Preface

Emil Artin was born on March 3, 1898 in Vienna. His father was an art
dealer, and his mother was an opera singer. After his father died, his mother
married again, and lived in Reichenberg, Bohemia, where Artin obtained his
“Reifeprifung’” in 1916. After studying one semester at the University in
Vienna, he was drafted and served in an infantry regiment until the end of
the war. In January 1919 he continued his studies at the University of
Leipzig. He studied there with Herglotz, towards whom he kept a heartfelt
appreciation throughout his life. Herglotz was the only person whom
Artin recognized as having been his “‘teacher.”” Artin got his PhD in 1921,
spent one year at the University of Gottingen, and then went to Hamburg
University. He became Privatdozent in 1923, Ausserordentlicher Professor in
1925, and Ordentlicher Professor in 1926 at the age of 28.

He married Natalie Jasny in 1929. They had three children, Karin,
Michael, both born in Hamburg, and Thomas, born later in America, to
which he emigrated in 1937. He spent one year at the University of Notre
Dame, then was at Indiana University in Bloomington from 1938 to 1946,
at which time he moved to Princeton, where he stayed from 1946 to 1958.
He returned to Hamburg in 1958, and remained there until his death, of a
heart attack, on December 20, 1962.

This volume includes all of Artin’s papers.

It is not our intention to discuss Artin’s mathematical works, but we
thought it might be worth while to mention briefly some of his conjectures,
not all of which were published.

The first one was, in effect, the Riemann hypothesis in function fields. In
~ his thesis, Artin discussed hyperelliptic fields over finite constant fields as
analogues of quadratic number fields, and pointed out that the analogue of
the classical Riemann hypothesis seemed to be true for them. The proof was
eventually given by Hasse for fields of genus 1 (Int. Congress, Oslo, 1936) and
by Weil in the general case (Compres Rendus, 1941).

A little later, he defined the non-abelian L-series, and conjectured their
integrality, as well as a Riemann hypothesis' for them. Both of these con-
jectures are still unproved, but it is interesting to note that Weil’s methods
allowed him to prove them in the function field case, and showed the close
connection between the two (exhibiting them as two aspects of a more
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general phenomenon, the positive definiteness of the trace in the ring of
correspondences).

Artin’s guess that the L-series were meromorphic, and that this property
should follow from a theorem on group characters was proved correct by
Brauer (Annals of Math. 1947).

To prove that his general L-series coincided with the classical L-series in
the case of abelian extensions, Artin was led to conjecture the reciprocity
law. He succeeded in proving it four years later. Furthermore, he observed
that, by means of the reciprocity law, Hilbert’s famous conjecture that ideals
become principal in the maximal unramified abelian extension could be
reduced to a purely group theoretical statement involving the transfer.
This statement, now known as the principal ideal theorem, was proved by
Furtwangler, and a new way of looking at the transfer, suggested by Artin,
enabled Iyanaga to give a much shorter proof soon after.

Artin's concern with the decomposition laws for primes in algebraic
number fields led him to a conjecture in elementary number theory, as
follows. Let # be a fixed integer £ 0, = 1. In order that 2 be a primitive
root for a prime p not dividing 4, it is obviously necessary and sufficient
that for no prime ¢ the conditions

©) p=1(modg) and 4?7 V2=1(mod p)

be simultaneously satisfied. For given ¢, let M, be the set of primes p satisfy-
ing the conditions (*). Then M, is just the set of primes p which split
completely in the splitting field K, of the polynomial x? — 4, and conse-
quently has density 1/k,, where k, is the degree of K, over the field of ra-
tional numbers. Thinking the conditions (*) for different ¢'s to be inde-
pendent, Artin conjectured that the set of primes p for which 4 is primitive

root has density
10 (1 _ l).
q kq

In case 4 is square free, we have k, = ¢(¢ — 1) for all 4. Computations by
Lehmer a few years ago showed a discrepancy in some cases. When Artin
learned of this, he realized that the conditions (*) are not independent. For

example, if 2 = (;—1) qo for some odd prime ¢o, then Ky C K,, (omitting
0
the index # for simplicity). Hence My D M,, and the factor <1 - %)
20

should be deleted from the above product to get the correct density.

In the course of a conversation, he mentioned to us that one has to make
the “‘obvious’’ modification of the above product by a rational factor to
take into account the dependence of the fields K,. Unfortunately we did not

go into this matter in detail with him, but it seems to us that the necessary
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modification is the following. For each square-free integer m > 0, let

K= LK,

alm

be the compositum of the fields K, for primes ¢ dividing m, and let k,, be
the absolute degree of K,,. Then the sct of primes p such that the condi-
tions () are satisfied for no ¢ dividing  has density

p(m)=2'%)’

dlm

where u is the Moebius function, and the sum runs over the positive divisors
4 of m. Hence the conjecture should be that the set of primes p for which #
is a primitive root has density

= im (22 457)

where the limit is taken over all square-free m, ordered by divisibility.
To get a more explicit expression for p, one proves that if » is odd the
fields K, for ¢|m are completely linearly disjoint. Consequently, for odd ,

we have
km - II kq:

qlm

and ks, is equal to ky, or to 2k, according as \/a is or is not contained in
the field of m-th roots of unity. Let 2 = aob? with 4o square free. Then
the condition for v/ to be contained in the field of z-th roots of unity for
odd square-free m is that 4o divide m and be congruent to 1 (mod 4). Putting
all this together one finds that the conjectured density p of the set of primes p
for which 4 is a primitive root is

-4 100-1)

1 if a9 # 1 (mod 4),

A= A ﬂ(‘zO) if gn =
1 ———H G — D if 4 =1 (mod 4),

‘1|ao

with

where g is the square-free part of 4. Here &, is the absolute degree of the
splitting field of the polynomial x? — a4, and consequently k, = ¢(¢ — 1)
unless 4 is of the form =¢" for some integer ¢ and some integer #» > 1.

It is interesting to note that the analogue of Artin’s conjecture on primi-
tive roots in function fields over finite fields has been proved by students of
Hasse, using the Riemann hypothesis in function fields (cf. Hasse's dis-
cussion, Annales Academiae Scientiarum Fennicae, Helsinki 1952).
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We now pass to an entirely different kind of question. In 1935, Tsen
proved that there do not exist non-trivial division algebras of finite rank
ower 2 function field in one variable, over an algebraically closed constant
Secld. Analysing Tsen's proof, Artin was led to make the following defini-
tion. A field K is quasi-algebraically closed (QAC) if every form (homo-
gencous polynomial) of degree 4 in # variables with coefficients in K has a
non-trivial zero in K provided » > 4. He then observed that the method
used by Tsen could be used to prove that a function field as above is QAC.
In view of Wedderburn's theorem, he then conjectured that finite fields are
QAC. This was proved almost immediately by Chevalley (Hamburg Abb.
1936). (It seems that Dickson had made the same conjecture a number of
years carlier.) By class field theory, it was known that the field © obtained
from the rational numbers by adjoining all roots of unity has no non-trivial
division algebra over it. In view of this, and by analogy with function
ficlds over finite fields, Artin also conjectured that the field @ is QAC.
Concerning number fields themselves, he suggested that an analogous state-
ment should be true provided » > 42, and provided the number field is
totally imaginary. He also made the corresponding local conjectures. None
of the global conjectures is proved, and the fact that p-adic fields satisfy
the “n > 4% property is also unproved.

Finally, let us mention that Artin was always interested in “‘geometric
algebra’, and in the theory of finite groups. In this field, he conjectured
that a simple group of order g divisible by a prime number p > g'/? is of
known type. This was proved by Brauer and Reynolds (Annals 1958).

Artin loved teaching at all levels. Even though occupying research pro-
fessorships, he never failed to give, regularly, courses in elementary Calculus.
His lectures and seminars were reknowned for their perfection and excite-
ment. They contributed much towards spreading his point of view in
zlgebra, for which van der Waerden's text, derived from lectures by Artin
and Emmy Noether, has been the fundamental reference for the past 30 years.

They also inspired his students, towards whom his generosity and affec-
tion were unsurpassed.

S. Lang
February 1965 J. Tate




