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Abstract

This paper presents a new algorithm for the convex hull problem, which is based on a
reduction to a combinatorial decision problem CompletenessC, which in turn can
be solved by a simplicial homology computation. Like other convex hull algorithms,
our algorithm is polynomial (in the size of input plus output) for simplicial or simple
input. We show that the “no”-case of CompletenessC has a certificate that can
be checked in polynomial time (if integrity of the input is guaranteed).

1 Introduction

Every convex polytope P ⊂ Rd can be described as the convex hull of a finite set P of
points or as the (bounded) set of solutions of a finite system H of linear equations and
inequalities [23, Lect. 1]. In view of the fundamental role that polytopes play in Euclidean
geometry and hence for any type of geometric computing, the conversion between the two
types of representations, known as the convex hull problem, is of key interest. It splits
into two separate tasks.

The first task is the facet enumeration problem: Given a finite set of points P ⊂ Rd,
determine the combinatorial structure of its boundary. For this one does not want to
explicitly enumerate all the faces (the intersections of P with supporting hyperplanes),
but one wants sparser date, namely to compute a minimal representation of the convex
hull conv(P) in terms of equations and (facet-defining) inequalities. Here the equations
should describe the affine hull aff(P ), while the additional inequalities correspond to the
facets (faces of codimension 1) of P . If P is full-dimensional in Rd, then the facet-defining
inequalities are unique up to scaling.

The second task is the vertex enumeration problem: Given a finite system H of linear
(equations and) inequalities, and provided that the set of solutions P =

⋂
H is bounded,

compute the minimal set of points P whose convex hull is P . This minimal set is unique;
it consists of the vertices (0-dimensional faces) of P .

∗An extended abstract version of this paper, “Polytope verification by homology verification,” has
appeared in the Proceedings of EuroCG, Berlin, March 26–28, 2001, pp. 142–145.
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The two tasks are dual to each other, via cone polarity. Thus if an LP-type oracle (an
algorithm which for a system of inequalities computes a solution, or for a set of points
computes a separating hyperplane, cf. [14]) is available, every algorithm for the facet
enumeration problem can also be used for vertex enumeration, and vice versa.

Despite the great interest in the convex hull problem, and despite the fact that a
number of different strategies and algorithms have been explored, implemented and an-
alyzed in detail (see [10], as well as Avis [1] [2], Fukuda [11] and Gawrilow & Joswig
[12] [13] for implementations), the problem can be considered “solved” neither in the-
ory, nor in practice. If the dimension d is fixed, Chazelle’s celebrated algorithm [8] gives
an asymptotically worst-case optimal (polynomial time) theoretical solution. Its opti-
mality is based on McMullen’s “Upper Bound Theorem” [20] on the maximal number
of facets for a d-polytope with n vertices. However, for any given convex hull problem,
the output may be small, but it may also be much larger than the input — indeed, it
may be of exponential size, if the dimension is not fixed. This is very relevant, since
high-dimensional computations occur in a variety of important applications. Thus one
is asking for a convex hull algorithm whose running time is bounded by a polynomial in
the size of “input plus output”? Such an algorithm would be called output-sensitive. The
analysis by Avis, Bremner and Seidel [3] shows that, unfortunately, none of the known
types of convex hull algorithms is output-sensitive. These can roughly be categorized as
follows: Incremental and triangulation producing (e.g., Chazelle’s method), incremental
without triangulations (e.g., Fourier-Motzkin elimination [23, Lect. 1]), non-incremental
(e.g., reverse search [4]). Note that, by a result of Bremner [6], only non-incremental
methods can possibly be output-sensitive.

The purpose of this paper is to describe a new (non-incremental) convex hull algo-
rithm, based on a completely different principle. To this end, we first present a (folklore)
polynomial reduction of FacetEnumeration to the decision problem PolytopeVeri-
fication. Then we further reduce to the Completeness problem: Is a given description
of a d-polytope by some of its vertices and some of its facets complete, that is, are we
given all the vertices and all the facets? Looking at the convex hull problem via its
reduction to PolytopeVerification or Completeness automatically reveals its in-
herent self-dual structure. It is an interesting feature that the Completeness problem
can be posed both with geometric input data and as an entirely combinatorial problem
CompletenessC, where only the incidences between vertices and facets are given.

Let us just mention here one recent occurrence of the combinatorial completeness prob-
lem: McCarthy et al. [19] describe a situation where one wants to know whether a given
inequality description for a polytope is complete. Moreover, the vertex coordinates in
some of their problems are necessarily non-rational, so any coordinate-free/combinatorial
approach is welcome. Unfortunately, the most interesting case left “open” by McCarthy
et al. (the convex hull of the matrices corresponding to the Coxeter group H4) is a poly-
tope completeness problem in dimension d = 16 with 14,400 vertices: From this data our
method generates gigantic boundary matrices that are plainly too large to process.

Also we have been informed by Samuel Fiorini (email, January 2002) that he has
successfully used a certificate for the “no”-case of CompletenessC that is similar to the
one that we describe in Section 6.

Our main contribution is an algorithm to attack the combinatorial CompletenessC
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problem via deciding whether a certain simplicial homology group of a certain abstract
simplicial complex vanishes or not. Moreover, we present a polynomially checkable certifi-
cate for non-completeness, provided that the input is valid. For the geometric version the
validity of the input can be checked easily. Unfortunately, the complexity status for the
homology computation problem is open. The best currently available strategy to decide
non-triviality of a (rational) homology group in question seems to be to compute boundary
matrices and perform Gauss elimination. Since the boundary matrices in our algorithm
can be exponentially large, we do not obtain an output-sensitive method. However, like
other methods (e.g., Avis’ and Fukuda’s reverse search [4] or Seidel’s gift-wrapping algo-
rithm [22]) our algorithm is output-sensitive in the case of simplicial polytopes.

2 FacetEnumeration via PolytopeVerification

We start with a more formal description of the facet enumeration problem:

FacetEnumeration(e,P):
Input : integer e ≥ 0; finite set of points P ⊂ Re.

Output: minimal description of conv(P) in terms of equations (for the affine hull of P)
and inequalities (one for each facet of conv(P))

It is known, cf. Avis, Bremner & Seidel [3], Fukuda [10, Node 21], and Kaibel & Pfetsch [17,
Problems 1–3], that FacetEnumeration has a polynomial reduction to the polytope
verification problem:

PolytopeVerification(e,P,H):
Input : integer e ≥ 0; finite set of points P ⊂ Re; finite set H of closed halfspaces in Re

Output: answer yes/no to the question whether conv(P) =
⋂

H
Freund and Orlin could show that a related problem, to decide whether

⋂
H ⊆

conv(P), is co-NP-complete [9].

3 PolytopeVerification via CompletenessG

Assuming that an LP-type oracle is available, the PolytopeVerification problem is
polynomially equivalent to the following geometric polytope completeness problem:

CompletenessG(d,V,F):
Input : integer d ≥ 0; finite set of points V ⊂ Rd; finite set F of closed halfspaces in Rd,

such that
• P := conv(V) is contained in Q :=

⋂
F

• dim P = dim Q = d
• every v ∈ V defines a vertex of Q
• every F ∈ F defines a facet of P

Output: answer yes/no to the question whether P = Q

As in the case of PolytopeVerification, the roles of vertices and facets are inter-
changeable for CompletenessG.

We sketch the reduction of PolytopeVerification to CompletenessG. Given
any input (e,P,H) for PolytopeVerification, set P := conv(P) and Q :=

⋂
H.
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Employ Gaussian elimination to determine dimP . Verify whether all the inequalities
in H are valid for P ; if this is not the case, then P &⊆ Q, so we output no; otherwise
P ⊆ Q is established. Now extract the set H′ of all halfspaces from H for which P lies
in the bounding hyperplane, that is, all those inequalities which are tight on aff P . An
LP-type oracle is sufficient, but also needed [14], to check whether

⋂
H′ = aff P ; if this

is not the case, then we know that dim Q > dim P , so we can output no. Otherwise we
proceed by restricting the input to aff P , that is, we deal with the situation where P is
full-dimensional.

Now remove from H all the halfspaces which do not determine facets of P ; this may
be done using Gaussian elimination. (In the case P = Q, this removal does not change Q;
in the case P ⊂ Q, it may enlarge Q.) Similarly, we now remove from P all those points
which do not arise as intersections of some bounding hyperplanes of halfspaces in H; again
this may be done via Gaussian elimination. (In the case of P = Q, this removal does not
change P ; in the case P ⊂ Q, we may loose vertices of P , thus making P smaller.)

Now we have prepared our input for CompletenessG. Indeed, the first two conditions
on the input are satisfied, the other two are easily checked: If one of them fails, then output
the answer no. !

4 CompletenessG via CompletenessC

The incidence matrix of a polytope P with vertex set V and facet set F is defined to be
the matrix

IP := (iFv)F∈F ,v∈V ∈ {0, 1}F×V ,

where iFv = 1 if vertex v lies on the facet F (that is, if v ∈ F ), and iFv = 0 means that
v /∈ F . This matrix is well-defined up to permutation of rows and of columns, which
corresponds to reordering V and F . A minor of a matrix will refer to any submatrix
obtained by possibly removing rows and/or columns. A minor J of the incidence matrix IP

is complete if J = IP . Thus we arrive at the combinatorial polytope completeness problem:

CompletenessC(d, J):
Input : integer d ≥ 0; incidence matrix minor J of a d-polytope

Output: answer yes/no to the question whether J is complete

It is not obvious that this problem is well defined. However, from Theorem 5.1 below it
follows that there are no two d-polytopes P and P ′ such that a 0/1-matrix J is both a
complete incidence matrix for P and an incomplete minor of an incidence matrix for P ′.
(See also the related discussion in [16].) It is clear that CompletenessG has a polynomial
reduction to CompletenessC.

It is essential to have the dimension among the input parameters of CompletenessC.
This is demonstrated by the following example [23, p. 71]:

JKM =





1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
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We can identify V = {1, 2, . . . , 8} and F = {1234, 1278, 1458, 2367, 3456, 5678} with the
sets of vertices and facets, respectively, of a 3-dimensional cube (in a suitable “Klee-Minty”
vertex numbering; see Figure 1(b) below). Consequently, CompletenessC(3, JKM) =
yes. But we can also identify V with the vertices of a cyclic 4-polytope C4(8). Then
each element in F corresponds to a facet of C4(8), according to Gale’s evenness criterion.
Hence CompletenessC(4, JKM) = no, since C4(8) has 20 facets.

A more generic class of examples for which the dimension information is needed arises
from the prism construction: Let P be an arbitrary d-polytope and P ′ = P × [0, 1] the
prism over P . The facets of P ′ are P ×{0}, P ×{1}, and the products of facets of P with
the interval [0, 1]. Call the latter facets of P ′ vertical, and let JP be an incidence matrix
of P . We have CompletenessC(d, JP ) = yes. On the other hand JP is also a minor of
an incidence matrix of P ′, which corresponds to the vertical facets and, say, the vertices
in the bottom facet P × {0}. Therefore, CompletenessC(d + 1, JP ) = no.

5 CompletenessC via simplicial homology

We will point out that CompletenessC has a topological core. The reader is referred
to Björner [5] for a survey of topological combinatorics tools, and to Munkres [21] for
a presentation of simplicial homology. In the following we will use reduced simplicial
homology with coefficients in Z2. One could use any other commutative coefficient ring
with unit, but Z2 is the natural choice in terms of efficiency and simplicity. We choose
non-reduced homology to simplify notation for the trivial case d = 1.

Let J ∈ {0, 1}F×V be an incidence matrix minor of some polytope P with vertex
set V ′ ⊇ V and facet set F ′ ⊇ F . Thus the columns of J are in bijection with a (partial)
vertex set V of P . Each row of J is the characteristic vector of a subset of rows, i.e., of a
subset of V. Thus in the following we interpret J as a combinatorial encoding of a system
F of (not necessarily distinct) subsets of V, and with slight abuse of notation we write
F ⊆ 2V . The crosscut complex of J is the simplicial complex

Γ(J) :=
(
V,

⋃{
2F : F ∈ F

})
,

the simplicial complex of all sets of vertices that are contained in some facet in F .

Theorem 5.1. The incidence matrix minor J ∈ {0, 1}F×V of a d-polytope is complete if
and only if H̃d−1(Γ(J); Z2) &= 0.

Proof. The set
Π(P, J) :=

⋃

F∈F

conv{v ∈ V : v ∈ F} ⊆ ∂P

is a compact subset of the boundary of P : For every “given” facet F of P , it contains
the convex hull of all “given” vertices. Thus Π(P, J) is a polyhedral complex, called a
partial polytope, covered by its convex (and hence contractible) cells conv{v ∈ V : v ∈ F}.
According to the nerve theorem [5], the crosscut complex Γ(J) has the same homotopy
type as the set Π(P, J). In particular, the homology of the set Π(P, J) and of the crosscut
complex coincide. For an example of the crosscut complex of a partial polytope see
Figure 1(a).

5



In the yes case, if the sets of vertices and facets both are complete, Π(P, J) is the
complete boundary of P , homeomorphic to Sd−1, so we have H̃d−1(Γ(F); Z2) ∼= Z2.

In the no case, if the vertex or the facet list is incomplete, then Π(P, J) is a proper
subset of ∂P , which is a subcomplex of a suitable triangulation of ∂P , so it cannot have
(d − 1)-dimensional homology.

The complexity status of the problem to compute the rank of an arbitrary homology
group, or even to decide whether a certain homology group vanishes, seems to be open; see
Kaibel & Pfetsch [17, Problem 33]. Thus currently our best option is based on explicitly
computing simplicial homology via boundary matrices, as in Algorithm A.

Algorithm A: CompletenessViaHomology(d, J)

Input : integer d ≥ 0; an incidence matrix minor J of a d-polytope

Output: answer yes/no to the question whether J is complete

Generate Z2-boundary matrices ∂d and ∂d−1 for Γ(J)
if dimZ2 ker ∂d−1 > rankZ2 ∂d then

return yes

else
return no

To estimate the costs of this computation, suppose that n = |V|, m = |F|, and that
the maximum cardinality of any facet equals s. Thus J ∈ {0, 1}m×n, and every row of J
contains at most s ones. Then the size of the relevant boundary matrices is bounded from
above by

(
s

d+1

)
m ×

(
s
d

)
m and

(
s
d

)
m ×

(
s

d−1

)
m, respectively. We use Gaussian elimination

over Z2 to compute the rank and the corank, respectively.

Corollary 5.2. The algorithm CompletenessViaHomology(d, J) has a polynomial
running time if s is bounded by d + c, for an absolute constant c ≥ 0.

The latter case is, in fact, interesting: A d-polytope is simplicial if each proper face is a
simplex or, equivalently, each facet contains exactly d vertices. We infer that the running
time of CompletenessViaHomology for simplicial polytopes is bounded by O(dm3).

It has been observed by Bremner, Fukuda & Marzetta [7] that FacetEnumeration
for a polytope P is polynomially equivalent to FacetEnumeration for the dual poly-
tope P ∗. Using our techniques, a similar result can be obtained directly. If I is an
incidence matrix for P , then the transposed matrix Itr is an incidence matrix for P ∗. Any
minor J of I is complete if and only if its transpose is a complete minor of Itr. This leads
to the following modification of our algorithm. While s was defined above as the maximal
row size of the input incidence matrix minor, define

s′ := min{maximal row size, maximal column size}.

Thus we modify our algorithm: It should first compare the sizes of the primal and the dual
problem, and then perform the (reduced) homology computation for the smaller problem.
The modified algorithm CompletenessViaHomology(d, J) has polynomial running
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time if s′ is bounded by “d plus a constant.” In particular, this yields an O(d(n + m)3)-
algorithm for the CompletenessC problem specialized to polytopes which are simplicial
or simple, that is, dual to a simplicial polytope.

We note, however, that these running times are neither optimal nor the best available:
The reverse search algorithm of Avis and Fukuda [4] computes the convex hull (and
thereby solves CompletenessG) of a simplicial polytope in O(dnm) steps.

6 A Certificate for Incompleteness

Let P be a d-polytope with ordered vertex set V ′ = {v1, . . . , vn} and facet set F ′. In-
ductively, define a sequence ∆0, . . . ,∆n of polytopal subdivisions of the boundary com-
plex ∂P : Set ∆0 := ∂P . In order to obtain ∆k replace each facet F of ∆k−1 which con-
tains vk by the set of cones with apex vk over those facets of F which do not contain vk.
The final subdivision is a triangulation ∆(P ) := ∆m of ∂P , the pulling triangulation [18]
with respect to the chosen ordering of V. For an example of a pulling triangulation see
Figure 1(b).

(a) The (3-dimensional) crosscut complex of
some partial 3-cube C. The two quadrangle
faces of C yield tetrahedra in Γ(C), which
are displayed almost flat.

1

2

3

4

5

6

7
8

(b) The pulling triangulation of the bound-
ary of a 3-cube with respect to a “Klee-
Minty” vertex ordering. The facet {1, 7, 8}
of the triangulation corresponds to the flag
{8} ⊂ {7, 8} ⊂ {1, 2, 7, 8} of the cube.

Figure 1: Crosscut complex and pulling triangulation.

The pulling triangulation of ∂P has several nice properties (not shared, for example, by
the “placing triangulation”) which may be exploited for our purposes. First, its combina-
torics is determined by the combinatorics of P ; see below. Furthermore, if we use a linear
ordering of the vertex set V ′ in which the vertices in V come first, then the corresponding
pulling triangulation of the boundary of P contains Π(P, J) as a subcomplex.

Let us now identify the vertex set V ′ with the set [n] = {1, . . . , n} and each facet F ∈
F ′ with the subset of [n] that corresponds to the vertices contained in F . Thus any
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triangulation of ∂P is encoded by a collection of d-subsets of [n], that is, to a subset of(
[n]
d

)
. We write {v1, . . . , vd}< for a d-subset of [n] with v1 < v2 < · · · < vd.

Lemma 6.1. Let P be a d-polytope whose vertex set is labeled by [n].
Then a set {v1, . . . , vd}< ∈

(
[n]
d

)
corresponds to a facet of the pulling triangulation of ∂P

(with respect to the chosen vertex labeling) if and only if there is a complete flag of faces

∅ ⊂ G0 ⊂ G1 ⊂ . . . ⊂ Gd−1 ⊂ P,

such that vi is the smallest vertex in Gd−i for 1 ≤ i ≤ d, that is, if there are facets
F1, . . . , Fd of P such that

vi = min(F1 ∩ . . . ∩ Fi)

for 1 ≤ i ≤ d.

Proof. Every pulling facet {v1, . . . , vd}< lies in a facet F1 = Gd−1 of P , with v1 = min Gd−1.
It is a cone with apex v1 and base Gd−2 ⊂ Gd−1. The existence of the rest of the maximal
flag (Gi)0≤i<d follows recursively. Given the flag, the existence of the facets F1, . . . , Fd

follows [23, Lect. 2]. Given a complete flag, the corresponding sequence of facets Fi is
uniquely determined if P is simple, but not in general.

If we have an arbitrary incidence matrix minor J of a d-polytope P , then we can read
the combinatorial characterization of the pulling triangulation from Lemma 6.1 as the
definition of a complex that coincides with the pulling triangulation of ∂P in case J is
complete, but is well-defined in general:

Definition 6.2. Given an integer d > 0 and a 0/1-matrix J ∈ {0, 1}m×n, which we
interpret as the incidence matrix of a set system F ⊆ 2[n], the pulling complex of d and J is

∆(d, J) :=
{
{v1, . . . , vd}< ∈

(
[n]
d

)
: there are F̄1, . . . , F̄d ∈ F such that

vi = min(F̄1 ∩ . . . ∩ F̄i) for 1 ≤ i ≤ d
}
.

Lemma 6.3. Let P be a d-dimensional polytope with vertex set V ′ and facet set F ′, and
let J be a incidence matrix minor corresponding to subsets V ⊆ V ′ and F ⊆ F ′. Let
P̄ ⊆ P be the convex hull of the vertices in V. Fix a linear ordering on the vertex set V ′

such that the vertices in V come first.
Then the simplicial complex ∆(d, J) is a subcomplex of ∆(P ) as well as of ∆(P̄ ).

In particular, ∆(d, J) is a proper subcomplex of ∆(P ), unless the minor J is complete,
J = IP . In the incomplete case ∆(d, J) may even be empty.

Proof. Let {v1, . . . , vd}< ∈ ∆(d, J), then there are F̄1, . . . , F̄d ∈ F such that vi = min(F̄1∩
. . . ∩ F̄i). Now since J is an incidence matrix minor of P , there are facets Fi ⊇ F̄i

of P , and by the assumption on the vertex ordering the vertices in F̄i come first, so
min(F̄1 ∩ . . . ∩ F̄i) = min(F1 ∩ . . . ∩ Fi), which yields {v1, . . . , vd}< ∈ ∆(P ).

Now P̄ = conv(V), and the F̄i = Fi ∩V are vertex sets of faces (not necessarily facets)
of P̄ . If the vertices vi = min(F̄1∩ . . .∩ F̄i) are distinct, then the faces F̄1∩ . . .∩ F̄i form a
complete flag in the face lattice of P̄ , and thus {v1, . . . , vd}< ∈ ∆(P̄ ), by Lemma 6.1.
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In particular, ∆(d, J) triangulates a subset of the complex Π(P, J) that appears in the
proof of Theorem 5.1.

Now we present a polynomially-checkable certificate for the case that J is incomplete.
Note, however, that this result does not prove that CompletenessC is in co-NP: We
are not able to check (in polynomial time) whether the input is valid, that is, whether J
is actually an incidence matrix minor of some d-polytope.

Theorem 6.4. Any no instance of the problem CompletenessC(d, J) has a certificate
that can be verified in polynomial time.

Proof. The minor J is incomplete if and only if the pulling complex ∆(d, J) is not a
complete triangulation of a d-polytope boundary. Two cases arise. The first one is if
∆(d, J) = ∅, in which case Algorithm B described below will certify in polynomial time
that J is not complete.

The second case is if ∆(d, J) is non-empty but incomplete. In this case (since the
dual graph of the pulling triangulation ∆(P ) is connected) there is a facet {v1, . . . , vd} ∈
∆(d, J) together with an index i such that there is no second facet of ∆(d, J) that contains
{v1, . . . , vd} \ {vi}. In this situation our certificate is the set {v1, . . . , vd} \ {vi}. Calling
IsPullingFacet for every d-subset of [n] which contains the certificate, this certificate
can be verified in polynomial time, since there are n − d + 1 of these subsets.

Now we proceed by describing the two subroutines needed for Theorem 6.4. The first
one is Algorithm B: Given an incidence matrix minor J it either finds a facet of ∆(d, J)
in polynomial time or it detects that J is incomplete. The correctness follows from
Lemma 6.1. Our specific formulation of the algorithm produces a pulling triangulation
facet which does not contain 1: This restriction does not hurt, since ∆(d, J) must contain
such a facet if J is complete.

Algorithm B: FindPullingFacet(d, J)

Input : incidence matrix minor J ∈ {0, 1}m×n of a d-polytope; d-tuple
{v1, . . . , vd}< ∈

(
[n]
d

)

Output: a facet {v1, . . . , vd} ∈ ∆(d, J), or incomplete

S ← [n]
for i ← 1 to d do

Fi ← any F ∈ F such that min S /∈ F , F ∩ S &= ∅, and |F ∩ S| is maximal
if no such facet exists then

return incomplete

S ← S ∩ Fi

vi ← min S

return {v1, . . . , vd}<

Our second subroutine, Algorithm C, checks whether a given set of d vertices is a facet
of the pulling complex ∆(d, J) or not. Its correctness again follows from the characteri-
zation in Lemma 6.1. Its running time is bounded by O(d(n + m)).
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Algorithm C: IsPullingFacet(d, J, {v1, . . . , vd}<)

Input : (d, J) as above

Output: answer yes/no to the question whether {v1, . . . , vd} ∈ ∆(d, J)

for i ← d downto 1 do
compute the set Fi of all facets (i.e., rows of J) that contain {vi, . . . , vd}

for i ← 1 to d do
Fi ← any F ∈ Fi with vi = min(F1 ∩ . . . ∩ Fi−1 ∩ F )
if no such F exists then

return no

return yes

We close our discussion with a pointer to a specific special case: It would be interesting
to know whether Completeness(d, J) has a polynomial time solution for the very special
case where J has all columns and lacks at most one row.
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