Finite Volume Solver  prototype
A framework to build finite volume solvers for the AG Klein at the Freie Universität Berlin.
SubcycleFineFirstSolver.hpp
Go to the documentation of this file.
1 // Copyright (c) 2019 Maikel Nadolski
2 //
3 // Permission is hereby granted, free of charge, to any person obtaining a copy
4 // of this software and associated documentation files (the "Software"), to deal
5 // in the Software without restriction, including without limitation the rights
6 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 // copies of the Software, and to permit persons to whom the Software is
8 // furnished to do so, subject to the following conditions:
9 //
10 // The above copyright notice and this permission notice shall be included in
11 // all copies or substantial portions of the Software.
12 //
13 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
19 // SOFTWARE.
20 
21 #ifndef FUB_HYPERBOLIC_SPLIT_LEVEL_INTEGRATOR_HPP
22 #define FUB_HYPERBOLIC_SPLIT_LEVEL_INTEGRATOR_HPP
23 
24 #include "fub/Direction.hpp"
25 #include "fub/Duration.hpp"
26 #include "fub/Equation.hpp"
27 #include "fub/Execution.hpp"
28 #include "fub/Meta.hpp"
29 #include "fub/TimeStepError.hpp"
30 #include "fub/ext/outcome.hpp"
32 
33 #include <stdexcept>
34 
35 #include <mpi.h>
36 
37 namespace fub {
38 
39 /// \defgroup SubcycleSolver Subcycle Solvers
40 /// \brief This groups contains all classes that control the subcycle behaviour
41 /// of a simulation.
42 
43 /// \ingroup SubcycleSolver
44 ///
45 /// \brief This Level Integrator applies a very general AMR integration scheme
46 /// in context of dimensional splitting.
47 ///
48 /// The time integration is split into multiple intermediate steps where each is
49 /// supposed to do a certain task. The detailed implementation of these tasks
50 /// happens in the integrator context object.
51 template <typename LevelIntegrator>
52 class SubcycleFineFirstSolver : public SolverFacade<LevelIntegrator> {
53 private:
55 
56 public:
57  static constexpr int Rank = LevelIntegrator::Rank;
58 
59  explicit SubcycleFineFirstSolver(LevelIntegrator&& integrator)
60  : Base(std::move(integrator)) {}
61 
62  explicit SubcycleFineFirstSolver(const LevelIntegrator& integrator)
63  : Base(integrator) {}
64 
65  /// Returns the total refinement ratio between specified coarse to fine level
66  /// number.
67  int GetTotalRefineRatio(int fine_level, int coarse_level = 0) const;
68 
69  /// Returns a stable time step size for the coarsest refinement level.
70  ///
71  /// For stability it is advised to multiply some additional CFL number < 1.0.
73 
74  /// Advance a specified patch level and all finer levels by time `dt`.
75  ///
76  /// This method subcycles finer levels.
77  ///
78  /// \param[in] level_num An integer denoting the patch level where 0 is the
79  /// coarsest level.
80  ///
81  /// \param[in] direction The dimensional split direction which will be used to
82  /// advance.
83  ///
84  /// \param[in] dt A stable time step size for the level_num-th patch level.
86  std::pair<int, int> subcycle);
87 
89 };
90 
91 // Implementation
92 
93 template <typename LevelIntegrator>
95  int fine_level, int coarse_level) const {
96  int refine_ratio = 1;
97  for (int level = fine_level; level > coarse_level; --level) {
98  refine_ratio *= Base::GetRatioToCoarserLevel(level).max();
99  }
100  return refine_ratio;
101 }
102 
103 template <typename LevelIntegrator>
105  Duration min_dt(std::numeric_limits<double>::max());
106  for (int level_num = 0; Base::LevelExists(level_num); ++level_num) {
107  int ratio = GetTotalRefineRatio(level_num);
108  min_dt = std::min(min_dt, ratio * Base::ComputeStableDt(level_num));
109  }
110  MPI_Comm comm = Base::GetMpiCommunicator();
111  const double local_dt = min_dt.count();
112  double global_min_dt{0};
113  MPI_Allreduce(&local_dt, &global_min_dt, 1, MPI_DOUBLE, MPI_MIN, comm);
114  return Duration(global_min_dt);
115 }
116 
117 template <typename LevelIntegrator>
120  int this_level, Duration dt, std::pair<int, int> subcycle) {
121  // PreAdvanceLevel might regrid all finer levels.
122  // The Context must make sure that scratch data is allocated
123  Base::PreAdvanceLevel(this_level, dt, subcycle);
124 
125  auto scale_dt_on_error = [this](Result<void, TimeStepTooLarge> result) {
126  TimeStepTooLarge error = result.error();
127  int ratio = GetTotalRefineRatio(error.level);
128  error.level = 0;
129  error.dt *= ratio;
130  return error;
131  };
132 
133  // If a finer level exists in the hierarchy, we subcycle that finer level
134  // multiple times and use the fine fluxes on coarse-fine interfaces
135  const int next_level = this_level + 1;
136  if (Base::LevelExists(next_level)) {
137  Base::ResetCoarseFineFluxes(next_level, this_level);
138  const int refine_ratio = Base::GetRatioToCoarserLevel(next_level).max();
139  for (int r = 0; r < refine_ratio; ++r) {
140  auto result =
141  AdvanceLevel(next_level, dt / refine_ratio, {r, refine_ratio});
142  if (!result) {
143  return scale_dt_on_error(result);
144  }
145  }
146  }
147 
149  Base::AdvanceLevelNonRecursively(this_level, dt, subcycle);
150  if (!result) {
151  return scale_dt_on_error(result);
152  }
153  if (Base::LevelExists(next_level)) {
154  Base::ApplyFluxCorrection(next_level, this_level, dt);
155  }
156 
157  // Coarsen inner regions from next finer level to this level.
158  if (Base::LevelExists(next_level)) {
159  Base::CoarsenConservatively(next_level, this_level);
160 
161  // The conservative update and the coarsening happened on conservative
162  // variables. We have to reconstruct the missing variables in the complete
163  // state.
164  Base::CompleteFromCons(this_level, dt);
165  }
166 
167  Base::CopyScratchToData(this_level);
168 
169  // Apply any further context related work after advancing this level.
170  // This function can also indicate if some error occured.
171  // For example the context could detect unphysical states and return a
172  // TooLargeTimeStep error condition.
173  result = Base::PostAdvanceLevel(this_level, dt, subcycle);
174  if (!result) {
175  return scale_dt_on_error(result);
176  }
177  return result;
178 }
179 
180 template <typename LevelIntegrator>
183  return AdvanceLevel(0, dt, {0, 1});
184 }
185 
186 } // namespace fub
187 
188 #endif
Definition: SolverFacade.hpp:29
This Level Integrator applies a very general AMR integration scheme in context of dimensional splitti...
Definition: SubcycleFineFirstSolver.hpp:52
int GetTotalRefineRatio(int fine_level, int coarse_level=0) const
Returns the total refinement ratio between specified coarse to fine level number.
Definition: SubcycleFineFirstSolver.hpp:94
SubcycleFineFirstSolver(const LevelIntegrator &integrator)
Definition: SubcycleFineFirstSolver.hpp:62
SubcycleFineFirstSolver(LevelIntegrator &&integrator)
Definition: SubcycleFineFirstSolver.hpp:59
Result< void, TimeStepTooLarge > AdvanceHierarchy(Duration dt)
Definition: SubcycleFineFirstSolver.hpp:182
Result< void, TimeStepTooLarge > AdvanceLevel(int level_number, Duration dt, std::pair< int, int > subcycle)
Advance a specified patch level and all finer levels by time dt.
Definition: SubcycleFineFirstSolver.hpp:119
Duration ComputeStableDt()
Returns a stable time step size for the coarsest refinement level.
Definition: SubcycleFineFirstSolver.hpp:104
static constexpr int Rank
Definition: SubcycleFineFirstSolver.hpp:57
void CompleteFromCons(Equation &&equation, Complete< std::decay_t< Equation >> &complete, const Conservative< std::decay_t< Equation >> &cons)
Definition: CompleteFromCons.hpp:42
decltype(std::declval< Context >().PreAdvanceLevel(std::declval< Args >()...)) PreAdvanceLevel
A template typedef to detect the member function.
Definition: Meta.hpp:44
decltype(std::declval< Context >().PostAdvanceLevel(std::declval< Args >()...)) PostAdvanceLevel
A template typedef to detect the member function.
Definition: Meta.hpp:48
The fub namespace.
Definition: AnyBoundaryCondition.hpp:31
std::chrono::duration< double > Duration
Definition: Duration.hpp:31
boost::outcome_v2::result< T, E > Result
Definition: outcome.hpp:32
Definition: TimeStepError.hpp:71
Duration dt
Definition: TimeStepError.hpp:72
int level
Definition: TimeStepError.hpp:73