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Abstract. Let X/k be a smooth proper scheme over an algebraically
closed field and let L be an invertible sheaf on X with Ln ∼= OX . Pink
and Roessler have shown that if k has characteristic zero, then for any
m the dimension of ⊕a+b=mHb(X, Li ⊗Ωa

X/k) is independent of i if i is
relatively prime to n. We discuss a motivic interpretation of their result
and prove that the same holds if k has characteristic p = n, provided
X/k is ordinary, has dimension ≤ p and lifts to the ring of second Witt
vectors W2(k).

1 Introduction

Let k be an algebraically closed field and let X/k be a smooth projective con-
nected k-scheme. Let L be an invertible sheaf on X , and for each integer m, let

Hm
Hdg(X/k, L) :=

⊕

a+b=m

Hb(X, L⊗ Ωa
X/k).

We wish to study how the dimensions of the k-vector spaces Hm
Hdg(X/k, L) and

Hb(X, L⊗ Ωa
X/k) vary with L. For example, if k has characteristic zero, Green and

Lazarsefeld [4] proved that for given a, b, d, the subloci

{L ∈ Pic0(X) : dim Hb(X, Ωa
X ⊗ L) ≥ d}

of Pic0(X) are translates of abelian subvarieties, and Simpson [12] showed that they
in fact are translates by torsions points. Both these papers use analytic methods,
but Pink and Roessler [10] obtained the same results purely algebraically, using the
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technique of mod p reduction and the decomposition theorem of Deligne-Illusie. A
key point of their proof is the fact that if Ln ∼= OX for some positive integer n,
then for all integers i with (i, n) = 1 one has

dim Hm
Hdg(X/k, L) = dimHm

Hdg(X/k, Li) (1.1)

([10, Proposition 3.5]). They conjecture that equation 1.1 remains true in charac-
teristic p > 0 if X/k lifts to W2(k) and has dimension ≤ p. The purpose of this
note is to discuss a few aspects of this conjecture and some variants.

Our main result (see Theorem 3.6) says that the conjecture is true if n = p
and X is ordinary in the sense of Bloch-Kato [2, Definition 7.2]. We also explain
in section 2 some motivic variants of (1) and, in particular in Proposition 2.2, a
proof (due to Pink and Roessler) of the characteristic zero case of (1.1), using the
language of Grothendieck Chow motives. See [7, 9.3] for a discussion of a related
problem using similar techniques. We should remark that there are also some log
versions of these questions, which we will not make explicit.

2 Motivic variants

Question 2.1 Let X be a smooth projective connected variety defined over an

algebraically closed field k. Let L be an invertible sheaf on X and n a positive

integer such that Ln ∼= OX . Is

dim Hm
Hdg(X/k, Li) = dimHm

Hdg(X/k, L)

for every i relatively prime to n?

Let us explain how this question can be given a motivic interpretation. We
refer to [11] for the definition of Grothendieck’s Chow motives over a field k. In
particular, objects are triples (Y, p, n) where Y is a smooth projective variety over k,
p is an element CHdim(Y )(Y ×k Y )⊗Q, the rational Chow group of dim(Y )-cycles,
which, as a correspondence, is an idempotent, and n is a natural number.

Let π : Y → X be a principal bundle under a k-group scheme µ, where X and
Y are smooth and projective over k. Recall that this means that there is a k-group
scheme action µ×k Y → Y with the property that one has an isomorphism

(ξ, y) 7→ (y, ξy) : µ×k Y ∼= Y ×X Y ⊆ Y ×k Y.

Thus a point ξ ∈ µ(k) defines a closed subset Γξ of Y ×k Y , the graph of the
endomorphism of Y defined by ξ. The map ξ 7→ Γξ extends uniquely to a map of
Q-vector spaces

Γ : Q[µ(k)]→ CHdim(Y )(Y ×k Y )⊗Q.

Here Q[µ(k)] is the Q-group algebra, so the product structure is induced by the
product of k-roots of unity. We can think of CHdim(Y )(Y ×k Y ) ⊗ Q as a Q-
algebra of correspondences acting on CH∗(Y )⊗Q, where for β ∈ CHs(Y )⊗Q, γ ∈
CHdim(Y )(Y ×k Y )⊗Q, one defines as usual

γ · β := (p2)∗(γ ∪ p∗1β).

Then the map Γ is easily seen to be compatible with composition, as on closed
points y ∈ Y one has Γξ(y) = ξ · y. In particular if ξ ∈ Q[µ] is idempotent in the
group ring Q[µ(k)], then Γξ

∼= Y × ξ is idempotent as a correspondence. In this
case we let Yξ be the Grothendieck Chow motive (Y, ξ, 0).
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Let L be an n-torsion invertible sheaf on smooth irreducible projective scheme

X/k. Recall that the choice of an OX -isomorphism Ln α
−→ OX defines an OX -

algebra structure on

A :=
n−1
⊕

i=0

Li (2.1)

via the tensor product Li×Lj → Li⊗OX
Lj = Li+j for i+j < n and its composition

with the isomorphism Li × Lj → Li ⊗OX
Lj = Li+j α−1

−−→ Li+j−n for 0 ≤ i +
j − n. Then the corresponding X-scheme π : Y := SpecX A → X is a torsor
under the group scheme µn of nth roots of unity. Indeed, locally Zariski on X ,
A ∼= OX [t]/(tn − u) for a local unit u, the µn-action is defined by A → A ⊗
Q[ζ]/(ζn − 1), t 7→ tζ, and the torsor structure is given by A ⊗ Q[ζ]/(ζn − 1) ∼=
A ⊗OX

A, (t, ζ) 7→ (t, tζ). This construction defines an equivalence between the
category of pairs (L, α) and the category of µn-torsors over X . Assuming now that
n is invertible in k, µn is étale, hence π is étale and Y is smooth and projective
over k. Note the character group Xn := Hom(µn,Gm) is cyclic of order n with a
canonical generator (namely, the inclusion µn → Gm). By construction, the direct
sum decomposition (2.1) of A corresponds exactly to its eigenspace decomposition
according to the characters of µn.

We can now apply the general construction of motives to this situation. Since
µn is étale over the algebraically closed field k, it is completely determined by the
finite group Γ := µn(k), which is cyclic of order n. The group algebra Q[Γ] is a
finite separable algebra over Q, hence is a product of fields:

Q[Γ] =
∏

Ee.

Here Ee = Q[T ]/(Φe(T )) = Q(ξe), where e is a divisor of n, Φe(T ) is the cyclotomic
polynomial, and ξe is a primitive eth root of unity. There is an (indecomposable)
idempotent e corresponding to each of these fields, and for each e we find a Chow
motive Ye.

The indecomposable idempotents of Q[Γ] can also be thought of as points of
the spectrum T of Q[Γ]. If K is a sufficiently large extension of Q, then

T (K) = HomAlg(Q[Γ], K) = HomGr(Γ, K∗), (2.2)

and K ⊗Q[Γ] ∼= K[Γ] ∼= KT (K). (2.3)

Thus T (K) can be identified with the character group Xn of Γ, and is canoni-
cally isomorphic to Z/nZ, with canonical generator the inclusion Γ ⊆ k. Suppose
that K/Q is Galois. Then Gal(K/Q) acts on T (K), and the points of T correspond
to the Gal(K/Q)-orbits. By the theory of cyclotomic extensions of Q, this action
factors through a surjective map

Gal(K/Q)→ (Z/nZ)∗

and the usual action of (Z/nZ)∗ on Z/nZ by multiplication. Thus the orbits
correspond precisely to the divisors d of n; we shall associate to each orbit S the
index d of the subgroup of Z/nZ generated by any element of S. (Note that in fact
the image of d in Z/nZ belongs to S.) We shall thus identify the indecomposable
idempotents of Q[Γ] and the divisors of n.

Let us suppose that k = C. Then we can consider the Betti cohomologies of
X and Y , and in particular the group algebra Q[Γ] operates on Hm(Y, Q). We
can thus view Hm(Y, Q) as a Q[Γ]-module, which corresponds to a coherent sheaf
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H̃m(Y, Q) on T . If e is an idempotent of Q[Γ], then Hm(Ye, Q) is the image of the

action of e on Hm(Y, Q), or equivalently, it is the stalk of the sheaf H̃m(Y, Q) at
the point of T corresponding to e, or equivalently, it is Hm(Y, Q) ⊗ Ee where the
tensor product is taken over Q[Γ]. If K is a sufficiently large field as above, then
equation (2.3) induces an isomorphism of K-vectors spaces:

Hm(Ye, Q)⊗Q K ∼=
⊕

{Hm(Y, K)t : t ∈ T e(K)},

where here T e(K) means the set of points of T (K) in the Galois orbit corresponding
to e, and Hm(Y, K)t means the t-eigenspace of the action of Γ on Hm(Y, Q)⊗QK.
The de Rham and Hodge cohomologies of Ye are defined in the same way: they
are the images of the actions of the idempotent e acting on the k-vector spaces
HDR(Y/k) and HHdg(Y/k).

The following result is due to Pink and Roessler. Their article [10] contains
a proof using reduction modulo p techniques and the results of [3]; the following
analytic argument is based on oral communications with them.

Proposition 2.2 The answer to Question 2.1 is affirmative if k is a field of

characteristic zero.

Proof As both sides of the equality in Question 2.1 satisfy base change with
respect to field extensions, we may assume that k = C. Let i → ti denote the
isomorphism Z/nZ ∼= T (C). For each divisor e of n there is a corresponding
idempotent e of Q[Γ] ⊆ K[Γ], the sum over all i such that ti ∈ T e(C). Consider
the Hodge cohomology of the motive Ye:

Hm
Hdg(Ye/C) := Hm

Hdg(Y/C)⊗Q[Γ] Ee
∼= Hm

Hdg(Y/C)⊗C[Γ] (C⊗ Ee).

∼=
⊕

{Hm
Hdg(Y/C)i : i ∈ T e(k)}.

Since π : Y → X is finite and étale,

Hb(Y, Ωa
Y/C) ∼= Hb(X, π∗π

∗Ωa
X/C) ∼= Hb(X, Ωa

X/C ⊗ π∗OY )

∼=
⊕

{Hb(X, Ωa
X/C ⊗ Li) : i ∈ Z/nZ}.

Thus

Hm
Hdg(Y/C) ∼=

⊕

{Hm
Hdg(X, Li) : i ∈ Z/nZ},

and hence from the explicit description of the action of µn on A above it follows
that

Hm
Hdg(Ye/C) =

⊕

{Hm
Hdg(X, Li) : i ∈ Te(C)}.

The Hodge decomposition theorem for Y provides us with an isomorphism:

Hm
Hdg(Y/C) ∼= C⊗Hm(Y, Q),

compatible with the action of Q[Γ]. This gives us, for each idempotent e, an
isomorphism of C⊗ Ee-modules.

Hm
Hdg(Ye/C) ∼= C⊗Hm(Ye, Q).

The action on C ⊗ Hm(Ye, Q) on the right just comes from the action of Ee on
Hm(Ye, Q) by extension of scalars. Since Ee is a field, Hm(Ye, Q) is free as an
Ee-module, and hence the C⊗Ee-module Hm

Hdg(Ye/C) is also free. It follows that

its rank is the same at all the points t ∈ T e(C), affirming Question 2.1.



Hodge Cohomology of Invertible Sheaves 5

Let us now formulate an analog of Question 1 for the ℓ-adic and crystalline
realizations of the motive Ye in characteristic p.

Question 2.3 Suppose that k is an algebraically closed field of characteristic

p and (n, p) = 1. Let ℓ be a prime different from p, let e be a divisor of n, and let

Ee be the corresponding factor of Q[Γ]. Is it true that each Hm(Ye, Qℓ) is a free

Qℓ ⊗ Ee-module? And is it true that Hm
cris(Ye/W ) ⊗ Q is a free W ⊗ Ee-module,

where W := W (k)?

If K is an extension of Qℓ (resp. of W (k)) which contains a primitive nth root
of unity, then as above we have a eigenspace decompositions:

K ⊗Hm(Yét, Qℓ) ∼=
⊕

{Hm(Yét, K)t : t ∈ T (K)} (2.4)

K ⊗Hm(Ycris/W (k)) ∼=
⊕

{Hm(Ycris, K)t : t ∈ T (K)}, (2.5)

and this question asks whether the K-dimension of the t-eigenspace is constant over
the orbits Te(K) ⊆ T (K).

We show in the sequel that the question has a positive answer.
Suppose first that X/k lifts to characteristic zero, i.e., that there exists a com-

plete discrete valuation ring V with residue field k and fraction field of character-
istic zero and a smooth proper X̃/V whose special fiber is X/k. Let Xm be the

closed subscheme of X̃ defined by πm+1, where π is a uniformizing parameter of V .
Choose a trivialization α of Ln. It follows from Theorem 18.1.2 of [6] that the étale
µn-torsor Y on X corresponding to (L, α) lifts to Xm, uniquely up to a unique
isomorphism, and hence that the same is true for (L, α). This fact can also be
seen by chasing the exact sequences of cohomology corresponding to the following
commutative diagram of exact sequences in the étale topology.

0

��

0

��

OX

a7→1+πma

��

n ∼=
// OX

a7→1+πma

��

1 // µn

=

��

// O×

Xm

��

n
// O×

Xm

��

// 1

1 // µn // O×

Xm−1

��

n
// O×

Xm−1

��

// 1

1 1

(2.6)

By Grothendieck’s fundamental theorem for proper morphisms, it follows that
(L, α) and Y lift to (L̃, α̃) and Ỹ on X̃. Then by the étale to Betti and Betti
to crystalline comparison theorems, we see that under the lifting assumption, the
answer to Question 2.3 is affirmative.

In fact, the lifting hypothesis is superfluous, but this takes a bit more work.

Proposition 2.4 The answer to Question 2.3 is affirmative.
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Proof It is trivially true that Hm(Ye, Qℓ) is free over Qℓ ⊗ Ee if Qℓ ⊗ Ee is a
field. If (ℓ, n) = 1, this is the case if and only if (Z/eZ)∗ is cyclic and generated by
ℓ. More generally, assuming ℓ is relatively prime to n, there is a decomposition of
Qℓ[Γ] into a product of fields Qℓ[Γ] ∼=

∏

Eℓ,e, where now e ranges over the orbits
of Z/nZ under the action of the cyclic subgroup of (Z/nZ)∗ generated by ℓ. This
is indeed the unramified lift of the decomposition of A = Fℓ[Γ] into a product of
finite extensions of Fℓ, corresponding to the orbits of Frobenius on the geometric
points of A. This shows at least that the dimension of Hm(Y, K)t in (2.4) is, as a
function of t, constant over the ℓ-orbits.

For the general statement, let K be an algebraically closed field containing Qℓ

for all primes ℓ 6= p, and containing W (k). For ℓ 6= p let Vℓ := Hm(Yét, Qℓ)⊗Qℓ K,
and let Vp := Hm(Ycris, W (k)) ⊗W (k) K. Then each Vℓ is a finite-dimensional
representation of Γ, and the isomorphisms (2.4) and (6) are just its decomposition
as a direct sum of irreducible representations:

Vℓ
∼=

⊕

{nℓ,iVi : i ∈ Z/nZ},

where Vi = K, with γ ∈ Γ acting by multiplication by γi. By [8, Theorem 2.2)]
(and [1], [5] and [9] for the existence of cycle classes in crystalline cohomology) the
trace of any γ ∈ Γ acting on Vℓ is an integer independent of ℓ, including ℓ = p.
Since Γ is a finite group, it follows from the independence of characters that for
each i, ni := nℓ,i is independent of ℓ. We saw above that nℓ,ℓi = nℓ,i if (ℓ, n) = 1
and ℓ 6= p, so that in fact nℓi = ni for all ℓ 6= p with (ℓ, n) = 1. Since the group
(Z/nZ)∗ is generated by all such ℓ, it follows that ni is indeed constant over the
ℓ-orbits.

What does this tell us about Question 2.1? If (p, n) = 1 and k is algebraically
closed, W [Γ] is still semisimple, and can be written canonically as a product of
copies of W , indexed by i ∈ T (W ) ∼= Z/nZ. For every t ∈ T (W ) ∼= T (k), we have
an injective base change map from crystalline to de Rham cohomology:

k ⊗Hm(Y/W )t → Hm(Y/k)t.

Question 2.5 In the above situation, is Hq(Y/W ) torsion free when (p, n) =
1?

If the answer is yes, then the maps k ⊗ Hm(Y/W )t → Hm(Y/k)t are iso-
morphisms, and this means that we can compute the dimensions of the de Rham
eigenspaces from the ℓ-adic ones. Assuming also that the Hodge to de Rham spec-
tral sequence of Y/k degenerates at E1, this should give an affirmative answer to
Question 1. Note that if X/k lifts mod p2, then Y/k lifts mod p2 as well, and if the
dimension is less than or equal to p, the E1-degeneration is true by [3].

Of course, there is no reason for Question 2.5 to have an affirmative answer in
general. Is there a reasonable hypothesis on X which guarantees it? For example,
is it true if the crystalline cohomology of X/W is torsion free?

3 The p-torsion case in characteristic p

Let us assume from now on that k is a perfect field of characteristic p > 0.
In this case we can reduce question 2.1 to a question about connections, using the
following construction of [3]. First let us recall some standard notations. Let X ′ be
the pull back of X via the Frobenius of k, let π : X ′ → X be the projection, and let
F : X → X ′ and FX : X → X be the relative and absolute Frobenius morphisms.
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Then F ∗

XL = Lp = F ∗L′, where L′ := π∗L. Then Lp = F−1L′⊗O
X′
OX is endowed

with the Frobenius descent connection 1 ⊗ d, i.e. the unique connection spanned
by its flat sections L′. In general, for a given integrable connection (E,∇), we set

Hi
DR(X, (E,∇)) = Hi(X/k, (Ω·X/k ⊗ E,∇)),

and we use again the notation

Hi
Hdg(X/k, L) =

⊕

a+b=i

Hb(X, Ωa
X/k ⊗ L)

and write hi
DR and hi

Hdg for the respective dimensions of these spaces.

Proposition 3.1 Let L be an invertible sheaf on a smooth proper scheme X
over k and let ∇ be the Frobenius descent connection on Lp. Suppose that X/k lifts

to W2(k) and has dimension at most p. Then for every natural number m,

hm
DR(X/k, (Lp,∇)) = hm

Hdg(X/k, L).

Corollary 3.2 Under the assumptions of Proposition 3.1, if Lp ∼= OX and

ω := ∇(1), then for any integer a,

hm
Hdg(X/k, La) = hm

DR(X/k, (OX , d + aω)).

Remark 3.3 If p divides a, this just means the degeneration of the Hodge to
de Rham spectral sequence for (OX , d).

Proof Let Hdg·X′/k denote the Hodge complex of X ′/k, i.e., the direct sum

⊕iΩ
i
X′/k[−i]. Recall from [3] that the lifting yields an isomorphism in the bounded

derived category of OX′ -modules:

Hdg·X′/k
∼= F∗(Ω

·
X/k, d).

Tensoring this isomorphism with L′ := π∗L and using the projection formula for
F , we find an isomorphism

Hdg·X′/k ⊗ L′ ∼= F∗(Ω
·
X/k ⊗ Lp,∇).

Hence

Hm
Hdg(X/k, L)

F∗

k
∼=

−−−→ Hm
Hdg(X

′/k, L′)
F∗

∼=
←−−− Hm

DR(X, (Lp,∇)).

This proves the proposition. If Lp = OX , the corresponding Frobenius descent
connection ∇ on OX is determined by ωL := ∇(1). It follows from the tensor
product rule for connections that ωLa = aωL for any integer a.

The corollary suggests the following question.

Question 3.4 Let ω be a closed one-form on X and let c be a unit of k. Is the

dimension of Hm
DR(X, (OX , d + cω)) independent of c?

Remark 3.5 Some properness is necessary, since the p-curvature of dω := d+ω
can change from zero to non-zero as one multiplies by an invertible constant. If the
p-curvature is non-zero, then the sheaf H0(Ω·X/k, dω) vanishes, and hence so does

H0(X, (Ω·X/k, dω)). If the p-curvature vanishes, then H0(Ω·X/k, dω) is an invertible

sheaf L, which can have nontrivial sections if X is allowed to shrink. However, since
by definition, L ⊂ OX , it can have a global section on a proper X only if L = OX .

We can answer Question 3.4 under a strong hypothesis.
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Theorem 3.6 Suppose that X/k is smooth, proper, and ordinary in the sense

of Bloch and Kato [2, Definition 7.2]: Hi(X, Bj
X/k) = 0 for all i, j, where

Bj
X/k := Im

(

d : Ωj−1
X/k → Ωj

X/k

)

.

Then the answer to question 3.4 is affirmative. Hence if moreover X/k lifts to

W2(k), has dimension at most p, and if n = p, the answer to Question 2.1 is also

affirmative.

We begin with the following lemmas.

Lemma 3.7 Let ω be a closed one-form on X, and let

dω := d + ω∧ : Ω·X/k → Ω·+1
X/k.

Then the standard exterior derivative induces a morphism of complexes:

(Ω·X/k, dω)
δ
- (Ω·X/k, dω)[1].

Proof If α is a section of Ωq
X/k,

ddω(α) = d(dα + ω ∧ α)

= ddα + dω ∧ α− ω ∧ dα

= −ω ∧ dα.

Since the sign of the differential of the complex (Ω·X/k, dω)[1] is the negative of the

sign of the differential of (Ω·X/k, dω),

dωd(α) = −(d + ω∧)(dα)

= −ω ∧ dα

Lemma 3.8 Let Z· := ker(d) ⊆ (Ω·X/k, dω) and B· := Im(d)[−1] ⊆ (Ω·X/k, dω).

Then for any a ∈ k∗, multiplication by ai in degree i induces isomorphisms

(Z·, dω)
λa
- (Z·, daω)

(B·, dω)
λa
- (B·, daω).

Proof It is clear that the boundary map dω on Z· and on B· is just wedge
product with ω.

Proof of Theorem 3.6 The morphism δ of Lemma 3.7 induces an exact se-
quence:

0→ (Z·, dω)→ (Ω·X/k, dω)
δ
−→ (B·, dω)[1]→ 0. (3.1)

As X/k is ordinary, the E1 term of the first spectral sequence for (B·, dω) is Ei,j
1 =

Hj(X, Bi) = 0, and it follows that the hypercohomology of (B·, dω) vanishes, for
every ω. Hence the natural map Hq(Z·, dω) → Hq(Ω·X/k, dω) is an isomorphism.

Since the dimension of Hq(Z·, dω) is unchanged when ω is multiplied by a unit of
k, the same is true of Hq(Ω·X/k, dω). This completes the proof of Theorem 3.6.
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Remark 3.9 A simple Riemann-Roch computation shows that on curves, ques-
tion 1 has a positive answer with no additional assumptions. Indeed, if L is a non-
trivial torsion sheaf, then its degree is zero and it has no global sections. It follows
that h1(L) = g− 1. Since the same is true for L−1, h0(L⊗Ω1

X) = h1(L−1) = g− 1,
and h1(L⊗ Ω1

X) = h0(L−1) = 0.

Remark 3.10 In the absence of the ordinarity hypothesis, one can ask if the
rank of the boundary map

∂ω : Hq+1(B·, ω∧)→ Hq+1(Z·, ω∧)

of (3.1) changes if ω is multiplied by a unit of k. To analyze this question, let

cω : (B·, ω∧)→ (Z·, ω∧)

be the morphism in the derived category D(X ′,OX′) defined by the exact sequence
(3.1), so that ∂ω can be identified with Hq−1(cω). Similarly, the exact sequence

0→ (Z·, ω∧)→ (Ω·, ω∧)→ (B·, ω∧)[1]→ 0

defines a morphism

aω : (B·, ω∧)→ (Z·, ω∧)

in D(X ′,OX′) as well. There is also an inclusion morphism:

bω : (B·, ω∧)→ (Z·, ω∧).

Then it is not difficult to check that cω = aω + bω. If a ∈ k∗, we have isomorphisms
of complexes

λa : (Z·, ω∧) → (Z·, aω∧)

λa : (B·, ω∧) → (B·, aω∧)

Using these as identifications, one can check that caω = a−1aω + bω. This would
suggest a negative answer to Question 3.4, but we do not have an example.
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