
whence we conclude via Corollay21 O
Corollary 2.23. For every d> 3, not all d-spheres are LC.

Theorem?2.20can be used in connection with the existence of knotted 2restinR* (see
Kawauchi 31, p. 190]) to see that there are many non-LC 4-spheres behose that arise by
suspension of 3-spheres. Thus, being “non-LC” is not simpiyced by knots.

2.2 Many spheres are LC
Next we show that all constructible spheres are LC.

Lemma 2.24. Let C be a d-pseudomanifold. Assume that C; UCy, where G and G are
d-pseudomanifolds. If Cand G are both LC and €N C; is a strongly connectedd — 1)-
pseudomanifold, then C is LC as well.

Proof. Notice first thatC; NC, = dC; N dC,. In fact, every ridge o€ belongs to two facets
of C, hence everyd — 1)-face o of C; NC; is contained in exactly ond-face ofC; and in
exactly onal-face ofC,. In particular, there is an ed@g of the dual graph of that punctures
o, and that connects a vertex of the dual grap@pivith a vertex of the dual graph @b.

Let C; be a copy ofC;, andC;, a copy ofC; (disjoint fromCj). EachC/ is LC; let us fix a
local construction for each of them, and c&lithe tree along whiclt/ is locally constructed.
Furthermore, le€’ be the pseudomanifold obtained merg@®igontoC; by gluing together the
two copies ofa. C’' can be locally constructed along the tfBeJ T, U e (just redo the same
moves of the local constructions of tBgs): so,C’ is LC.

If C1NC, consists of one simplex only, th&i = C and we are already done. Otherwise,
by the strongly connectedness assumption, the faced€oh dC, can be labeled @,...,m,
so that:
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¢ the facet labeled by 0 ig;

e each facet labeled by> 1 is adjacent to some facet labelpdith j < k.
Now for eachi > 1, glue together the two copies of the facatsideC’. All these gluings are
local because of the labeling chosen, and we eventually oBtairhus,C is LC. n

Since all constructible simplicial complexes are pure @nohgly connectedd], we obtain
for simplicial d-manifolds that

{constructibleé C {LC}.

The previous containment is strict: LE{ be a 4x 4 x 4 pile of cubes, and l&€; be the
mirror image ofC;. GlueC; andC, together along the 2-dimensional annulus consisting of
the external squares of one single fac€pf{see Figurel below). Once triangulated properly,

¢ \

Figure 4: Gluing the mirroring cubes along the green 2-dimensional region gives@nnbn-
constructible 3-manifold.

CL UG, is a manifold which is LC (by Lemma&.24) but not 2-connected (it retracts to a 2-
sphere). So, L@-manifolds are not necessarifg — 1)-connected. Since all constructitide
manifolds aréd — 1)-connected, p. 1854], the previous argument produces many examples of
d-manifolds with boundary that are LC, but not constructiNene of these examples, however,
will be a sphere (or a ball). We do not know whether the comtaint{ constructiblé C {LC}
is strict ford-balls as well (see also Theoredri6).

We show now that fod-spheres, for evergt > 3, the containmenfconstructiblé C {LC}
IS strict.

Lemma 2.25. Suppose that we can fm(BasphereS_that is LC but not constructible. Then for
all d > 3, the(d — 3)-rd suspension d is a d-sphere that is also LC but not constructible.

Proof. WhenevelSis an LC spherey«Sis an LC(d + 1)-ball. (The proof is straightforward
from the definition of “local construction”.) Now iBis LC, its suspensiofvS) U (wx S) is
also LC by Lemm&.24. On the other hand, the suspension of a non-constructiblersps a
non-constructible sphergf, Corollary 2]. O

Of course, we should better show that the 3-spr§ehe the assumption of Lemma.25
really exists. This will be established by Exam@le7. For this we make use of Corollag/12
as follows.

Lemma 2.26. Let B be a3-ball, v an external point, and Bv dB the3-sphere obtained by
adding to B a cone over its boundary. If B is collapsible, tBenvx 0B is LC.
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Proof. By Corollary2.12, and sinceB is collapsible, all we need to prove is tH@8U Vv dB) —
(v o) collapses ont, for some triangles in the boundary oB.

As all 2-balls are collapsible, ardB — o is a 2-ball, there is some vert&in 0B such that
0B — o\, P. This naturally induces a collapsewf dB — v o ontodB U v« P, according to
the correspondence

oisafreeface ok < vxoisafree face ofx2.

Collapsing the edgex P down toP, we getv«dB — v o ™\, dB.

It is crucial to notice that in the collapse given here, thesaf faces removed are all
of the form (v« o,vxX); thus, the facets ofB are always removed together with subfaces
(and never with superfaces) in the collapse. This meanghikafreeness of the faces dB
is not needed; so when we glue ba8khe collapsev+«dB — v o\, dB can be read off as
BUvV*xdB — vxo \, B. [

Example 2.27.In [35], Lickorish and Martin described a collapsible 3-dlvith a non-trivial
knot in its 1-skeleton. An analogous result was obtaineepetdently by Hamstrom and Jer-
rard [26]. The knot was an arbitrary 2-bridge index knot (for examtie trefoil knot). Merging

B with the cone over its boundary, we obtain a knotted 3-sp8ereich is LC (by Lemm&.26
see also34]) but not constructible (because it is knotted; s&g [ 22, p. 54]).

Remark 2.28. In his 1991 paperd4, p. 530], Lickorish announces (without proof given) that
“with a little ingenuity” one can get a sphegawith a 2-complicated triangular knot (the double
trefoil), such thaS— A is collapsible. Such a sphere is LC by Coroll@ry2.

Corollary 2.29. For every fixed &> 3, not all LC d-spheres are constructible. In particular, a
knotted3-sphere can be LC if the knot is jusicomplicated o2-complicated.

The knot in the 1-skeleton of the bdlin Example2.27 consists of a path on the boundary
of B together with a “spanning edge”, that is, an edge in the imt@f B with both extremes
on dB. This edge determines the knot, in the sense that any otkielop@B between the two
extremes of this edge closes it up into an equivalent knot.tl&se reasons such an edge is
called aknotted spanning edg#®ore generally, &notted spanning ans a path of edges in the
interior of a 3-ball, such that both extremes of the path fighe boundary of the ball.

The Example2.27 can then be generalized by adopting the idea that Hamstrdrdexmard
used to prove their “Theorem B2[, p. 331], as follows.

Theorem 2.30.Let K be any2-bridge knot (e.g. the trefoil knot). For any positive irgegn,
there exists a collapsibla-ball B, with a knotted spanning arc of m edges, such that the knot
is the connected union of m copies of K.

Proof. The casem =1 is settled by Exampl@.27 we will prove only the casen= 2, the
general case being analogous.

Let B; be the 3-ball obtained whem = 1. In its 1-skeletonB; has a knot consisting
of a knotted spanning eddé\, Z}, together with some pat8l from A to Z on the boundary
of the ball. Choose a trianglgA,B,C} € dBp such that the edgéA, B} belongs tog. Let

LAccording to this definition, the relative interior of thecds allowed to intersect the boundary of the 3-ball;
this is the approach of Hachimori and Ehrenborglifi
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> ={A,B,C,D} be the unique tetrahedron Bf containing{A,B,C}, and fix a collapse 0B;.

The idea is to glud; to a “mirror copy”B; of By, so that the triangl¢A, B,C} is identified with

its mirror counterpar{A’,B’,C’'}. Let B, be the resulting 3-ball. Clearly, the boundary péth
from Ato Z in By, and its counterpaf’ C B, are merged together in a path on the boundary
of B that goes fron¥ to Z’' avoidingA. At the same time, the spanning edge with its mirror
image forms a knotted spanning arc of two edges.

It remains to show thaB, is collapsible. This is not entirely trivial, because eveBi is
collapsible, the “freeness” of the triang{é\, B,C} was compromised in the very moment we
gluedB] onto it. We should show that there is no loss of generalityssuaning tha{A, B,C}
was removed together with a&agein the collapse oB;.

Suppose not; thepA, B,C} was collapsed away together with some tetrahedf/oB,C,D}.

We modifyB; a little bit, subdividing this tetrahedron into three tétedra via the insertion of a
new vertexC in the middle of the boundary triang{é\, B,C}. The pair( {A,B,C}, {A,B,C,D})
in the collapse oB; can then be replaced with the three pairs

({8,c,C},{B,C,C,D}), ({cCD},{ACCD}), ({ACD},{AB,CD});

in order to give a collapse of the subdivided ball, with theiidnal property thaf A, B,(f} is
removed together with adge Thus, up to replacing the bdh with the subdivided one, and
considering{A, B,C} instead of{A, B,C}, we may assume that the mergeBafandBj along
{A,B,C} collapses ontd A, B,C}. This means thas; is collapsible.

SinceB; contains a knotted spanning arc of 2 consecutive edge#\{ and{A,Z'}), the
cone over the boundary & is an LC 3-sphere with a knotted 4-gon — the knot being the sum
of two copies oK. O

Corollary 2.31. A 3-sphere with an m-complicatédn+ 2)-gonal knot can be LC.

Proof. Let S, = BnhUVv* By, whereBy, is the 3-ball constructed in the previous theorem. By
Lemma2.26 Sy is LC, and the spanning arc aof edges is closed up mto form a(m+ 2)-
gon. [

The sphere§y, are neither vertex decomposable, nor shellable, nor agsigite, because
of the following result about the bridge index.

Theorem 2.32(Ehrenborg, Hachimori, Shimokawa4] [24]). Suppose that &-sphere (or a
3-ball) S contains a knot of m edges.

— If the bridge index of the knot exceellsthen S is not vertex decomposable;

— If the bridge index of the knot exceeflsthen S is not constructible.

The bridge index of &complicated knot is at least- 1, so if a knot is at leasf-complicated,
its bridge index automatically exceeds Thus, Ehrenborg—Hachimori-Shimokawa’s theorem,
the results of Hachimori and Ziegler iG], the previous examples, and all our theorems and
corollaries, blend into the following new hierarchy.

Theorem 2.33.A 3-sphere with a non-trivial knot consisting of
3 edges;l-complicated is not constructible, but can be LC.
3 edges2-complicated is not constructible, but can be LC.
3 edges3-complicated or more is not LC.
4 edges,l-complicated is not vertex decomposable, but can be shellab
4 edges2-complicated is not constructible, but can be LC.
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4 edges3-complicated is not constructible.
4 edges4-complicated or more is not LC.
5 edgesl-complicated is not vertex decomposable, but can be shellab
5 edges2- or 3-complicated is not constructible, but can be LC.
5 edgesd4-complicated is not constructible.
5 edgesb-complicated or more is not LC.
6 edges;]l-complicated can be vertex decomposable.
6 edges2-, 3-, or 4-complicated is not constructible, but can be LC.
6 edgesh-complicated is not constructible
6 edgesp-complicated or more is not LC.

m edges, k-complicated, withk 3 is not vertex decomposable.
m edges, k-complicated, withk 3 is not constructible.

m edges, k-complicated, withkkm—2 can be LC.
m edges, k-complicated, with*km is not LC.

We do not know whether fam > 3 a 3-sphere with am-complicated m+ 1)-gonal knot can
be LC. However, an LC sphere with a 2-complicated triangutat kvas found by Lickorish
(see Remark.28).

One may also derive from Zeeman’s theorem (“given any suoigdliball, there exists a
positive integer so that itsr-th barycentric subdivision is collapsible’ ], Chapters | and 1l1])
that any 3-sphere will become LC after sufficiently many leantric subdivisions. On the other
hand, there is no fixed numbeof subdivisions that is sufficient to mal#l 3-spheres LC. (For
this use sufficiently complicated knots, together with Trie@o2.14)

3 OnLCBalls

The combinatorial topology al-balls and ofd-spheres are intimately related: Removing any
facetA from a PLd-sphereSwe obtain ad-ball S— A, and adding a cone over the boundary of
ad-ball B we obtain ad-sphereSs. Nevertheless, the combinatorics of triangulated babsrse

to be more complicated (and/or less understood) than theplodres. Thus the hierarchy for
simplicial balls in this section — as collected in Theor&drh— is given only ford = 3, while

key questions remain open fdr> 3. On the other hand, we do have a combinatorial charac-
terization of LCd-balls, which we will reach in Theore®1G it is a bit more complicated, but
otherwise analogous to the characterization ofd-§pheres as given in Main Theorem

Theorem 3.1. For simplicial 3-balls,
{vertex decomg. C {shellablé C {constructiblé C {LC} C {collapsiblg C {all 3-balls}.

Proof. The first two inclusions are known (Ziegler’s non-shelldidd from [49] is constructible
by construction). We have already seen that all constriectibmplexes are LC (Lemnia24).
Every LC 3-ball is collapsible by Corollary.12 the implication is strict due to Theoregl19
Finally, Bing and Goodrick showed that not every 3-ball idayoible B] [ 17]. n
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3.1 Local constructions ford-balls

We begin with a relative version of the notions of “facetikil) sequence” and “facet massacre”,
which we introduced in the previous chapter.

Definition 3.2. Let P a pured-complex. LetQ be a proper subcomplex &% either pured-
dimensional or empty. Aacet-killing sequence P, Q) is a sequencé,,P;,...,R_1,R of
simplicial complexes such that= fq(P) — f4(Q), Po = P, andP 1 is obtained byR removing
a pair(o,%) such that is a free(d — 1)-face of that does not lie iQ.

Itis easy to see th& has the sam@ — 1)-faces a%). The version of facet killing sequences
given in Definition2.3is a special case of this one, namely the case vihenempty.

Definition 3.3. Let P a pured-dimensional simplicial complexes. L& be either the empty

complex, or a purd-dimensional proper subcomplex®f A pure facet-massacre 0P, Q) is a

sequencéy, Py, ...,R_1,R of (pure) complexes such thiat= f4(P) — f4(Q), Po =P, andR ;1

Is obtained byR removing:

(a) apair(o,Z) such that is a free(d — 1)-face ofZ that does not lie ilQ, and

(b) all inclusion-maximal faces of dimension smaller tiththat are left after the removal of
type (a) or, recursively, after removals of type (b).

NecessarilyR = Q (and whenQ = 0 we recover the notion of facet-massacrePothat we
introduced in Definitior2.5). It is easy to see that a st€p— B 1 can be factorized (not in
an unique way) in an elementary collapse followed by a reinoiv&-faces, withk < d, that
makesR 1 a pure complex. Thus, a single pure facet-massac(B, @) corresponds to many
facet-killing sequences d¢P, Q).

We will apply both definitions to the paiP,Q) = (KT,dB), whereKT is defined for balls
as follows.

Definition 3.4. If B be ad-ball with N facets, and’ is a spanning tree of the dual graphBf
defineK™ as the subcomplex d& formed by all(d — 1)-faces ofB that are not hit byl .

Lemma 3.5. Under the previous notations,

KT is a pure(d — 1)-dimensional simplicial complex, containid® as a subcomplex;
KT has D+ 5 facets, where b is the number of facet®B, and D:= IN-N+2;

for any d-simplexd of B, B—A N\, KT;

KT is homotopy equivalent to @ — 1)-dimensional sphere.

We introduce another convenient shortening.

Definition 3.6 (seepage)Let B be a simpliciald-ball. A seepagés a (d — 1)-dimensional
subcomplexC of B whose(d — 1)-faces are exactly given by the boundaryBof

Note that a seepage is not necessarily pure; actually themy one pure seepage, namely
dB itself. SinceK™ containsdB, a collapse oK' a seepage must remove all tfte— 1)-faces
of KT that are not irdB: This is what we called a facet-killing sequencgf' , dB).

Proposition 3.7. Let B be a d-ball, and\ a d-simplex of B. Let C be a seepage@&f. Then,

B—A\, C < 3Tst K \,C.
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Proof. Analogous to the proof of Propositiéh4. The crucial assumption is that no faced
is removed in the collapse (since all boundary faces atget$ent in the final compleX). [

If we fix a spanning tred of the dual graph oB, we have then a 1-1 correspondence
between the following sets:

1. the set of collapseB—A \, KT;

2. the set of “natural labelings” af, whereA is labelled by 1;

3. the set of the first par{dy, ..., Ty) of local constructions foB, with Ty = A.

Theorem 3.8. Let B be a d-ball; fix a facef\, and a spanning tree T of the dual graph of B,
rooted atA. The second part of a local construction for B along T corasgs bijectively to a
facet-massacre KT ,dB).

Proof. Let us start with a local constructidy, ..., Tn—1,] Tn, ..., T for B alongT. Topolog-
ically, B = Ty/~, where~ is the equivalence relation determined by the gluing, Ehd=
0N/ ~.

KT hasD—i—g facets (see Lemmab5), and all of them, except thefacets in the boundary,
represent gluings. Thus we have to describe a sequ&gnce, R witht =D — g. But the local
constructionTy, ..., Tn—1,) TN, - . -, Tk producesB (which hagsb facets in the boundary) froifiy
(which has D facets in the boundary, cf. Lemmal) in k— N steps, each removing a pair of
facets from the boundary. SoD2- 2(k— N) = b, which impliesk — N =t.

DefinePy := Ky = 9Ty /~, andPj := dTnyj/~. Inthe first LC step]n — Tn1, We remove
from the boundary a free ridge together with the unique padr’, g’ of facets ofd Ty sharing
r. At the same timer and the newly formed face are sunk into the interior; so obviously
neithero norr will appear indB. This stepdTy — 0Ty 1 naturally induces an analogous
stepdTnyj/~ — 0Tngj+1/~, namely, the removal af and of the uniqud¢d — 1)—face o
containing it, withr not in 9B.

The rest is analogous to the proof of Theor2a n

Thus,B can be locally constructed along a tfe& and only if KT collapses onto some seepage.
What if we do not fix the tred@ or the face\?

Lemma 3.9. Let B be a d-ball; leto be a(d — 1)-face in the boundaryB, and letX be the
unique facet of B containing. Let C be a subcomplex of B. If C contathB, the following are
equivalent:

1. B—2 \,C;

2. B—2—0 \, C—o;

3. B\,C-o.

Theorem 3.10.Let B be a d-ball. Then, the following are equivalent:

Bis LC;

KT collapses onto some seepage C, for some spanning tree T adiahgraph of B;
there exists a seepage C such that for every fAa#tB one has B-A \ C;

B—A \ C, for some faceh of B, and for some seepage C;

there exists a seepage C such that for every facetdB one has B\, C— 0;

B \, C— o, for some facet of B, and for some seepage C;

ohs~wWNE
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Figure 5:A seepage of a 3-ball.

Proof. The equivalences & 2 < 3 < 4 are established analogously to the proof of Theorem
2.11 Finally, Lemma3.9implies that 3= 5= 6= 4. [

Corollary 3.11. Let B be a3-ball. Then the following are equivalent:
BisLC;

KT\, dB, for some spanning tree T of the dual graph of B;
B—A X\, dB, for every facef of B;

B—A X\, dB, for some faceh of B;

B \. dB— g, for every facet of 0B;

B \, dB— g, for some facet of dB.

ouhkwnNpE

Proof. WhenB has dimension 3, any seepdgef dB is a 2-complex containingB, plus some
edges and vertices. If a complex homotopy equivalent$% eollapses ont&, thenC is also
homotopy equivalent t&”, thusC can only bedB with some trees attached (see Figje
which implies thatC \, dB. [

Corollary 3.12. For 3-balls, LC =- collapsible.
Proof. If Bis LC, it collapses to some 2-balB — g, but all 2-balls are collapsible. O
Corollary 3.13. All constructible3-balls are collapsible.

For example, Ziegler’s ball, Gnbaum’s ball, and Rudin’s ball are collapsible (s&4);

Remark 3.14. The locally constructible 3-balls witN facets are precisely the 3-balls that
admit a “special collapse”, namely such that after the fleshentary collapse, in the nedt— 1
collapses, no triangle @B is collapsed away. Such a collapse acts along a dual (difetcee

of the ball, whereas a generic collapse acts along an agyejh that might be disconnected.

One could argue that maybe “special collapses” are not geaial: Perhaps every collapsi-
ble 3-ball has a collapse that removes only one boundamgiiean its top-dimensional phase?
This does not hold, and we will produce a counterexampleamtxt paragraph (see Theorem
3.19.

3.2 3-Balls without interior vertices.

Here we show that balls with all vertices on the boundary &dfland only if they are con-
structible. We use this fact to establish our hierarchy tdwa8s (Theoren8B.1). At the same
time, we review, revise, and extend some of the results ohiaari [21]. In particular we will
show that a type (ii) LC step transforms a constructible Bb#p a constructible 3-ball.
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Proposition 3.15(Hachimori) Let B be a constructible 3-ball. Let C be a 3-ball obtained
from B by gluing together two triangles 88. Then, C is constructible.

The “obvious” thing to try is to recycle fo€ the constructible decompositidh= B; U B,
of B: that is, to splitC into two ballsC; andC, with the same facets d&&; andB,, respectively.
This does not always work in the way statedin,[p. 227], since the intersecti@ NC, might
not be a 2-ball anymore. However, Hachimori’s proof can beaegged, and the result is valid,;
see Benedetti/].

Theorem 3.16. Let B be a3-ball with no interior vertex. Then B is LC if and only if B is
constructible.

Proof. AssumeB is LC. If B is a tree of tetrahedra there is nothing to prove; otherwise,
claim thatB is obtained from a tree of tetrahedra, through a sequenakenfifications only of
type (ii).

In fact, steps of type (v), (viii) or (ix) sink respectively 2 or 3 vertices into the interior
of B; so, they cannot occur. Besides, any identification of typg (vii), or (iv) increases the
number of connected component in the boundary; hence, it beutllowed by at least one
step of type (ix), that destroys a connected component didk@dary. Since (ix) is forbidden,
no identification of type (vi), (vii), or (iv) can occur. Fillg a pinching step like (iii), needs
to be followed by one of the steps (vi), (vii), (viii) or (ixhiorder to restore the ball topology
— but such steps are forbidden, so also step (iii) cannotrocgancluding this Sudoku, each
identification step in a local construction fBrmust be of type (ii).

Each type (ii) step leaves the topology unchanged. Moreowgre of these steps leads out
of the world of simplicial manifolds; for otherwise, to adjuhings, a different step than (ii)
would be needed. By Propositi@l5 we conclude. n

Hachimori’s algorithm £1, Lemma 3, p. 227]42, Chapter 4] to testonstructibility of 3-
balls without interior vertices is thus also an algorithndéxide whether such 3-balls are LC or
not.

Furthermore, Theorer8.16 shows that it is crucial to admit the generality of regular CW
complexes in the definition of “LC”. Recall that we have seemeples of LC simplicial com-
plexes that have many interior vertices, and different imgpthan a ball (namely, LC spheres);
some of these were not constructible, either. The situasiaery different for LC simplicial
complexes.

Corollary 3.17. Let C be a simplicial complex. If every pseudomanifold in@laonstruc-
tion for C is a simplicial complex, then P is a constructiBiall with all its vertices on the
boundary.

Proof. All local gluings in a local construction of are necessarily of type (ii). As these
steps do not alter the topology and do not sink vertices imainiterior,C is a 3-ball with all
vertices on the boundary. Constructibility follows thennfrd@heorem3.16 or alternatively
from Propositior3.15 O

We are going to exploit TheoreM16to obtain examples of non-LC 3-balls. We already
know that if a ballB is not collapsible, theB is not LC, by Corollary3.12 Thus, a ball with
a knotted spanning edge cannot be LC if the knot is the sum@btwnore trefoil knots. (See
also Bing B] and Goodrick [.7].)
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What about knotted balls with a single trefoil knot insidea Viheoren$.16 we have an
answer in the case that the ball has no interior vertices.

Corollary 3.18. Knotted balls without interior vertices are not LC. Moreovedhimori’'s
triangulations of Bing’s house with two rooms and of Furch'd bee not LC.

Proof. Knotted balls are not constructiblé], [25]. The triangulation in £0] of Furch’s ball
[15] has all the vertices on the boundary, thus it is not LC by Teeo3.16 Hachimori also
triangulated 1] a 3-dimensional thickening of Bing’s house with two roomshnall the ver-
tices on the boundary, proving its non-constructibilityicB a triangulated ball cannot be LC,
either. ]

We can now move on to complete the proof of our Theoffin The following result is
inspired by Lickorish—Martin’s Theorem3}], quoted also in our Exampl227): We realized
a collapsible triangulation of a 3-ball with a knotted spagredge and no interior vertices.

Theorem 3.19.Not all collapsible3-balls are LC.

Proof. Start with a largem x mx 1 pile of cubes, triangulated in the standard way, and take
away two distant cubes, leaving only their bottom squardsaglwwill be called from now on
thefree squares XandY). The 3-complexC obtained can be collapsed vertically onto its square
basis; in particular, it is collapsible, and has no inteviertices.

Let C’' be a 3-ball with two tubular holes drilled away, but where agle hole has been
corked at a bottom with a 2-disk, and 2) the tubes are disininhtntertwined, so that a closed
path that passes through both holes and between thesestravke top resp. bottom face@f
yields a trefoil knot (see Figur®).

Figure 6:C is obtained from a 3-ball drilling away two intertwined tubular holes, and tlenking”
the holes on the bottom with 2-dimensional membranes.

C andC’ are homeomorphic. Any homeomorphism induce€oa collapsible triangulation
with no interior vertices. The free squares®fcorrespond via the homeomorphism to the
corking membranes d&’, which we will call correspondinglX’ andY’. To get fromC’ to a
ball with a knotted spanning edge we will carry out two moepst

(i) create a single edge(,y'} that goes fronX’ to Y’;
(i) thicken the “bottom” ofC’ a bit, so thatC' becomes a 3-ball anéiX',y'} becomes an
interior edge (even if its extremes are still on the boungary
We perform both steps by adding cones over 2-disks to the lexmpSuch steps preserve
collapsibility, but in general they produce interior vees; thus we choose “specific” disks with
few interior vertices.
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(i) Providedm is large enough, one finds a “nice” stif,F,3,...,F of triangles on the
bottom ofC’, such thatF UR U - - - U R is a disk without interior vertices;; has a single
vertexx' in the boundary oK’, while R has a single vertey in the boundary o¥’, and
the whole strip intersect’ UY’ only in X andy’. Then we add a cone @, setting

C, = CU(y*(RIURU---UR.1)).

(An explicit construction of this type is carried out ind, pp. 164-165].) Thus one obtains
a collapsible 3-comple&; with no interior vertex, and with a direct edge frothto Y’.

(i) Let R be a 2-ball inside the boundary Gf that contains in its interior the 2-complex
X'UY'U{X,y'}, and such that every interior vertexRflies either inX’ or in Y’. Take a
new pointZ and define€C, (= C;U(Z xR).

As Z xR collapses ontdR, it is easy to verify thaCC, is a collapsible 3-ball with a knotted
spanning edgéx’,y'}. By Corollary3.18 C; is not LC. ]

Corollary 3.20. There exists a collapsibld-ball B such that every collapse of B involves at
least two pairs of the fornfboundary triangle, tetrahedron)

We conclude this chapter observing that Chillingworth’sotieen, “every geometric trian-
gulation of a convex 3-dimensional polytope is collapsiptan be strengthened as follows.

Theorem 3.21(Chillingworth [17]). Every3-ball embeddable as a convex subset of the Eu-
clidean3-spaceR? is LC.

Proof. The argument of Chillingworth for collapsibility runs shawithatB , dB— o, where
o is any triangle in the boundary & Now Theoren8.11ends the proof. O

Any subdivided 3-simplex is LC. If it has all vertices on theubdary, then it is con-
structible, by Theoreri.16 Note that a subdivided 3-simplex with all vertices on thardary
might be non-shellable (e.g. Rudin’s ball).

4 Upper bounds on the number of LCd-spheres.

For fixedd > 2 and a suitable consta@tthat depends od, there are less tha@N combinatorial

types ofd-spheres withN facets. Our proof for this fact is@dimensional version of the main

theorem in [ 3], and allows us to determine an explicit const@nfor anyd. It consists in two

different phases:

1. we observe that there are less treed-simplices than planted plamkary trees, which are
counted by orded Fuss—Catalan numbers;

2. we count the number of “LC matchings” according to ridgethe tree of simplices.

4.1 Counting the trees ofd-simplices.

We will here establish that there are less tRg(N) := (dT%NH (dNN) trees ofN d-simplices.

Lemma 4.1. Every tree of N d-simplices h&ad — 1)N + 2 boundary facets of dimension-dl
and N— 1 interior faces of dimension € 1.
It has%((d —1)N + 2) faces of dimension € 2, all of them lying in the boundary.
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By rootedtree of simplices we mean a tree of simplid&@$ogether with a distinguished
facetd of B, whose vertices have been labelle@1..,d. Rooted trees afi-simplices are in
bijection with “planted planel-ary trees”, that is, plane rooted trees such that everyleain-
vertex has exactly (left-to-right-ordered) sons; cf3f].

Theorem 4.2. There is a bijection between rooted trees of N d-simplices@adted plane
d-ary trees with N non-leaf vertices, which in turn are courttgdhe Fuss—Catalan numbers
Cy4(N) = m (dNN). Thus, the number of combinatorially-distinct trees of Nihplices
satisfies

m d—ll Ca(N) < #{treesof N d-simplices < Cy(N).

Proof. Given a rooted tree al-simplices with a distinguished facétin its boundary, there is
a unigue extension of the labeling of the vertice®db a labeling of all the vertices by labels
1,2,...,d+1, such that no two adjacent vertices get the same label. @acisd-simplex
receives alll + 1 labels exactly once.

Now, label eachl{d — 1)-face by the unique label that none of its vertices has. Wiithwe
get an edge-labeled rootéeary tree whose non-leaf vertices correspond taNtesimplices;
the root corresponds to tltesimplex that contain®, and the labeled edges correspond to all
the (d — 1)-faces other thad. We get a plane tree by ordering the down-edges at each abn-le
vertex left to right according to the label of the correspogdd — 1)-face.

The whole process is easily reversed, so that we can get @drtete ofd-simplices from
an arbitrary planted plard-ary tree.

There are exactlCyq(N) = (dT%NH (4) planted planed-ary trees withN interior ver-

tices (see e.g. Aval]; the integersCy(N) are the “Catalan numbers”, which appear in many
combinatorial problems, see e.g. Stanlég, [Ex. 6.19]). Any tree oN d-simplices hagd —

1)N + 2 boundary facets, so it can be rooted in exa¢ty— 1)N + 2)d! ways, which how-
ever need not be inequivalent. This explains the first inguaaimed in the lemma. Finally,
combinatorially-inequivalent trees dfsimplices also yield inequivalent rooted trees, whence
the second inequality follows. n

Corollary 4.3. The number of trees of N d-simplices, for N large, is bounded b
dN d-1\N
(N) ~ (d(d%l) ) < (de)™.

4.2 Counting the matchings in the boundary.

We know from the previous section that there are exponéntizhny trees olN d-simplices.
Our goal is to find an exponential upper bound for the LC spgheb¢ainable by a matching of
adjacent facets in the boundary of one fixed tree of simplices

Theorem 4.4.Fix d > 2. The number of combinatorially distinct LC d-spheres withaksets,
for N large, is not larger than

(a-(a2) " 2")"
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Proof. Let us fix a tree oN d-simplicesB. We adopt the word “couple” to denote a pair of
facets in the boundary @& that are glued to one another during the local constructich o

Let us seD := %(2+ N(d —1)), which is an integer. By Lemmé& 1, the boundary of the
tree of N d-simplices contains2 facets, so each perfect matching is just a sdD gfairwise
disjoint couples. We are going to partition every perfectahig into “rounds”. The first round
will contain couples that are adjacent in the boundary otitée of simplices. Recursively, the
(i+1)-th round will consist of all pairs of facets tha¢comeadjacent only after a pair of facets
are glued together in theth round.

Selecting a pair of adjacent facets is the same as choosermipe between them; and by
Lemmad4.], the boundary contairgD ridges. Thus the first round of identifications consists in
choosingn; ridges out ofdD, wheren; is some positive integer. After each identification, at
mostd — 1 new ridges are created; so, after this first round of ideatibns, there are at most
(d—1)n; new pairs of adjacent facets.

In the second round, we identifyn2 of these newly adjacent facets: as before, it is a matter
of choosingn; ridges, out of the at mos$tl — 1)n; just created ones. Once this is done, at most
(d —1)ny ridges are created. And so on.

We proceed this way until all the2facets in the boundary & have been matched (aftér
steps, say). Clearly; + ...+ n; = D, and since the;’s are positive integerd, < D must hold.
This means there are at most

53, ()

Ng,...,Nf
n>15n=D
Niyr < (d—1)n

possible perfect matchings @ — 1)-simplices in the boundary of a tree Wfd-simplices.

We sharpen this bound by observing that not all ridges mayhbeen in the first round of
identifications. For example, we should exclude those gdlyat belong to just twd-simplices
of B. An easy double-counting argument reveals that in a tregeimplices, the number of

ridges belonging to at least@simplices is smaller or equal thégh (dgl). So in the upper

bound above we may replace the first fac(t‘ﬁl?) with the smaller facto(% <nd151>).

To bound the sum from above, we u@b <2"andny+---4+nf_1 <nNy+---+nf =D,
while ignoring the conditions;; 1 < (d — 1)n;. Thus we obtain the upper bound

2 N +Y(A-1)2+d-1) D /D-1 _ 9 %(2d2—d)+(d—1).
2\t 1
Thus the number of ways to fold a treefd-simplices into a sphere via a local construction
2_
sequence is smaller than thah 2" N, Combining this with PropositioA.2, we conclude. [J

The upper bound above can be simplified in many ways. For eleawhend > 16, it is

2
smaller than\g/Zd . Explicitly, from Theorem4.4 we obtain the following upper bounds:
e There are less than 216.C 3-spheres wittN facets,
e there are less than 611 T.C 4-spheres witiN facets,
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and so on. We point out that these upper bounds are not slsane avercounted both on the
combinatorial side and on the algebraic side. Withen2, Tutte’s upper bound is asymptotically
3.08V, whereas the one given by our formula isN18/Nhend = 3, however, our constant is
smaller than what follows from Durhuus—Jonsson’s origargument (218 vs. 340%").

Corollary 4.5. For any fixed d> 2, there are exponential lower and upper bounds for the
number of LC d-spheres on N facets.

Proof. We have just obtained an upper bound; however, we also oatiwer bound from

Proposition4.2/Corollary 4.3, since the boundary of a tree @f + 1)-simplices is a stacked

d-sphere, and fod > 2 the stacked-sphere determines the tree(df+ 1)-simplices uniquely.
O
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