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Abstract

We introduce a deformed product construction for simple polytopes in terms of lower-
triangular block matrix representations. We further show how Gale duality can be employed
for the construction and for the analysis of deformed products such that specified faces (e.g.
all the k-faces) are “strictly preserved” under projection.

Thus, starting from an arbitrary neighborly simplicial (d−2)-polytope Q on n−1 vertices
we construct a deformed n-cube, whose projection to the last d coordinates yields a neighborly
cubical d-polytope. As an extension of the cubical case, we construct matrix representations
of deformed products of (even) polygons (DPPs), which have a projection to d-space that
retains the complete (⌊d

2
⌋ − 1)-skeleton.

In both cases the combinatorial structure of the images under projection is completely
determined by the neighborly polytope Q: Our analysis provides explicit combinatorial de-
scriptions. This yields a multitude of combinatorially different neighborly cubical polytopes
and DPPs.

As a special case, we obtain simplified descriptions of the neighborly cubical polytopes of
Joswig & Ziegler (2000) as well as of the projected deformed products of polygons that were
announced by Ziegler (2004), a family of 4-polytopes whose “fatness” gets arbitrarily close
to 9.

1 Introduction

Some remarkable geometric effects can be achieved for projections of “suitably-deformed” high-
dimensional simple polytopes. This includes the Klee-Minty cubes [7], the Goldfarb cubes [3],
and many other exponential examples for variants of the simplex algorithm, but also the “neigh-
borly cubical polytopes” first constructed by Joswig & Ziegler [6]. A geometric framework for
“deformed product” constructions was provided by Amenta & Ziegler [1].

Here we introduce a generalized deformed products construction. In terms of this construction,
the previous version by Amenta & Ziegler concerned deformed products of rank 1. The new
construction is presented in matrix version (that is, as an H-polytope). Iterated deformed
products are thus given by lower-triangular block matrices, where the blocks below the diagonal
do not influence the combinatorics of the product (for suitable right-hand sides).
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The deformed products P are constructed in order to provide interesting images after an affine
projection π : P → π(P ). The deformations we are after are designed so that certain classes
of faces of the deformed product P , e.g. all the k-faces, are “preserved” by a projection to
some low-dimensional space, i.e. mapped to faces of π(P ). In the combinatorially-convenient
situation, the faces in question are strictly preserved by the projection; we give a linear algebra
condition that characterizes the faces that are strictly preserved (Projection Lemma 2.5). We
also identify a situation when all nontrivial faces of π(P ) arise as images π(F ) of faces F ⊂ P
that are strictly preserved (Corollary 2.8).

The conditions dictated by the Projection Lemma may be translated via a non-standard appli-
cation of Gale duality [4, Sect. 6.3] [15, Lect. 6] into conditions about the combinatorics of an
auxiliary polytope Q.

As an instance of this set-up, we show how neighborly cubical d-polytopes arise from projections
of a deformed n-cube where all the (⌊d

2⌋ − 1)-faces are preserved by the projection. The precise
form of the matrix representation of the n-cube, and the combinatorics of the resulting polytopes,
is dictated via Gale duality by a neighborly simplicial (!) (d−2)-polytope with n−1 vertices. As
special cases, we obtain the neighborly cubical polytopes first obtained by Joswig & Ziegler [6],
and also geometric realizations for neighborly cubical spheres as described by Joswig & Rörig [5].

Finally, we construct and analyze projected deformed products of (even) polygons (PDPP poly-
topes), as the images of a deformed product of r even polygons, projected to R

d. The projection
is designed to strictly preserve all the (⌊d

2⌋− 1)-faces (as well as additional d
2 -faces, if d is even).

This produces in particular the 2-parameter family of 4-dimensional polytopes from [17], for
which the “fatness” parameter introduced in [16] gets as large as 9 − ε. We present a new
construction (drastically simplified and systematized) and a complete combinatorial description
of these polytopes.

This work is based on the Diploma Thesis [12]; see also the research announcements in [17] and
[18]. The “wedge product” polytopes of Rörig & Ziegler [11] provide another interesting instance
of “deformed high-dimensional simple polytopes”. A further analysis shows that the neighborly
cubical polytopes, the PDPP polytopes as well as the wedge products do exhibit a wealth of
interesting polyhedral surfaces, including the “surfaces of unusually high genus” by McMullen,
Schulz & Wills [9], and equivelar surfaces of type (p, 2q). Topological obstructions that prevent a
suitable projection of “deformed products of odd polygons”, or of the wedge product polytopes,
will be presented by Rörig & Sanyal [10].

Acknowledgements. The first author would like to thank Andreas Paffenholz, Thilo Rörig,
Jakob Uszkoreit, Arnold Waßmer, and Axel Werner for “actively listening” and Vanessa Kääb
for more. Both authors gratefully acknowledge support by the German Science Foundation DFG
via the Research Training Group “Methods for Discrete Structures” and a Leibniz grant.

2 Basics

In this section we recall basic properties and notation about the main objects of this paper:
convex polytopes. Readers new to the country of polytopia will find useful information in the
well-known travel guides [4] and [15] while the frequent visitors might wish to skim the section
for possibly non-standard notation.

One of the main messages this article tries to convey is that it pays off to work with polytopes
in explicit coordinates (matrix representation). Classically, there are two fundamental ways
of viewing a polytope in coordinates: the interior or V-representation, and the exterior or
H-representation. For V-polytopes “with few vertices”, Perles [4, Chap. 6] had developed Gale
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duality as a powerful tool. In this article, we will apply Gale duality for the analysis of projected
simple H-polytopes. The basics for this will be developed in this section.

2.1 Polytopes in coordinates

For the rest of the section, let P ⊂ R
d be a full-dimensional polytope. In its interior or V-

presentation, P = conv V is given as the convex hull of a finite point set V = {v1, . . . , vm} ⊂ R
d

and V is inclusion-minimal with respect to this property. The elements of V are called vertices,
with notation vertP = V . For a nonempty subset I ⊆ [m] = {1, . . . , m} the set VI = {vi : i ∈ I}
forms a face of P if there is a linear functional ℓ : R

d → R such that ℓ attains its maximum over P
on F = conv V ′. The dimension dim F is the dimension of its affine span. The empty set is also a
face of P , of dimension −1. The collection FP of all faces of P , ordered by inclusion, is a graded,
atomic and coatomic lattice with dim +1 as its rank function. We denote by F∂P := FP \ {P}
the face poset of the boundary of P . We say that two polytopes are of the same combinatorial
type if their face lattices are isomorphic as abstract posets. A polytope P is simplicial if small
perturbations applied to the vertices do not alter its combinatorial type. Equivalently, every
k-face of P (k < dim P ) is the convex hull of exactly k + 1 vertices. The quotient P/F of P by
a face F is a polytope with face lattice isomorphic to FP≥F = {G ∈ FP : F ⊆ G}. If F = {v}
is a vertex, then P/v is called a vertex figure at v.

The polytope P is given in its exterior or H-presentation if P is the intersection of finitely many
halfspaces. That is, if there are (outer) normals a1, . . . , an ∈ R

d and displacements b1, . . . , bn ∈ R

such that

P =
n⋂

i=1

{x ∈ R
d : aT

i x ≤ bi},

where we assume that the collection of normals is irredundant, thus discarding any one of the
halfspaces changes the polytope. The hyperplanes Hi = {x ∈ R

d : aT
i x = bi} are said to be facet

defining ; the corresponding (d − 1)-faces Fi = P ∩ Hi are called facets. More compactly, we
think of the normals ai as the rows of a matrix A ∈ R

n×d and, with b ∈ R
n accordingly, write

P = P (A, b) = {x ∈ R
d : Ax ≤ b}.

For any subset F ⊆ P let eqF = {i ∈ [n] : F ⊂ Hi} ⊆ [n] be its equality set. Clearly,
F ⊆

⋂
i∈eq F Fi; in case of equality, the set F is a face of P . Denote by AI the submatrix of A

induced by the row indices in I ⊆ [n]. Thus any face F is given by F = P ∩ {x : AI x = bI},
for I = eqF . The collection of equality sets of faces ordered by reverse inclusion is isomorphic
to FP . The polytope P is simple if its combinatorial type is stable under small perturbations
applied to the bounding hyperplanes. Equivalently, every nonempty face F is contained in no
more than |eqF | = d − dim F facets.

2.2 Gale duality

Let P ⊂ R
d be a d-polytope and let the rows of V ∈ R

m×d be the m vertices of P . Denote by
V hog = (V,1) ∈ R

m×(d+1) the homogenization of V . The column span of V is a d+1 dimensional
linear subspace. Choose G ∈ R

m×(m−d−1) such that the columns form a basis for the orthogonal
complement. Any such basis, regarded as an ordered collection of m row vectors, is called a Gale
transform of P . It is unique up to linear isomorphism and, by the reverse process, characterizes
V hog, again up to linear isomorphism. So it determines P only up to a projective transformation.
However, the striking feature of Gale transforms is that its combinatorial properties are, in a
precise sense, dual to those of P ; this correspondence goes by the name of Gale duality.
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In order to state and work with Gale duality we introduce some concepts and notations. As
before we write VI for the subset of the rows of V indexed by I ⊆ [m]. A subset I ⊂ [m] names
a coface of P if the complement V[m]\I is the vertex set of a face of P .

Definition 2.1. A collection of vectors G = {g1, g2, . . . , gm} ⊂ R
k is positively dependent if

there are numbers λ1, λ2, . . . , λm > 0 such that λ1g1 + · · ·+ λmgm = 0. It is positively spanning
if in addition G is of full rank k.

“Begin positively spanning” is, like “being spanning”, an open condition, i.e. preserved under
(sufficiently small) perturbations of the elements of G. This, however, is not true for “being
positively dependent”: Consider e.g. {g,−g} for g ∈ R

k, g 6= 0, k > 1.

Theorem 2.2 (Gale duality). Let P = conv V be a polytope and G a Gale transform of P . Let
I ⊂ [m] then I names a coface of P if and only if GI is positively dependent.

In light of Gale duality, the preceding theorem implies that for a general polytope not every
subset of the vertex set of a face necessarily forms a face. This, however, is true for simplicial
polytopes and, in fact, characterizes them. A still stronger condition is satisfied if no d + 1
vertices of a d-polytope lie on a hyperplane, that is, if the vertices are in general position with
respect to affine hyperplanes. (The polytope is then automatically simplicial; however, the
vertices of a regular octahedron are not in general position). This translates into Gale diagrams
as follows.

Proposition 2.3. Let P ⊂ R
d be a polytope and G ⊂ R

k a Gale transform of P . Then P is
simplicial with vertices in general position if and only if the rows of G are in general position
with respect to linear hyperplanes, that is, if any k vectors of G are linearly independent.

2.3 Faces strictly preserved by a projection

Projections are fundamental in polytope theory: Every polytope on n vertices is the image of an
(n−1)-simplex under an affine projection. This in particular says that the analysis of the images
of polytopes under projection is as difficult as the general classification of all combinatorial types
of polytopes. The problem is that a k-face F ⊂ P can behave in various ways under projection:
It can map to a k-face, or to part of a k-face, or to a lower-dimensional face of π(P ). Even if
it maps to a k-face π(F ) ⊂ π(P ), there may be other k-faces of P that map to the same face
F̃ = π(F ). In that case, the face π−1(F̃ ) has higher dimension than F . Thus, as a serious
simplifying measure, we restrict our attention in the following to the most convenient situation,
of faces that are “strictly preserved” by a projection.

Definition 2.4 (Strictly preserved faces [17]). Let P be a polytope and Q = π(P ) the image of
P under an affine projection π : P → R

d. A nonempty face F of P is (strictly) preserved by π if

(i) π(F ) is a face of Q combinatorially equivalent to F , and (preserved face)
(ii) the preimage π−1(π(F )) is F . (strictly preserved)

Since in the following we will be concerned exclusively with the analysis of strictly preserved
faces, we will generally drop the modifier “strictly” starting now.

The following lemma gives an algebraic way to read off the preserved faces from a polytope in
exterior presentation. Every affine projection π : R

n → R
d factors as an affine transformation

followed a projection πd : R
n−d × R

d → R
d that deletes the first n − d coordinates, that is

πd(x, x) = x for all (x, x) ∈ R
n−d × R

d. Therefore, we will focus on the projections πd “to the
last d coordinates”. For a polytope P = P (A, b) ⊂ R

n in exterior presentation the projection

map πd naturally partitions the columns of A, as A = (A|A).
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Lemma 2.5 (Projection Lemma: Matrix version). Let P = P (A, b) ⊂ R
n be a polytope, F a

nonempty face of P , and I = eqF the index set of the inequalities that are tight at F . Then F
is preserved by the projection πd : P → R

d to the last d coordinates if and only if the rows of AI

are positively spanning.

The proof makes use of the following geometric version of the Farkas Lemma.

Lemma 2.6 ([15, Sect. 1.4]). Let P = P (A, b) be a polytope and F ⊆ P a nonempty face. For
a linear functional ℓ(x) = cx we denote by P ℓ the nonempty face of P on which ℓ attains its
maximum. The linear function ℓ singles out F , that is P ℓ = F , if and only if c is a strictly
positive linear combination of the rows of Aeq F .

Proof of Lemma 2.5. We split the proof into two parts.

Claim 1. F̃ = πd(F ) is a face of P̃ = πd(P ) with π−1
d (F̃ )∩P = F iff AI is positively dependent.

By Lemma 2.6 the rows of AI are positively dependent if and only if there is some c ∈ Rd

such that the linear function ℓ(x) := (0, c)x = c x satisfies P ℓ = F . Rewriting ℓ = h ◦ πd with
h(x) = c x we see that such a c exists if and only if there is a linear function h on P̃ such that
P̃ h = F̃ .

Claim 2. Considering F as a (sub-)polytope in its own right, then F̃ = πd(F ) is combinatorially
equivalent to F if and only if AI has full row rank.

The polytopes F and F̃ are combinatorially equivalent iff they are affinely isomorphic. This
happens if and only if the linear map πd is injective restricted the linear space L = {x : AI x = 0},
which is parallel to aff F = {x : AI x = bI} the affine hull of F . Now, πd|L is injective iff
ker πd ∩ L ∼= {x : AI x = 0} is trivial.

See [13] for a proof in a different wording.

Lemma 2.5 allows us to guarantee that in certain situations every single k-face is preserved by
a projection π : P → π(P ). Then, however, we want to also see that π(P ) has no other k-face
than those induced by the projection. This will be argued via the following lemma.

Lemma 2.7. Let P = P (A, b) ⊂ R
n be an n-polytope such that for every vertex v ∈ vert P the

rows of the matrix Aeq v are in general position with respect to linear hyperplanes. Then every
proper face of P is either preserved under πd or falls short of being a face of πd(P ).

Proof. If G ⊂ R
k is a set of at least k vectors in general position with respect to linear hyper-

planes then dim spanG′ ≥ min{|G′|, k} for every subset G′ ⊆ G. In particular, every positively
dependent subset is positively spanning.

Let F ⊂ P be a proper face. From the proof of Lemma 2.5 it follows that πd(F ) is a face iff Aeq F

is positively dependent. Let v ∈ vert P be a vertex with v ∈ F . Then Aeq F ⊆ Aeq v and Aeq v ⊂
R

n−d is a set of at least n vectors in general position with respect to linear hyperplanes.

Corollary 2.8. If all k-faces of P are preserved by the projection π : P → π(P ), then all
k-faces of π(P ) arise as images of k-faces of P .

Proof. For any k-face G ⊆ π(P ) we know that Ĝ = πd
−1(G) is a face of P , of dimension

dim Ĝ ≥ k. Now if F ⊆ Ĝ is any k-face of Ĝ, then by Lemma 2.7 either F is preserved, and we
get πd(F ) = G, or F is not mapped to a face. The latter case cannot arise here.
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2.4 Generalized Deformed Products

The orthogonal product P × Q ⊂ R
d+e of a d-polytope P = P (A, a) ⊂ R

d and an e-polytope
Q = P (B, b) ⊂ R

e is given in inequality description by a block diagonal system:

Ax ≤ a
By ≤ b.

We get a deformed product (with the combinatorial structure of the orthogonal product) if we
generalize this into a block lower-triangular system, provided that Q is simple, and that we
rescale the right-hand side of the system suitably.

Definition 2.9 (Rank r deformed product). Let P = P (A, a) ⊂ R
d be a d-polytope and

Q = P (B, b) ⊂ R
e a simple e-polytope, with A ∈ R

k×d and B ∈ R
n×e. Let C ∈ R

n×d be an
arbitrary matrix of rank r and let M ≫ 0 be large. The rank r deformed product P ⊲⊳C Q ⊂ R

d+e

of P and Q with respect to C is given by

Ax ≤ a
Cx+By ≤ M b

, that is,

(
A
C B

)(
x
y

)
=

(
a

M b

)
.

Proposition 2.10. Let P = P (A, a) ⊂ R
d be a d-polytope, Q = P (B, b) ⊂ R

e a simple e-
polytope, P ⊲⊳C Q their deformed product, and M > 0 the parameter involved in its construction.

If M is sufficiently large (depending on B, b and C), then P ⊲⊳C Q and P×Q are combinatorially
equivalent.

Our proposition may also be obtained from the Isomorphism Lemma [1, Lemma 2.4] that was
applied by Amenta & Ziegler to prove the corresponding statement for (rank 1) deformed
products. However, we use it in a dual form as given below. Again, for I ⊆ [n] we write
PI = P ∩ {x : AI x = bI} for the smallest face F ⊆ P that satisfies I ⊆ eq F .

Lemma 2.11 (Isomorphism Lemma; dual formulation). Let P = P (A, a) and Q = P (B, b) be
two polytopes with n facets and dim P ≥ dim Q. If

PI is a vertex =⇒ QI is nonempty

for every set I ⊂ [n] then P and Q are of the same combinatorial type.

Proof of Proposition 2.10. Since Q is a simple polytope, we can find an M ≫ 0 such that
Q ∼= P (B, Mb − Cv) for every v ∈ vert P . In particular, if u ∈ vert Q is a vertex with I = equ
then P (B, Mb−Cv)I is a vertex. Thus, by the dual Isomorphism Lemma, the result follows.

Proposition 2.10 frees us from a discussion of right hand sides. Therefore all deformed products
hereafter are understood with a suitable right hand side.

To see that the above definition of rank r deformed products generalizes the (rank 1) deformed
products of Amenta & Ziegler [1], we recall their H-description of a deformed product. Let P =
P (A, a) ⊂ R

d be a polytope and ϕ : P → R an affine functional with ϕ(P ) ⊆ [0, 1]. Let Q1, Q2 ⊂
Re be “normally equivalent” e-polytopes, that is, combinatorially equivalent polytopes with the
same left-hand side matrix, Qi = P (B, bi) for i = 1, 2. Then according to [1, Thm. 3.4(iii)] the
exterior representation of (P, ϕ) ⊲⊳ (Q1, Q2) of the AZ-deformed product is given by

(P, ϕ) ⊲⊳ (Q1, Q2) =
{
(x, y) ∈ R

d+e : Ax ≤ a, By ≤ b1 − (b1 − b2)ϕ(x)
}
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Proposition 2.12. The AZ deformed product is a rank 1 deformed product.

Proof. Let ϕ(x) = cTx + δ be the affine functional. Let C = (b1 − b2)c
T be the matrix of rank

at most 1 with entries Cij := (b1 − b2)i · cj . Further, let b = b1 − δ(b1 − b2) and Q = P (B, b).
Now, rewriting the inequality system for (P, ϕ) ⊲⊳ (Q1, Q2) proves the claim.

3 Neighborly Cubical Polytopes

For ε > 0 the interval Iε = {x ∈ R : ±εx ≤ 1} is a 1-dimensional, simple polytope. Its poset of
nonempty faces is the poset on {+,−, 0} with order relations + ≺ 0 and − ≺ 0. The signs ±
represent the vertices of the interval with the suggestive notation that ± names the vertices given
by ±εx = 1 while 0 stands for the unique (improper) 1-dimensional face. An n-fold product of
intervals gives a combinatorial n-dimensional cube Cn with inequality system

±1

...
±(n−k)

±(n−k+1)

...
±n





±ε
. . .

±ε
±ε

. . .

±ε





x ≤





1
...
1
1
...
1





.

Every row in the above system represents two inequalities: The i-th row prescribes an upper
and a lower bound for the variable xi. Left to the system are the labels of the rows to which we
will refer in the following.

On the level of posets the facial structure is captured by an n-fold direct product of the poset
above. The nonempty faces of Cn correspond to the elements of {+,−, 0}n with the (component-
wise) induced order relation. An element γ ∈ {+,−, 0}n represents the unique face Fγ with
equality set eqFγ = {γii : i ∈ [n]} of dimension dim Fγ = #{i ∈ [n] : γi = 0}. This, in
particular, gives the f -vector as fi(Cn) =

(
n
i

)
2n−i.

The cube, as an iterated product of simple 1-polytopes, lends itself to deformation beneath the
“diagonal” that yields, figuratively, a deformed product of intervals. In the following we con-
struct deformed cubes that all subscribe to the same deformation scheme. To avoid cumbersome
descriptions, we fix a template for a deformed cube.

Definition 3.1 (Deformed Cube Template). For n ≥ d ≥ 2, let G = {g1, . . . , gd−1} ⊂ R
n−d be

an ordered collection of row vectors and let ε > 0. We denote by Cn(G) a deformed cube with
lhs matrix

A(G) = (A, A) =





±ε
1 ±ε

1
. . .
. . . ±ε

1 ±ε
g1 ±ε
...

. . .

gd−1 ±ε





. (1)

Proposition 2.10 assures of a suitable right hand side such that Cn(G) is a combinatorial n-cube.
Up to this point, we required ε to be nothing but positive; this will be subject to change, soon.
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The polytope we are striving for is the image of Cn(G) under projection. Recall that our
projections will be onto the last d coordinates for which the vertical bar in (1) is a reminder.

We now come to the first main result of this section.

Theorem 3.2 (Joswig & Ziegler [6, Theorem 17]). For every 2 ≤ d ≤ n there is a cubical
d-polytope whose (⌊d

2⌋ − 1)-skeleton is isomorphic to that of an n-cube.

Proof. The claim will be established by choosing the right deformation and verifying that all
the necessary faces are strictly preserved under projection.

Let Q be a neighborly (d− 2)-polytope with n− 1 vertices in general position. In particular, Q
has the property that every subset of at most ⌊d−2

2 ⌋ = ⌊d
2⌋ − 1 vertices forms a face of Q. For

an arbitrary but fixed ordering of the vertices, let G ∈ R
(n−1)×(n−d) be a Gale transform of Q.

As the vertices of Q are in general position, we can choose a Gale transform of the form G =(
In−d

G

)
, where G = {g1, . . . , gd−1} ⊂ R

n−d is an ordered collection of row vectors. Let C =

Cn(G) be the deformed cube given by the template (1) with respect to G.

We claim that the projection of C to the last d coordinates yields the result. For this we prove
that all faces of dimension up to k = ⌊d

2⌋ − 1 survive the projection. In order to do so, we
propose the following strategy: We will show that for an arbitrary vertex v of C the incident
faces of dimension ≤ k are retained.

Consider Aeq v, the first n−d columns of the inequalities of (1) which are tight at v. The matrix
is of the form

Av := Aeq v =





σ1ε

1 σ2ε

1
. . .
. . . σn−dε

1
g1
...

gd−1





∈ R
n×(n−d) (2)

with σ1, . . . , σn−d ∈ {+,−}.

Since the vertices of Q are in general position, by Proposition 2.3, G is a configuration of vectors
in general position with respect to linear hyperplanes. Thus, for ε > 0 sufficiently small, Av

take away the first row is still the Gale transform of a polytope combinatorially equivalent to Q.
By Gale duality, this in particular means that discarding up to ⌊d−2

2 ⌋ = k rows from Av leaves
the remaining ones positively spanning.

Now, let F ⊂ C be a face of dimension ℓ ≤ k with v ∈ F . By the Projection Lemma 2.5, F
is strictly preserved by the projection iff the rows of AI for I = eqF are positively spanning.
Since C is simple, AI is an n − ℓ rowed submatrix of Aeq v, that is, at most k rows have been
discarded from Av.

Choosing ε sufficiently small also has the effect that the rows of Av are in general position
with respect to linear hyperplanes. Thus, Corollary 2.8 vouches for the fact that all faces of
πd(Cn(G)) arise from the projection of Cn(G).

The polytope πd(Cn(G)) constructed in the course of the proof depends on the choice of a
neighborly (d−2)-polytope Q with n−1 vertices in general position, equipped with an ordering
of its vertices. In particular, the order of the vertices is needed to determine G and thus Cn(G).
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Nevertheless, by abuse of notation we will write Cn(Q) for the deformed cube Cn(G). We will see
in the next section that, in fact, the combinatorics of πd(Cn(Q)) is determined by the choice of
Q and the vertex order. In Section 3.2, we show that the polytopes constructed in [6] correspond
to the case were Q is a cyclic polytope with the standard vertex ordering. For now, we baptize
the polytope that we have constructed.

Definition 3.3. For parameters n ≥ d ≥ 2 and a neighborly (d−2)-polytope Q on n−1 ordered
vertices in general position, we denote the neighborly cubical polytope πd(Cn(Q)) by NCPn,d(Q).

Let us briefly comment on the extremal choices of d. For d = n, the polytope NCPn,n(Q)
is combinatorially isomorphic to an n-cube. The neighborly polytope Q is then an (n − 2)-
polytope with n − 1 vertices, a simplex. For d = 2, the polytope NCPn,2(Q) is a 2n-gon and
Cn(Q) is, in fact, a realization of a Goldfarb cube [3]. What might strike the reader as strange
is that the neighborly polytope in question is a 0-dimensional polytope with n− 1 vertices. The
Gale transform of such a polytope is given by the vertices of a (n − 2)-simplex with vertices
{e1, e2, . . . , en−2,−1}.
The proof can be adapted to yield a k-neighborly cubical polytope, that is, a polytope having its
k-skeleton isomorphic to that of an n-cube. By [6, Corollary 5], the neighborliness is bounded
by k ≤ ⌊d

2⌋ − 1. In our construction this fact is reflected as follows. The polytope NCPn,d(Q)
is k-neighborly cubical iff Q is k-neighborly. By [15, Exercise 0.10], neighborliness for (d − 2)-
polytopes is bounded by ⌊d−2

2 ⌋.

3.1 Combinatorial description of the neighborly cubical polytopes

We describe the face lattice of NCPn,d(Q) in terms of lexicographic triangulations of Q. We start
by giving the necessary background on regular subdivisions with an emphasis on lexicographic
triangulations in terms of Gale transforms. Our main sources are the paper by Lee [8] and the
(upcoming) book by De Loera et al. [2].

Let Q be a simplicial D = d−2 dimensional simplicial polytope on N = n−1 ordered vertices. We
further assume that the vertices of Q are in general position, i.e. all vertex induced subpolytopes
are simplicial as well. Let the rows of V ∈ R

N×D be the vertices of Q in some ordering, and
let ω = (ω1, . . . , ωN )T ∈ R

N be a set of heights. Denote by V ω = (ω, V ) ∈ R
N×(D+1) the

ordered set of lifted vertices (ωi, vi) for i = 1, . . . , N . Let a = (ω0, v0) ∈ R
D+1 be arbitrary with

ω0 ≫ maxi |ωi| and consider the polytope Qω = conv (V ω ∪ a). If ω0 is sufficiently large, then
the vertex figure of a in Qω is isomorphic to Q and the closed star of a in ∂Qω is isomorphic to
that of the apex of a pyramid over Q. The anti-star (or deletion) of a in the boundary of Qω,
i.e. the faces of Qω not containing a, constitute a pure D-dimensional polytopal complex Γω, the
ω-induced (or ω-coherent) subdivision. The name “subdivision” stems from the fact that the
underlying set ‖Γω‖ is piecewise-linear homeomorphic to Q via the projection onto the last D
coordinates. The inclusion maximal polytopes in Γω are called cells. Γω is called a triangulation
if every cell is a D-simplex. Altering the heights ω′

i = ωi + ℓ(vi) along an affine functional
ℓ : Q → R leaves the induced subdivision unchanged. We call a set of heights normalized if its
support is minimal in the corresponding equivalence class.

Proposition 3.4. Let ωT = (ω1, . . . , ωN−D−1, 0, . . . , 0) ∈ R
N be a normalized set of heights and

let G =
(

IdN−D−1

G

)
∈ R

N×(N−D−1). For ε > 0 sufficiently small, the matrix

Gω =

(
−εω

G

)
∈ R

(N+1)×(N−D−1)

9



with ω = (ω1, . . . , ωn−d−1) is a Gale transform of a polytope combinatorially equivalent to Qω.

Proof. It is easily verified that the columns of
(

1 1 O1+ εω εω V

)
∈ R

(N+1)×(D+2)

form a basis for the orthogonal complement of the column span of Gω. For ε sufficiently small,
the first column is strictly positive and dehomogenizing with respect to this column yields the
desired polytope.

In particular, Gω encodes the combinatorial structure of Q as well as that of the ω-induced
regular subdivision.

Consider the two induced regular subdivisions of Q obtained by lifting the vertex v1 to height
ω1 = ±h with h > 0 and fixing all the remaining heights to 0. In both cases the lifted polytope
is a pyramid over the polytope Q′ = conv (V \ v1). For ω1 = −h the subdivision is said to
be obtained by pulling v1 and its cells are pyramids over the remote facets of Q′, that is, the
facets common to both Q and Q′. This subdivision is, in fact, a triangulation since its cells
are pyramids over (D − 1)-simplices. The other subdivision (ω = +h) is said to be obtained
by pushing v1 and its cells are pyramids over the newly created facets of Q′, which are again
simplices, plus one (possibly non-simplex) cell that is Q′.

The ordering of the vertices of Q gives rise to a chain of (sub-)polytopes Q = Q0 ⊃ Q1 ⊃ · · · ⊃
QN−D−1 = ∆D with Qi = conv {vi+1, . . . , vN} simplicial D-polytopes. Let 1 ≤ k ≤ N − D − 1,
then the k-th lexicographic triangulation Lexk Q of Q in the given vertex order is the triangulation
obtained by pushing the first k − 1 vertices in the given order and then pulling the k-th vertex.
That is to say, pushing v1 creates a subdivision of Q = Q0 that has Q1 as its only non-simplex
cell. Subsequently, the cell Q1 gets replaced by a pushing subdivision of Q1 with respect to v2,
and so on. Finally, pulling vk+1 in Qk completes the triangulation. The following lemma asserts
that the above procedure yields a regular subdivision by giving a description in the spirit of
Proposition 3.4.

Lemma 3.5 ([8, Example 2] [12]). Let ε > 0 and ω = (ω1, ω2, . . . , ωN−D−1, 0, . . . , 0) ∈ R
N be

a set of normalized heights satisfying |ωi+1| ≤ ε|ωi| for all 1 ≤ i ≤ N − D − 2. If ε > 0 is
sufficiently small, then Gω is a Gale transform encoding Lexk Q for

k = min{i : ωi < 0} ∪ {n − d − 1}.

Definition 3.6. We call the polytope Lk(Q) = Q̃ω corresponding to Gω the k-th lexicographic
pyramid of Q.

According to the remarks following Proposition 3.4, Lk(Q) carries both the combinatorics of Q
as well as that of Lexk Q. So every facet of Lk(Q) is either a pyramid over a facet of Q or a cell
of Lexk Q.

We are now in a position to determine the combinatorics of NCPn,d(Q). To be more precise, we
determine the local combinatorial structure, i.e. for any given vertex we describe the set of facets
that contain it. The construction of a neighborly cubical polytope depended on an ordering of
the vertices of Q, which we fix for the following theorem.

Theorem 3.7. Let C = Cn(Q) be the deformed cube with respect to Q. Further, let v ∈ C be an
arbitrary vertex with eq v, given by σ ∈ {+,−}n. Then the vertex figure of πd(v) in NCPn,d(Q)
is isomorphic to Lp(Q) for

p = min{i ∈ [n] : σi = +} ∪ {n − d − 1}.
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In particular, the (d−1)-faces of C containing v that are preserved by projection are in one-to-one
correspondence to the facets of Lp(Q).

Proof. After a suitable base transformation of (2) by means of column operations, the first n−d
columns of Aeq v can be assumed to be of the form





−ω1 −ω2 · · · −ωn−d

1
1

. . .

1
g̃1
...

g̃d−1





with

ωi = (−1)iεi
i∏

j=1

σj

By Lemma 3.5, this is a Gale transform of Lk(Q) with k = p.

Any generic projection of polytopes π : P → P ′ = π(P ) induces a (contravariant) order and
rank preserving map π# : F∂P ′ →֒ F∂P .

The face poset of ∂NCPn,d(Q)/u, the boundary complex of the vertex figure of u = πd(v) in
NCPn,d(Q), is isomorphic to π#(F∂NCPn,d(Q)≥u), the image of the principal filter of u. By
the Projection Lemma, the image coincides with the embedding of Lp(Q) into the vertex figure
F∂Cn(Q)≥v.

Theorem 3.7 implies that the quotient NCPn,d(Q)/e with respect to certain edges is isomorphic
to Q. This observation implies the following result.

Corollary 3.8. Non-isomorphic neighborly (d − 2)-polytopes Q and Q′ yield non-isomorphic
neighborly cubical polytopes NCPn,d(Q) and NCPn,d(Q

′). Moreover, there are at least as many
different combinatorial types of d-dimensional neighborly cubical polytopes as there are neighborly
simplicial (d − 2)-polytopes on n − 1 vertices.

The number of combinatorial types of neighborly simplicial polytopes is huge, according to
Shemer [14].

3.2 Neighborly cubical polytopes from cyclic polytopes

In this section we (re-)construct the neighborly cubical polytopes of Joswig & Ziegler [6]. This
specializes the discussion in the previous section to the case of Q a cyclic polytope in the standard
vertex ordering. By a thorough analysis of the lexicographic triangulations of cyclic polytopes
we recover the “cubical Gale’s evenness criterion” of [6]. For a treatment of cyclic polytopes
and their triangulations beyond our needs we refer the reader to [2] and [15].

The degree D moment curve is given by t 7→ γ(t) = (t, t2, . . . , tD) ∈ R
D. For given pairwise

distinct values t1, t2, . . . , tN ∈ R with N ≥ D + 1 the convex hull of the corresponding points
on the moment curve CycD(t1, . . . , tN ) = conv {γ(ti) : i ∈ [N ]} is a convex D-dimensional
polytope. A fundamental consequence of the theorem below is that the combinatorial type of
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CycD(t1, . . . , tN ) is independent of the actual values ti. Therefore, we work with CycD(N) :=
Cycd(1, 2, . . . , N), the D-dimensional cyclic polytope on N vertices in standard order. For the
sake of notational convenience later on, we describe its faces in terms of characteristic vectors
of cofaces: A vector α ∈ {0, 1}N names a coface of CycD(N) iff conv {γ(i) : αi = 0} is a face of
CycD(N). We also extend the notion of “co-” to subdivisions and, therefore, speak freely about
cocells.

Let α ∈ {0, 1}N such that #{j < i : αj = 0} has the same parity for every i ∈ [N ] with αi = 1.
Then α is called even or odd according to this parity.

Theorem 3.9 (Gale’s Evenness Criterion [4, Sect. 4.7] [15, Thm. 0.7] [2, Thm. 6.2.6]). A vector
α ∈ {0, 1}N names a cofacet of CycD(N) if and only if α has exactly D zero entries and is either
even or odd.

As a byproduct we get that cyclic polytopes are

• simplicial, since all facets have exactly D vertices,
• in general position, since every subpolytope is again cyclic, and
• neighborly, since every α ∈ {0, 1}N with ≤ ⌊D

2 ⌋ zeros can be made to meet the above
conditions by changing entries 1 → 0.

From a geometric point of view, the odd and even (co)facets correspond to the upper and
lower facets of CycD(N) with respect to the last coordinate. This dichotomy among the facets
allows for an explicit characterization of the (simplicial) cells of a pushing/pulling subdivision of
CycD(N) with respect to the first vertex. Moreover, since every vertex induced subpolytope of
CycD(N) is again cyclic and from this we will derive a complete description of the lexicographic
triangulations of cyclic polytopes with vertices in standard order.

To prepare for the precise statement, let Q = CycD(N) = conv {vi = γd(i) : i ∈ [N ]} and
Q′ = conv {v2, . . . , vN} ∼= CycD(N − 1) the subpolytope on all vertices except the first. Let Γ
be the subdivision of Q obtained by pulling or pushing v1. Any cell in Γ that contains v1 is a
D-simplex and, therefore, let α ∈ {0, 1}N be a cocell with D+1 zero entries and α1 = 0. Indeed,
any such cell is a pyramid over a facet of Q′ and thus α is of the form α = (0, α′) and α′ adheres
to the Gale’s evenness criterion. The cocell α is part of a pushing or a pulling subdivision of Q
if and only if α is or is not a cofacet of Q. Clearly, the first gap in α is even and, hence, the
parity of the gaps of α′ concludes the characterization.

Lemma 3.10. Let Q = CycD(N) be a cyclic polytope and let Lk(Q) be a lexicographic pyramid
of Q. Let α ∈ {0, 1}N+1 with D + 1 zero entries and let p = min{i : αi = 0}. Thus α is of the
form

α = (1, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, α′).

Then α is a cofacet of Lk(Q) if and only if one of the following conditions is satisfied:

i) 1 = p and α′ is a cofacet of Cycd(n).
ii) 1 < p < k and α′ is even.
iii) p = k and α′ is odd.

Proof. Every facet containing the 0-th vertex is a pyramid over a facet of Q and every incident
facet is of the form α = (0, α′) with α′ a cofacet of Q.

If 2 ≤ p < k then α names a cocell of the pushing subdivision of Qp−1 = conv {vp, . . . , vN} with
respect to vp and containing vp. This, however, is the case if and only if α′ is an even cofacet
of Qp. The case p = k follows from similar considerations.
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Setting N = n − 1 and D = d − 2 and combining the above description with Theorem 3.7, we
obtain the following result of Joswig & Ziegler.

Theorem 3.11 (Cubical Gale’s Evenness Condition [6]). Let F be a (d−1)-face of the deformed
cube C = Cn(Q) with Q := Cycd−2(n − 1). Let eqF be given by α ∈ {+,−, 0}n and let p ≥ 1 be
the smallest index such that αp = 0. The face F projects to a facet of NCPn,d(Q) if and only if
α is of the form

α = (−,−, · · · ,−︸ ︷︷ ︸
p−2

, σ, 0, α′)

with |α′| = (|α′
p+1|, . . . , |α

′
n|) ∈ {0, 1}n−p satisfies the ordinary Gale’s evenness condition and

for p > 1 one of the following conditions holds:

i) σ = − and |α′| is even, or
ii) σ = + and |α′| is odd.

Proof. Let v ∈ F ⊂ C be a vertex with equality set β = eq v and such that βp = +. By
Theorem 3.7, the vertex figure of πd(v) in NCPn,d(Q) is isomorphic to Lk(Q), with k ∈ {p−1, p}.

Thus F projects to a facet of NCPn,d(Q) if and only if |α| is a cofacet of Lk(Q). The result now
follows from Lemma 3.10 by noting that k = p − 1 iff σ = −.

4 Deformed Products of Polygons

The projected deformed products of polygons (PDPPs) are 4-dimensional polytopes. They were
constructed in [17] because of their extremal f -vectors: For these polytopes the fatness pa-
rameter Φ(P ) := f1+f2−20

f0+f3−10 is large, getting arbitrarily close to 9. This parameter, introduced
in [16], is crucial for the f -vector theory of 4-polytopes. In [17] the f -vectors of the PDPPs were
computed without having a combinatorial characterization of the polytopes in reach.

However, the PDPPs are yet another instance of projections of deformed products, so the theory
developed here gives us a firm grip on their properties. In the following we generalize the con-
struction to higher dimensions and analyze its combinatorial structure using the tools developed
in this paper. In particular, a description of the facets of the PDPPs appears for the first time.

To begin with, the following is a generalization of Theorem 3.2.

Theorem 4.1. Let m ≥ 4 be even. For every 2 ≤ d ≤ 2r there is a d-polytope whose (⌊d
2⌋ − 1)-

skeleton is combinatorially isomorphic to that of an r-fold product of m-gons.

Let us remark that the proofs of the results in this section can be adapted to yield the general-
izations for products of even polygons with varying numbers of vertices in each factor. However,
the generalized results require more technical and notational overhead. Therefore, we trade
generality in for clarity and only give the uniform versions of the results.

For m = 4 the r-fold product of quadrilaterals is actually a cube of dimension n = 2r and thus
NCPn,d(Q) satisfies the claims made. In the inequality description the quadrilaterals can be seen
by pairing up the intervals indicated by the framed submatrices below:
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



±ε
1 ±ε

1 ±ε
1 ±ε

. . .

±ε
1 ±ε

1 ±ε
g1 ±ε
...

. . .

gd−2 ±ε
gd−1 ±ε





.

We wish to build on this special case and therefore consider the normals of such a quad:

(+ε, 0)(−ε, 0)

(1, +ε)

(1,−ε)

The polygons we are heading for arise as generalizations of the above quad. For m ≥ 4 even,
consider the vectors

a0 = (−1, 0)

ai = ( 1, εm−2i
m−2 ) for i = 1, . . . , m − 1

as shown below. For suitable b0, b1, . . . , bm−1 > 0,

aT
i x ≤ bi for i = 0, . . . , m − 1

describes a convex m-gon in the plane:

(−1, 0) = a0

a1 = (1,+ε)

a2

am/2 = (1, 0)

am−2

am−1 = (1,−ε)
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For the finishing touch, we scale every even-indexed inequality by ε,

(−ε, 0) = εa0

a1

εa2

εam/2

εam−2

am−1

We arrange the scaled normals and right hand sides into a matrix and vector respectively:

A =





εa0

a1

εa2
...

am−1




and b =





εb0

b1

εb2
...

bm−1




.

Using these special polygons we set up a template for a deformed product of polygons (DPP).

Definition 4.2 (DPP Template). For m ≥ 4 even and 2r ≥ d ≥ 2, let G = {g1, . . . , gd−1} ⊂
R

2r−d be an ordered collection of row vectors. We denote by P2r(G; m) the deformed product
of polygons with lhs inequality system





A

1
A

. . .

A

1
g1

A

...
. . .

gd−2

gd−1
A





. (3)

In the above inequality system, the framed blocks denote matrices of appropriate sizes that
contain the depicted block repeated row-wise m

2 times. In particular,

1
:=





0 1
0 0

...
0 1
0 0




∈ R

m×2 and
1

g1
:=





0 · · · 0 1
g1
...

0 · · · 0 1
g1




∈ R

m×(2r−d).
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Proof of Theorem 4.1. Let P = P2r(G; m) be the deformed product of m-gons according to the

DPP template (3) which is determined by a Gale transform G =
(

Id−2

G

)
of a neighborly (d−2)-

polytope Q with 2r−1 ordered vertices in general position. Equipped with a suitable right hand
side, the polytope P is an iterated rank 2 deformed product of polygons and thus combinatorially
equivalent to the r-fold product of an m-gon.

Now for an arbitrary vertex v of P , the matrix Aeq v is of the following form

Aeq v =





ai1 a′i1
1 ai2

1 ai3 a′i3
1 ai4

. . .
. . .

1 ai2r−d−1
a′i2r−d−1

1 ai2r−d

1
g1
...

gd−1





∈ R
2r×(2r−d). (4)

The equality set of a vertex v is formed by two cyclicly adjacent facets from each polygon in the
product. This means, in particular, that from each polygon there is an even and an odd facet
present in eq v. Every such pair is of the form

(
aiℓ a′iℓ
1 aiℓ+1

)
.

The absolute values of the diagonal entries are bounded by ε, while |a′iℓ+1
| < ε2.

Thus, provided that ε is sufficiently small, the rows of Aeq v below the horizontal bar in (4)
constitute a Gale transform of a polytope combinatorially equivalent to Q.

In analogy to the cubical case, we write P2r(Q; m) for the deformed product of m-gons with
respect to the polytope Q with ordered vertices.

Definition 4.3. The proof of Theorem 4.1 yields a family of projected products of polygons
(PDPPs) as the image PDPP2r,d(Q; m) := πd(P2r(Q; m)).

En route to a facial description of PDPP2r,d(Q; m), let us pause to introduce a convenient
notation for handling products of even polygons combinatorially that bears certain similarities
with that of 2r-cubes, i.e. products of quadrilaterals. For the even polygons above, we label the
edge with outer normal ai by (i, ∗) if i is even and by (∗, i) otherwise:

(∗, ∗)(0, ∗)

(∗, 1) (2, ∗)

(∗, 3)

(4, ∗)(∗, 5)

(0, 1)

(2, 1)

(2, 3)

(4, 3)

(4, 5)

(0, 5)
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Every vertex is incident to an even edge (2i, ∗) and an odd edge (∗, 2i ± 1) and is labeled by
(2i, 2i ± 1). Finally, the polygon itself gets the label (∗, ∗) as the intersection of no edges.

Summing up, the nonempty faces of an even m-gon are given by

Pm = {(2i, ∗) : 0 ≤ i < m
2 } (even edges)

∪ {(∗, 2i + 1) : 0 ≤ i < m
2 } (odd edges)

∪ {(2i, 2i ± 1) : 0 ≤ i < m
2 } (vertices)

∪ {(∗, ∗)} (polygon)

with inclusion given by the order relation induced by i ≺ ∗ for i ∈ {0, . . . , m − 1}.

Admittedly, this is neither the most natural nor the most efficient way to encode a polygon
combinatorially. However, the following remarks make up for this unusual description. Similar
to the description of 2r-cubes, the dimension of a face (α0, α1) ∈ Pm is the number of ∗-entries.
This carries over to products of m-gons, i.e. there is an order-preserving bijection between the
nonempty faces of an r-fold product of m-gons and the r-fold direct product (Pm)r with rank
function dim α = #{i : αi = ∗} for α ∈ (Pm)r. Notably most of the results (and proofs) from
Section 3 carry over to this setting, with only minor modifications.

The key to obtaining a combinatorial description of PDPP2r,d(Q; m) is that for a vertex v of
P2r(Q; m) the matrix (4) again encodes a lexicographic triangulation of Q. In order to reduce
this to the case of neighborly cubical polytopes, after a suitable change of basis, the matrix Aeq v

is of the form 



ai1

1 ãi2

1 ai3

1 ãi4

. . .
. . .

1 ai2r−d−1

1 ãi2r−d

1
g̃1
...

g̃d−1





α1

α2

α3

α4

...
α2r−d−1

α2r−d

α2r−d+1

α2r−d+2

...
α2r

(5)

The entries above the diagonal of ones remain to be of order ε. To determine the signs of the
entries, which will determine the lexicographic triangulation, let us investigate the local change
of the matrix under the change of basis.

In the above combinatorial model for even m-gons, the vertex v is identified with a vector
α = (α1, α2; α3, . . . ; α2r−1, α2r) ∈ (Pm)r, which corresponds to eq v as indicated. The following
table, which is easily established given the coordinates of the normals, summarizes the possible
sign patterns in terms of α.

(αi, αi+1) (0, 1) (0, m − 1) (2k, 2k − 1) (2k, 2k + 1)(
ai

1 ãi+1

) (
−ε
1 +ε

) (
−ε
1 −ε

) (
+ε
1 + 2ε

m−2

) (
+ε
1 − 2ε

m−2

)

(σi, σi+1) (−, +) (−,−) (+, +) (+,−)

We use the last row, which gathers sign patterns from the diagonal, to define the map

Φ : {(α1, α2) ∈ Pm : α vertex} → {+,−, 0}2
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with Φ(α1, α2) := (σ1, σ2) according to the table. Since the face lattice of a convex polytope is
atomic, it is easy to see from the definition that Φ : Pm → {+,−, 0}2 extends to an order- and
rank-preserving map from the face poset of an even m-gon to that of an 2-cube. The map can
be thought of as a folding map:

Φ

++

+−−−

−+

(0,5)

(0,1)

(2,1)

(2,3)

(4,3)

(4,5)

The induced map Φ : (Pm)r → {+,−, 0}2r maps faces of P2r(k; m) that are strictly preserved
under πd to surviving faces of C2r(Q). Phrased differently the following diagram commutes on
the level of faces:

Pn,r(Q)
Φ

−−−−−−−−−−→ C2r(Q)
yπd

yπd

PDPP2r,d(Q; m)
Φ

−−−−−−−−−−→ NCPd(Q).

Proposition 4.4. Let n = 2r and let P = Pn(Q; m) and C = Cn(Q) be the deformed cube and
the product of m-gons of dimension n = 2r with respect to a neighborly (d − 2)-polytope Q on
n − 1 ordered vertices. Let v ∈ P be a vertex with eq v represented by α ∈ (Pm)r and let u ∈ C
be the vertex corresponding to Φ(α) ∈ {+,−}n. Then Φ induces an isomorphism of the vertex
figures PDPPn,d(Q; m)/πd(v) and NCPn(Q)/πd(u).

Proof. As consistent with the main theme in this article, consider the first n − d = 2r − d
coordinates of the inequalities from both P and C that are tight at v and u, respectively.

Av(P ) Au(C)



ai1

1 ãi2

. . .
. . .

1 ain−d−1

1 ãin−d

1
g̃1
...

g̃d−1









σi1ε

1 σi2ε
. . .

. . .

1 σin−d−1
ε

1 σin−d
ε

1
g1
...

gd−1





In both matrices, the entries on the secondary diagonal are arbitrary small and the map Φ
assures that corresponding entries have equal sign. By Lemma 3.5, both Av(P ) and Au(C) are
Gale transforms that encode the same lexicographic pyramid Lk(Q). The result now follows by
observing that a face β � α of P is strictly preserved if and only if |β| is a coface of Lk(Q) and
|Φ(β)| = |β|.
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This proposition makes way for the combinatorics of the projected deformed products associated
with arbitrary simplicial neighborly polytopes.

Theorem 4.5 (Combinatorial Description of the PDPPs). Let P = P2r(Q; m) be a deformed
product of m-gons with respect to Q and let v ∈ P be an arbitrary vertex with eq v = α ∈ (Pm)r.
Then the vertex figure of πd(v) in PDPP2r,d(Q; m) is isomorphic to Lp(Q) for

p = min{i ∈ [2r] : Φ(α)i = −} ∪ {2r − d − 1}.

In particular, the (d−1)-faces of P containing v that are preserved by projection are in one-to-one
correspondence to the facets of Lp(Q).

As for the neighborly cubical polytopes, via Shemer’s work [14] this result implies a great richness
of combinatorial types for the projected products of polygons. In the special case when Q is
a cyclic polytope with vertices in standard order, we get a very explicit Gale’s evenness-type
criterion for the projected products of polygons.

Corollary 4.6 (Combinatorial Description of the standard PDPPs). Let F ⊂ P = P2r(Q; m)
be a (d−1)-face with Q = Cycd−2(2r−1) and let β ∈ (Pm)r correspond to eqF . Then F projects
to a facet of PDPP2r,d(Q; m) if and only if Φ(β) satisfies the cubical Gale’s evenness criterion.
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