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Abstract

We prove a non-abelian version of Deligne’s Fix Part Theorem. It
is a statement which is purely anchored in complex geometry. The
reason for the consideration is a vaster program which aims at
understanding some aspects of the monodromy-weight conjecture
in unequal characteristic by 'tilting it' to a complex situation for
which we have the tools developed notably by Morihiko Saito and
Takuro Mochizuki. This lecture focuses on a small part of it. In
progress.

Hélene Esnault (FU Berlin, Harvard, Copenhagen) Non-abelian Fix Part



Deligne’s Fix Part Theorem

f: X — S smooth projective, S smooth quasi-projective /C = f
is a fibration = natural action of 71(S,s) on the cohomology
H'(Xs, Q).
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Deligne’s Fix Part Theorem

f: X — S smooth projective, S smooth quasi-projective /C = f
is a fibration = natural action of 71(S,s) on the cohomology
H'(Xs, Q).

Hodge class
€ € H*(Z,Q), Z smooth quasi-projective over C, is a Hodge class
if

¢ €im(H*(Z,2)) N F'H*(Z,C) N W;H?(Z,C).
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Deligne’s Fix Part Theorem

Theorem (Deligne '71)

f: X — S smooth projective, S smooth quasi-projective /C, S is

an Artin Kml = the following conditions are equivalent

(1) the orbit of 71(S,s) - & in H'(Xs, Q) is finite;

(2) é. essentla”y i.e after a finite étale cover of S eXtendS to a HOdge ClaSS in
H* (X, Q);

(3) the GauB-Manin flat deformation of & to Hfu’,?()?/g\) lies in
FIH3L(X/S).
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Deligne’s Fix Part Theorem

Theorem (Deligne '71)

f: X — S smooth projective, S smooth quasi-projective /C, S is
an Artin Kml = the following conditions are equivalent

(1) the orbit of 71(S,s) - € in H(Xs, Q) is finite;

(2) 5 essentla”y i.e after a finite étale cover of S eXtendS to a HOdge ClaSS in
H¥ (X, Q);

(3) the GauB-Manin flat deformation of & to Hflk()?/g) lies in
FTH3R(X/S).
Proof Q-version (1) (2): Deligne; (3) Griffiths

Z-version: apply the Leray spectral sequence to H% (X, %Z/Z)
and the following observation to L = R"f*(%Z/Z).
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Deligne’s Fix Part Theorem

Theorem (Deligne '71)

f: X — S smooth projective, S smooth quasi-projective /C, S is
an Artin Kml = the following conditions are equivalent

(1) the orbit of 71(S,s) - € in H(Xs, Q) is finite;

(2) E essentla”y i.e after a finite étale cover of S eXtendS to a Hodge ClaSS in
H¥ (X, Q);

(3) the GauB-Manin flat deformation of ¢ to H2(X/S) lies in
F'H3L(X/S).

Proof Q-version (1) (2): Deligne; (3) Griffiths

Z-version: apply the Leray spectral sequence to H? (X, +7/7)
and the following observation to L = R’f;(%Z/Z).

L be a local system on S with finite fibers, S is an Artin K71, j > 0 is an integer —> 3 a finite étale cover

S’ — S such that the map H'(S,1L) — H'(S’, L) vanishes.
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Non-Abelian Version (E-Kerz '24)

Definitions

A good holomorphic map f: X — S is the complement of a
relative normal crossings divisor in f: X — S smooth projective
with S a complex holomorphic manifold.

For K a field € {Q,R,C} a (Z)K-PVHS is a polarized K-variation
(Ls, Fs, Qs) of Hodge structure on a K- local system Lg on X
definable over Z.
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Non-Abelian Version (E-Kerz '24)

Theorem 1

f: X = S good holomorphic, S quasi-projective, s € S,
(Ls, Fs, Qs) (Z)K-PVHS; S Artin K7l or X, hyperbolic curve.
Then the following conditions are equivalent:

(1) the orbit (S, s) - [Ls] is finite;
(2) (Ls, Fs, Qs) essentially extends to a (Z)K-PVHS on X;
(3) (Ls, Fs, Qs) extends to a (Z)K-PVHS on Xa, A ball > s.
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@ Earlier work by Jost-Zuo, Katzarkov-Pantev, Landesman-Litt.

o We see the parallel between 1) 2) in the abelian and
non-abelian versions; as for 3) the non-abelian version over A
[F absolute] is ‘weaker’ than the abelian formal version [F
relative]. We do not know (yet) how to prove a formal
non-abelian version.
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Algebraically isomonodromic deformation

Definition
An algebraically isomonodromic deformation of s on Xs for f
good holomorphic is an extension IL on X such that

Mo?(Ls, x) = Mo®(L, x)

where Mo(L, x) € GL(Ly) is the Zariski closure of the
monodromy group of L (i.e. the Tannaka group of L in GL(Ly)
based at x € X; in the category of K-local systems) and © is the
1-component.
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Algebraically Isomonodromic Deformations

Theorem 2
With (f, (Ls, Fs, Qs)) as in Theorem 1, then (1) is equivalent to

(2') Ls on X, essentially extends to an algebraically
isomonodromic I on X.

Then L in (2') extends to a (Z)K-PVHS on X (Theorem 1 (2)).
Moreover

a) L in (2') essentially unique;
b) if Ls is absolutely simple, then any extension L to X which
has finite determinant is algebraically isomonodromic.
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Non-abelian Hodge Locus

Simpson’s non-Abelian Hodge Locus

For f: X — S a good proper holomorphic map, and r € N>q,
Simpson deﬁnes the Hodge IOCUS NL(f, r) ( in fact on the de Rham side, here we
present it on the Betti side ) @S the set of point M in the total étale space

T = (5 x H'(Xs, GL(r,C))) /m1(S, 5)

to RYf,GL(r,C) such that M underlies a (Z)C-PVHS.
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Non-abelian Hodge Locus

Simpson’s non-Abelian Hodge Locus

For f: X — S a good proper holomorphic map, and r € N>q,
Simpson deﬁnes the Hodge IOCUS NL(f, r) ( in fact on the de Rham side, here we
present it on the Betti side ) @S the set of point M in the total étale space

T = (5 x HY(Xs, GL(r,C)))/m1(S,s)
to RYf,GL(r,C) such that M underlies a (Z)C-PVHS.

Theorem (Simpson '97)
NL(f,r) C T is closed analytic and finite over S.

He conjectures that NL(f,r) C T is algebraic when S is
quasi-projective.
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Non-abelian Hodge Locus

Finiteness

Simpson's main tool is Deligne’s finiteness theorem '87: there are
only finitely many local systems I of bounded rank on a given Z
quasi-projective complex smooth /C which lift to a (Z)C-PVHS.
Deligne: The present work is the result of an effort to try to
understand Faltings’ finiteness theorem for abelian varieties '83.

Theorem 3

Simpson's theorem is true for f a good (not necessarily proper)
holomorphic map.

In addition to Simpson’s proof, one needs a form of the nilpotent
orbit theorem which holds in families near the special fibre, which
enables one to recognize on a mixed Hodge structure when it arises
as a limiting mixed Hodge structure of a (Z)C-PVHS.
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The Mumford-Tate group in a algebraically isomonodromic
deformation

Definition

For (Ly, Fx, Qx) a (Z)Q PHS on x = Spec C, its Mumford-Tate
group MT(LLy, Fy) is the smallest linear Q-algebraic subgroup of
GL(Ly) such that its complex points comprise the maps

Lyc — Ly c sending A to A"V for all (i,/) € (N)? with

i + j =weight L. It does not depend on Q.
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The Mumford-Tate group in a algebraically isomonodromic
deformation

Definition

For (Ly, Fx, Qx) a (Z)Q PHS on x = Spec C, its Mumford-Tate
group MT(LLy, Fy) is the smallest linear Q-algebraic subgroup of
GL(Ly) such that its complex points comprise the maps

Lyc — Ly c sending A to A"V for all (i,/) € (N)? with

i + j =weight L. It does not depend on Q.

Proposition 4

X smooth quasi-projective /C, (L, F, Q) (Z)Q-PVHS on X,

x € X. Then MT(L,, Fy) normalises Mo(L, x) and Mo°(L, x) in
GL(Ly).

Hélene Esnault (FU Berlin, Harvard, Copenhagen) Non-abelian Fix Part



It yields our Definition
The Mumford-Tate group of the (Z)Q-PVHS (L, F, Q):

MT((L, F), x) = Mo®(LL, x) - MT(LLy, Fx) C GL(Ly).

It does not depend on Q.
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It yields our Definition

The Mumford-Tate group of the (Z)Q-PVHS (L, F, Q):
MT((L, F), x) = Mo®(L, x) - MT(Ly, Fx) € GL(Ly).

It does not depend on Q.

Corollary

1) MT((L, F), x) has parallel transport as x € X;

2) in an algebraically isomonodromic situation, for x € X has

MT((Ls, Fs), x) — MT((L, F), x).
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It yields our Definition

The Mumford-Tate group of the (Z)Q-PVHS (L, F, Q):
MT((L, F), x) = Mo®(L, x) - MT(Ly, Fx) € GL(Ly).

It does not depend on Q.

Corollary
1) MT((L, F), x) has parallel transport as x € X;
2) in an algebraically isomonodromic situation, for x € X has

MT((Ls, Fs), x) — MT((L, F), x).

Remark

Deligne: outside of a thin set of points x € X, iso-class of
MT(Ly, Fy) is ‘constant’; 1) defines MT((L, F), x) as a local
system across this thin subset.
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Sketch of Proof of Theorem 2

Go to profinite completions: group theory

Main point is to construct IL out of the finiteness of the orbit of
LLs. Assumption K7l or family of hyperbolic curves —-

—

71(Xs) < m1(X). Pass to ¢-adic local systems. It becomes a
purely group theoretic statement. Assume for simplicity L,
absolutely irreducible. Then it lifts uniquely to X as a projective
f-adic system which we may essentially lift as an ¢-adic system Ly
with finite determinant. Restrict to the topological fundamental
group = L. A priori Moo(]L) is semi-simple. Prove it is simple.
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Sketch of Proof of Theorem 2 Il

Simpson-T. Mochizuki correspondence

Assume L absolutely irreducible for simplicity => essential unique
L with finite determinant. h “unique metric which is fiber-wise
harmonic” on L ® Oy, so agrees with hs on Ls ® Ox.. It defines
Higgs which is log at infinity. Eigenvalues of C* are constant (log
compactification) so recognizable on Xs where they are cyclic, so
defines a sum of Hodge bundles with a nilpotent Higgs operator.
So the same on X. Has to go back: to such a nilpotent Higgs the
corresponding L is a C-PVHS. This is due to T. Mochizuki and
does not request the full package of the Simpson correspondence.
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Sketch of Proof of Proposition 4

Exact sequence

Point is the exact sequence (d'Addezio-E, weaker version by
André) on X

1 — Mo(L, x) — 7({(L, F)),x) = n(C,x) = 1

of Q-algebraic groups. m for Tannaka group. C C {((LL, F)) full sub
of those objects with trivial local system.
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Sketch of Proof of Proposition 4

Exact sequence

Point is the exact sequence (d'Addezio-E, weaker version by
André) on X

1 — Mo(L, x) — 7({(L, F)),x) = n(C,x) = 1

of Q-algebraic groups. m for Tannaka group. C C {((LL, F)) full sub
of those objects with trivial local system.

Then
MT((L, F), x) = = ({(L, F)), x).
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