Finite Volume Solver  prototype
A framework to build finite volume solvers for the AG Klein at the Freie Universität Berlin.
MusclHancockMethod2.hpp
Go to the documentation of this file.
1 // Copyright (c) 2019 Maikel Nadolski
2 //
3 // Permission is hereby granted, free of charge, to any person obtaining a copy
4 // of this software and associated documentation files (the "Software"), to deal
5 // in the Software without restriction, including without limitation the rights
6 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 // copies of the Software, and to permit persons to whom the Software is
8 // furnished to do so, subject to the following conditions:
9 //
10 // The above copyright notice and this permission notice shall be included in
11 // all copies or substantial portions of the Software.
12 //
13 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
19 // SOFTWARE.
20 
21 #ifndef FUB_FLUX_METHOD_MUSCL_HANCOCK_METHOD2
22 #define FUB_FLUX_METHOD_MUSCL_HANCOCK_METHOD2
23 
24 #include "fub/CompleteFromCons.hpp"
25 #include "fub/Equation.hpp"
26 #include "fub/core/span.hpp"
27 
30 
33 
34 namespace fub {
35 template <
36  typename Equation, typename GradientMethod = ConservativeGradient<Equation>,
37  typename ReconstructionMethod = ConservativeReconstruction<Equation>,
38  typename BaseMethod = GodunovMethod<Equation, ExactRiemannSolver<Equation>>>
39 struct MusclHancock2 {
40  using Complete = typename Equation::Complete;
41  using Conservative = typename Equation::Conservative;
42  using Gradient = typename GradientMethod::Gradient;
43 
46  using GradientArray = typename GradientMethod::GradientArray;
47 
48  explicit MusclHancock2(const Equation& eq) : equation_{eq} {}
49 
50  MusclHancock2(const Equation& eq, const BaseMethod& method)
51  : equation_{eq}, flux_method_{method} {}
52 
53  static constexpr int GetStencilWidth() noexcept { return 2; }
54 
55  double ComputeStableDt(span<const Complete, 4> states, double dx,
56  Direction dir) noexcept {
57  return flux_method_.ComputeStableDt(states.template subspan<1, 2>(), dx,
58  dir);
59  }
60 
62  Direction dir) noexcept {
63  return flux_method_.ComputeStableDt(states.template subspan<1, 2>(), dx,
64  dir);
65  }
66 
68  Array1d face_fraction,
69  span<const Array1d, 4> volume_fraction, double dx,
70  Direction dir) {
71  return flux_method_.ComputeStableDt(
72  states.template subspan<1, 2>(), face_fraction,
73  volume_fraction.template subspan<1, 2>(), dx, dir);
74  }
75 
77  Duration dt, double dx, Direction dir);
78 
80  span<const Gradient, 2> gradients, Duration dt,
81  double dx, Direction dir);
82 
85  double dx, Direction dir);
86 
90  double dx, Direction dir);
91 
92  void ComputeNumericFlux(ConservativeArray& flux, Array1d face_fractions,
94  span<Array1d, 4> volume_fractions, Duration dt,
95  double dx, Direction dir);
96 
97  void ComputeNumericFlux(ConservativeArray& flux, Array1d face_fractions,
100  span<Array1d, 2> volume_fractions, Duration dt,
101  double dx, Direction dir);
102 
103  const Equation& GetEquation() const noexcept { return equation_; }
104  Equation& GetEquation() noexcept { return equation_; }
105 
106  const BaseMethod& GetBaseMethod() const noexcept { return flux_method_; }
107 
108 private:
109  // These member variables control the behaviour of this method
111  GradientMethod gradient_method_{equation_};
112  ReconstructionMethod reconstruction_method_{equation_};
113  BaseMethod flux_method_{equation_};
114 
115  std::array<Gradient, 2> gradient_{Gradient{equation_}, Gradient{equation_}};
116  std::array<Complete, 2> reconstruction_{Complete{equation_},
118 
119  std::array<GradientArray, 2> gradient_array_{GradientArray{equation_},
121  std::array<CompleteArray, 2> reconstruction_array_{CompleteArray{equation_},
123 };
124 
125 template <typename Equation, typename GradientMethod,
126  typename ReconstructionMethod, typename BaseMethod>
129  Duration dt, double dx, Direction dir) {
130  gradient_method_.ComputeGradient(gradient_[0],
131  stencil.template subspan<0, 3>(), dx, dir);
132  gradient_method_.ComputeGradient(gradient_[1],
133  stencil.template subspan<1, 3>(), dx, dir);
134  ComputeNumericFlux(flux, stencil.template subspan<1, 2>(), gradient_, dt, dx,
135  dir);
136 }
137 
138 template <typename Equation, typename GradientMethod,
139  typename ReconstructionMethod, typename BaseMethod>
142  span<const Gradient, 2> gradients, Duration dt,
143  double dx, Direction dir) {
144  reconstruction_method_.Reconstruct(reconstruction_[0], stencil[0],
145  gradients[0], dt, dx, dir, Side::Upper);
146  reconstruction_method_.Reconstruct(reconstruction_[1], stencil[1],
147  gradients[1], dt, dx, dir, Side::Lower);
148  flux_method_.ComputeNumericFlux(flux, reconstruction_, dt, dx, dir);
149 }
150 
151 template <typename Equation, typename GradientMethod,
152  typename ReconstructionMethod, typename BaseMethod>
156  double dx, Direction dir) {
157  gradient_method_.ComputeGradient(gradient_array_[0],
158  stencil.template subspan<0, 3>(), dx, dir);
159  gradient_method_.ComputeGradient(gradient_array_[1],
160  stencil.template subspan<1, 3>(), dx, dir);
161  ComputeNumericFlux(flux, stencil.template subspan<1, 2>(), gradient_array_,
162  dt, dx, dir);
163 }
164 
165 template <typename Equation, typename GradientMethod,
166  typename ReconstructionMethod, typename BaseMethod>
171  double dx, Direction dir) {
172  reconstruction_method_.Reconstruct(reconstruction_array_[0], stencil[0],
173  gradients[0], dt, dx, dir, Side::Upper);
174  reconstruction_method_.Reconstruct(reconstruction_array_[1], stencil[1],
175  gradients[1], dt, dx, dir, Side::Lower);
176  flux_method_.ComputeNumericFlux(flux, reconstruction_array_, dt, dx, dir);
177 }
178 
179 template <typename Equation, typename GradientMethod,
180  typename ReconstructionMethod, typename BaseMethod>
182  ComputeNumericFlux(ConservativeArray& flux, Array1d face_fractions,
184  span<Array1d, 4> volume_fractions, Duration dt,
185  double dx, Direction dir) {
186  gradient_method_.ComputeGradient(gradient_array_[0],
187  stencil.template subspan<0, 3>(), dx, dir);
188  gradient_method_.ComputeGradient(gradient_array_[1],
189  stencil.template subspan<1, 3>(), dx, dir);
190  MaskArray left_mask =
191  (volume_fractions[0] > 0.0 && volume_fractions[1] > 0.0 &&
192  volume_fractions[2] > 0.0);
193  MaskArray right_mask =
194  (volume_fractions[1] > 0.0 && volume_fractions[2] > 0.0 &&
195  volume_fractions[3] > 0.0);
197  [&](auto&& x, auto&& y) {
198  x = left_mask.select(x, 0.0);
199  y = right_mask.select(y, 0.0);
200  },
201  gradient_array_[0], gradient_array_[1]);
202  ComputeNumericFlux(flux, face_fractions, stencil.template subspan<1, 2>(),
203  gradient_array_, volume_fractions.template subspan<1, 2>(),
204  dt, dx, dir);
205 }
206 
207 template <typename Equation, typename GradientMethod,
208  typename ReconstructionMethod, typename BaseMethod>
210  ComputeNumericFlux(ConservativeArray& flux, Array1d face_fractions,
213  span<Array1d, 2> volume_fractions, Duration dt,
214  double dx, Direction dir) {
215  reconstruction_method_.Reconstruct(reconstruction_array_[0], stencil[0],
216  gradients[0], dt, dx, dir, Side::Upper);
217  reconstruction_method_.Reconstruct(reconstruction_array_[1], stencil[1],
218  gradients[1], dt, dx, dir, Side::Lower);
219  flux_method_.ComputeNumericFlux(flux, face_fractions, reconstruction_array_,
220  volume_fractions, dt, dx, dir);
221  ForEachVariable([]([[maybe_unused]] auto&& f) { FUB_ASSERT(!f.isNaN().any()); }, flux);
222 }
223 
224 } // namespace fub
225 
226 #endif
#define FUB_ASSERT(x)
Definition: assert.hpp:39
A span is a view over a contiguous sequence of objects, the storage of which is owned by some other o...
Definition: span.hpp:81
std::decay_t< decltype(std::declval< T >().GetEquation())> Equation
A template typedef to detect the member function.
Definition: Meta.hpp:59
The fub namespace.
Definition: AnyBoundaryCondition.hpp:31
std::chrono::duration< double > Duration
Definition: Duration.hpp:31
Array< double, 1 > Array1d
Definition: Eigen.hpp:53
void ForEachVariable(F function, Ts &&... states)
Definition: State.hpp:89
Direction
This is a type safe type to denote a dimensional split direction.
Definition: Direction.hpp:30
void ForEachComponent(F function, Ts &&... states)
Definition: State.hpp:624
Array< bool, 1 > MaskArray
Definition: Eigen.hpp:59
This type has a constructor which takes an equation and might allocate any dynamically sized member v...
Definition: State.hpp:251
Definition: MusclHancockMethod2.hpp:39
std::array< GradientArray, 2 > gradient_array_
Definition: MusclHancockMethod2.hpp:119
typename Equation::Conservative Conservative
Definition: MusclHancockMethod2.hpp:41
const BaseMethod & GetBaseMethod() const noexcept
Definition: MusclHancockMethod2.hpp:106
std::array< CompleteArray, 2 > reconstruction_array_
Definition: MusclHancockMethod2.hpp:121
MusclHancock2(const Equation &eq)
Definition: MusclHancockMethod2.hpp:48
Equation equation_
Definition: MusclHancockMethod2.hpp:110
void ComputeNumericFlux(Conservative &flux, span< const Complete, 4 > stencil, Duration dt, double dx, Direction dir)
Definition: MusclHancockMethod2.hpp:128
typename GradientMethod::Gradient Gradient
Definition: MusclHancockMethod2.hpp:42
Array1d ComputeStableDt(span< const CompleteArray, 4 > states, Array1d face_fraction, span< const Array1d, 4 > volume_fraction, double dx, Direction dir)
Definition: MusclHancockMethod2.hpp:67
Equation & GetEquation() noexcept
Definition: MusclHancockMethod2.hpp:104
BaseMethod flux_method_
Definition: MusclHancockMethod2.hpp:113
const Equation & GetEquation() const noexcept
Definition: MusclHancockMethod2.hpp:103
std::array< Complete, 2 > reconstruction_
Definition: MusclHancockMethod2.hpp:116
static constexpr int GetStencilWidth() noexcept
Definition: MusclHancockMethod2.hpp:53
typename GradientMethod::GradientArray GradientArray
Definition: MusclHancockMethod2.hpp:46
Array1d ComputeStableDt(span< const CompleteArray, 4 > states, double dx, Direction dir) noexcept
Definition: MusclHancockMethod2.hpp:61
GradientMethod gradient_method_
Definition: MusclHancockMethod2.hpp:111
ReconstructionMethod reconstruction_method_
Definition: MusclHancockMethod2.hpp:112
typename Equation::Complete Complete
Definition: MusclHancockMethod2.hpp:40
MusclHancock2(const Equation &eq, const BaseMethod &method)
Definition: MusclHancockMethod2.hpp:50
double ComputeStableDt(span< const Complete, 4 > states, double dx, Direction dir) noexcept
Definition: MusclHancockMethod2.hpp:55
std::array< Gradient, 2 > gradient_
Definition: MusclHancockMethod2.hpp:115