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Abstract

We prove a non-abelian version of Deligne’s Fix Part Theorem. It
is a statement which is purely anchored in complex geometry. The
reason for the consideration is a vaster program which aims at
understanding some aspects of the monodromy-weight conjecture
in unequal characteristic by ’tilting it’ to a complex situation for
which we have the tools developed notably by Morihiko Saito and
Takuro Mochizuki. This lecture focuses on a small part of it. In
progress.
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Deligne’s Fix Part Theorem

Assumption

f : X → S smooth projective, S smooth quasi-projective /C =⇒ f
is a fibration =⇒ natural action of π1(S , s) on the cohomology
H i (Xs ,Q).

Hodge class

ξ ∈ H2i (Z ,Q), Z smooth quasi-projective over C, is a Hodge class
if

ξ ∈ im(H2i (Z ,Z)) ∩ F iH2i (Z ,C) ∩WiH
2i (Z ,C).
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Deligne’s Fix Part Theorem

Theorem (Deligne ’71)

f : X → S smooth projective, S smooth quasi-projective /C, S is
an Artin Kπ1 =⇒ the following conditions are equivalent

(1) the orbit of π1(S , s) · ξ in H i (Xs ,Q) is finite;

(2) ξ essentially i.e after a finite étale cover of S extends to a Hodge class in
H2i (X ,Q);

(3) the Gauß-Manin flat deformation of ξ to H2i
dR(X̂/Ŝ) lies in

F iH2i
dR(X̂/Ŝ).

Proof Q-version (1) (2): Deligne; (3) Griffiths

Z-version: apply the Leray spectral sequence to H2i (X , 1
NZ/Z)

and the following observation to L = R i f∗(
1
NZ/Z).

L be a local system on S with finite fibers, S is an Artin Kπ1, j > 0 is an integer =⇒ ∃ a finite étale cover

S′ → S such that the map H i (S, L) → H i (S′, L) vanishes.
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Non-Abelian Version (E-Kerz ’24)

Definitions

A good holomorphic map f : X → S is the complement of a
relative normal crossings divisor in f̄ : X̄ → S smooth projective
with S a complex holomorphic manifold.

For K a field ∈ {Q,R,C} a (Z)K -PVHS is a polarized K -variation
(Ls ,Fs ,Qs) of Hodge structure on a K - local system Ls on Xs

definable over Z.
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Non-Abelian Version (E-Kerz ’24)

Theorem 1

f : X → S good holomorphic, S quasi-projective, s ∈ S ,
(Ls ,Fs ,Qs) (Z)K -PVHS; S Artin Kπ1 or Xs hyperbolic curve.
Then the following conditions are equivalent:

(1) the orbit π1(S , s) · [Ls ] is finite;

(2) (Ls ,Fs ,Qs) essentially extends to a (Z)K -PVHS on X ;

(3) (Ls ,Fs ,Qs) extends to a (Z)K -PVHS on X∆, ∆ ball ∋ s.
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Remarks

Earlier work by Jost-Zuo, Katzarkov-Pantev, Landesman-Litt.

We see the parallel between 1) 2) in the abelian and
non-abelian versions; as for 3) the non-abelian version over ∆
[F absolute] is ‘weaker’ than the abelian formal version [F
relative]. We do not know (yet) how to prove a formal
non-abelian version.
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Algebraically isomonodromic deformation

Definition

An algebraically isomonodromic deformation of Ls on Xs for f
good holomorphic is an extension L on X such that

Mo0(Ls , x) ∼= Mo0(L, x)

where Mo(L, x) ⊂ GL(Lx) is the Zariski closure of the
monodromy group of L (i.e. the Tannaka group of L in GL(Lx)
based at x ∈ Xs in the category of K -local systems) and 0 is the
1-component.
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Algebraically Isomonodromic Deformations

Theorem 2

With (f , (Ls ,Fs ,Qs)) as in Theorem 1, then (1) is equivalent to

(2’) Ls on Xs essentially extends to an algebraically
isomonodromic L on X .

Then L in (2’) extends to a (Z)K -PVHS on X (Theorem 1 (2)).

Moreover

a) L in (2’) essentially unique;

b) if Ls is absolutely simple, then any extension L to X which
has finite determinant is algebraically isomonodromic.
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Non-abelian Hodge Locus

Simpson’s non-Abelian Hodge Locus

For f : X → S a good proper holomorphic map, and r ∈ N≥1,
Simpson defines the Hodge locus NL(f , r) ( in fact on the de Rham side, here we

present it on the Betti side ) as the set of point M in the total étale space

T =
(
S̃ × H1(Xs ,GL(r ,C))

)
/π1(S , s)

to R1f∗GL(r ,C) such that M underlies a (Z)C-PVHS.

Theorem (Simpson ’97)

NL(f , r) ⊂ T is closed analytic and finite over S .

He conjectures that NL(f , r) ⊂ T is algebraic when S is
quasi-projective.
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Non-abelian Hodge Locus

Finiteness

Simpson’s main tool is Deligne’s finiteness theorem ’87: there are
only finitely many local systems L of bounded rank on a given Z
quasi-projective complex smooth /C which lift to a (Z)C-PVHS.
Deligne: The present work is the result of an effort to try to
understand Faltings’ finiteness theorem for abelian varieties ’83.

Theorem 3

Simpson’s theorem is true for f a good (not necessarily proper)
holomorphic map.

In addition to Simpson’s proof, one needs a form of the nilpotent
orbit theorem which holds in families near the special fibre, which
enables one to recognize on a mixed Hodge structure when it arises
as a limiting mixed Hodge structure of a (Z)C-PVHS.
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The Mumford-Tate group in a algebraically isomonodromic
deformation

Definition

For (Lx ,Fx ,Qx) a (Z)Q PHS on x = Spec C, its Mumford-Tate
group MT(Lx ,Fx) is the smallest linear Q-algebraic subgroup of
GL(Lx) such that its complex points comprise the maps
Lx ,C → Lx ,C sending λ to λi λ̄j for all (i , j) ∈ (N)2 with
i + j =weight Lx . It does not depend on Qx .

Proposition 4

X smooth quasi-projective /C, (L,F ,Q) (Z)Q-PVHS on X ,
x ∈ X . Then MT(Lx ,Fx) normalises Mo(L, x) and Mo0(L, x) in
GL(Lx).
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It yields our Definition

The Mumford-Tate group of the (Z)Q-PVHS (L,F ,Q):

MT((L,F ), x) = Mo0(L, x) ·MT(Lx ,Fx) ⊂ GL(Lx).

It does not depend on Q.

Corollary

1) MT((L,F ), x) has parallel transport as x ∈ X ;

2) in an algebraically isomonodromic situation, for x ∈ Xs has

MT((Ls ,Fs), x)
∼=−→ MT((L,F ), x).

Remark

Deligne: outside of a thin set of points x ∈ X , iso-class of
MT(Lx ,Fx) is ‘constant’; 1) defines MT((L,F ), x) as a local
system across this thin subset.
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Sketch of Proof of Theorem 2

Go to profinite completions: group theory

Main point is to construct L out of the finiteness of the orbit of
Ls . Assumption Kπ1 or family of hyperbolic curves =⇒
π̂1(Xs) ↪→ π̂1(X ). Pass to ℓ-adic local systems. It becomes a
purely group theoretic statement. Assume for simplicity Ls,ℓ

absolutely irreducible. Then it lifts uniquely to X as a projective
ℓ-adic system which we may essentially lift as an ℓ-adic system Lℓ

with finite determinant. Restrict to the topological fundamental
group =⇒ L. A priori Mo0(L) is semi-simple. Prove it is simple.
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Sketch of Proof of Theorem 2 II

Simpson-T. Mochizuki correspondence

Assume Ls absolutely irreducible for simplicity =⇒ essential unique
L with finite determinant. h “unique metric which is fiber-wise
harmonic” on L⊗OX , so agrees with hs on Ls ⊗OXs . It defines
Higgs which is log at infinity. Eigenvalues of C× are constant (log
compactification) so recognizable on Xs where they are cyclic, so
defines a sum of Hodge bundles with a nilpotent Higgs operator.
So the same on X . Has to go back: to such a nilpotent Higgs the
corresponding L is a C-PVHS. This is due to T. Mochizuki and
does not request the full package of the Simpson correspondence.
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Sketch of Proof of Proposition 4

Exact sequence

Point is the exact sequence (d’Addezio-E, weaker version by
André) on X

1 → Mo(L, x) → π(⟨(L,F )⟩, x) → π(C, x) → 1

of Q-algebraic groups. π for Tannaka group. C ⊂ ⟨(L,F )⟩ full sub
of those objects with trivial local system.

Then
MT((L,F ), x) = π(⟨(L,F )⟩, x).
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