
C. R. Acad. Sci. Paris, Ser. I 345 (2007) 73–76
http://france.elsevier.com/direct/CRASS1/

Algebraic Geometry

Coniveau over p-adic fields and points over finite fields

Hélène Esnault 1

Universität Duisburg-Essen, Mathematik, 45117 Essen, Germany

Received 26 April 2007; accepted 6 May 2007

Available online 5 July 2007

Presented by Pierre Deligne

Abstract

If the �-adic cohomology of a projective smooth variety, defined over a p-adic field K with finite residue field k, is supported in
codimension � 1, then any model over the ring of integers of K has a k-rational point. To cite this article: H. Esnault, C. R. Acad.
Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Coniveau sur un corps p-adique et points sur un corps fini. Si la cohomologie �-adique d’une variété projective, lisse, définie
sur un corps p-adique K à corps residuel fini k, est supportée en codimension � 1, alors tout modèle sur l’anneau des entiers de K

a un point rationnel. Pour citer cet article : H. Esnault, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit X une variété projective et absolument irréductible sur un corps local K . Rappelons qu’un modèle de X/K

sur l’anneau de valuation R de K est un morphisme X → SpecR projectif et plat, tel que (X → SpecR) ⊗ K =
(X → SpecK). Nous considérons la cohomologie �-adique Hi(X̄) à coefficients dans Q�. Dire qu’elle est supportée
en codimension 1 signifie que toute classe dans Hi(X̄) a une restriction nulle dans Hi(Ū), où U ⊂ X est un ouvert
non vide. Le but de cette Note est de prouver le théorème suivant :

Théorème. Soit X une variété projective lisse et absolument irréductible sur un corps local K de caractéristique 0
et à corps résiduel fini k. On suppose que la cohomologie �-adique Hi(X̄) est supportée en codimension � 1 pour
tout i � 1. Soit X /R un modèle. Alors il existe un morphisme projectif surjectif σ :Y → X de R-schémas tel que
|Y(k)| ≡ 1 modulo |k|.

On en déduit immédiatement le corollaire suivant :

Corollaire. Sous les hypothèses du théorème, tout modèle X /R possède un point k-rationnel.
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Pour ce qui concerne l’existence du point k-rationnel, ceci affranchit [3, Theorem 1.1], (qui est vrai aussi si K

est de caractéristique p > 0), de l’hypothèse de régularité sur le choix du modèle X , qui était utilisée pour pouvoir
appliquer le théorème de pureté de Gabber [4]. Pour ce faire, nous montrons que d’avoir des singularités quotient est
suffisant, de même que pour l’étude de l’application de spécialisation. Nous appliquons alors la version plus précise
du théorème de Jong ainsi qu’elle est exposée dans [1].

1. Introduction

Let X be a projective, absolutely irreducible variety defined over a local field K with finite residue field k.
Recall that a model of X/K on the valuation ring R of K is a flat projective morphism X → SpecR such that
(X → SpecR) ⊗ K = (X → SpecK). We consider �-adic cohomology Hi(X̄) with Q�-coefficients. One defines the
first coniveau level

N1Hi(X̄) = {
α ∈ Hi(X̄),∃ divisor D ⊂ X s.t. 0 = α|X\D ∈ Hi(X \ D)

}
. (1)

As Hi(X̄) is a finite dimensional Q�-vector space, one has by localization

∃D ⊂ X s.t. N1Hi(X̄) = Im
(
Hi

D̄
(X̄) → Hi(X̄)

)
, (2)

where D ⊂ X is a divisor. One says that Hi(X̄) is supported in codimension 1 if N1Hi(X̄) = Hi(X̄). This definition
is general, but has good properties only if X is irreducible and smooth or has only very mild singularities.

In [3, Theorem 1.1] it is shown that if X/K is smooth, projective, absolutely irreducible over a local field K with
finite residue field k, and if �-adic cohomology Hi(X̄) is supported in codimension � 1 for all i � 1, then any regular
model X /R of X/K has the property

∣∣X (k)
∣∣ ≡ 1 mod |k|. (3)

The purpose of this Note is to drop the regularity assumption if K has characteristic 0.

Theorem 1.1. Let X be a smooth, projective, absolutely irreducible variety defined over a local field K of charac-
teristic 0 with finite residue field k. Assume that the �-adic cohomology Hi(X̄) is supported in codimension � 1 for
all i � 1. Let X be a model of X over the ring of integers R of K . Then there is a projective surjective morphism
σ :Y → X of R-schemes such that

∣∣Y(k)
∣∣ ≡ 1 mod |k|.

As an immediate corollary, one obtains:

Corollary 1.2. Under the assumptions of the theorem, every model X /R has a k-rational point.

The regularity of the model X in the proof of [3, Theorem 1.1] (which is shown also when K has characteristic
p > 0) was used to apply Gabber’s purity theorem [4]. We show that for the piece of regularity one needs, it is enough
to have quotient singularities. Likewise, for the properties needed on the specialization map, quotient singularities are
good enough. The more careful use of de Jong’s theorem as exposed in [1] allows one then to conclude.

2. Proof of Theorem 1.1

Let K be a local field of characteristic 0 with finite residue field k. Let R ⊂ K be its valuation ring. Let X → SpecR

be an integral model of a projective variety X → SpecK . We do not assume here that X is absolutely irreducible, nor
do we assume that X/K is smooth. Then by [1, Corollary 5.15], there is a diagram

Z π Y σ X

SpecR

(4)

and a finite group G acting on Z over Y with the properties
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(i) Z → SpecR and Y → SpecR are flat,
(ii) σ is projective, surjective, and birational,
(iii) Y is the quotient of Z by G,
(iv) Z is regular.

So Y → SpecR is not quite a model of X → SpecK , but is close to it. We show in the sequel that σ in (4) does it in
Theorem 1.1. Set

Y = Y ⊗ K, Z = Z ⊗ K.

For an open U ⊂ X let us set YU = U ×X Y, ZU = U ×X Z.
Let us assume now that X/K is smooth. This implies that

σ ∗ : Hi(Ū) ↪→ Hi(YU ) (5)

is injective. Moreover, the trace map from Y to X

Hi(YU )
(trace)Y/X

H i(Ū ) (6)

is a retraction of σ ∗ in (5). Let i � 1 and let D ⊂ X be a divisor such that Hi

D̄
(X̄) � Hi(X̄) and such that σ |X\D :

Y \ σ−1(D) → X \ D is an isomorphism. Then (6) yields the commutative diagram

Hi(Ȳ )

(trace)Y/X

H i(Y \ σ−1(D))

=

Hi(X̄)
0

Hi(X \ D)

(7)

and we conclude

X/K smooth 	⇒ N1Hi(X̄) = Hi(X̄) ⊂ N1Hi(Y ) = Hi(Y ). (8)

We endow all schemes considered (which are R-schemes) with the upper subscript u to indicate the base change
⊗RRu or ⊗KKu, where Ku ⊃ K is the maximal unramified extension, and Ru ⊃ R is the normalization of R in Ku.
Likewise, we write ? to indicate the base change ⊗RR̄, ⊗KK̄, ⊗kk̄, where K̄ ⊃ K, k̄ ⊃ k are the algebraic closures
and R̄ ⊃ R is the normalization of R in K̄ . We consider as in [3, (2.1)] the F -equivariant exact sequence [2, 3.6(6)]

· · · → Hi

B̄
(Yu)

ι−→ Hi(B̄) = Hi(Yu)
spu−−→ Hi(Y u) → ·· · , (9)

where F ∈ Gal(k̄/k) is the geometric Frobenius, and B = Y ⊗ k.
One has

Claim 2.1. The eigenvalues of the geometric Frobenius F ∈ Gal(k̄/k) acting on Hi(Xu) and on Hi(Y u) lie in q · Z̄

for all i � 1.

Proof. For Hi(Xu), this is [3, Theorem 1.5(ii)]. One has Hi(Ȳ ) = Hi(Z̄)G, thus in particular, π∗ : Hi(Ȳ ) → Hi(Z̄)

is injective. By (8) one has

Hi(Ȳ )
π∗ inj−−−→ N1Hi(Z̄). (10)

Since K has characteristic 0, and Z is regular by (iv), Z is smooth. Thus we can apply again [3, Theorem 1.5(ii)].
This finishes the proof. �
Claim 2.2. The eigenvalues of the geometric Frobenius F ∈ Gal(k̄/k) acting on ι(H i

B̄
(Yu)) ⊂ Hi(B̄) lie in q · Z̄ for

all i � 1.

Proof. By (iii), one has Hi

B̄
(Yu) = Hi

C̄
(Zu)G ⊂ Hi

C̄
(Zu), where C = π−1(B). Since by (iv), Z is regular, we can

apply [3, Theorem 1.4], which is a consequence of Gabber’s purity theorem [4], to conclude. �
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Proof of Theorem 1.1. Claims 2.1 and 2.2 together with (9) show that the eigenvalues of F acting on Hi(B̄) lie in
q · Z̄ for all i � 1.

We apply the Lefschetz trace formula |B(k)| = TrF |H ∗(B̄). As B is absolutely connected and defined over k,
F |H 0(B̄) = Identity. By the discussion, one has |B(k)| ∈ N ∩ (1 + q · Z̄) ⊂ 1 + q · Z. �
3. Remarks

Starting from Theorem 1.1, and Corollary 1.2, we may ask what happens if K has equal characteristic p > 0 and
whether or not the congruence of the theorem is true on all models. We have no counter-examples for either question.
As far as K is concerned, characteristic 0 is used in the proof of Claim 2.1: if K has characteristic p > 0, we only
know that Z is regular, thus we cannot apply immediately [3, Theorem 1.5(ii)]. Going up to a strict semi-stable model
does not help as for this, one has to ramify R and one loses regularity of Z and Z. As far as the congruence is
concerned, instead of going to a birational model Y (or birational up to some inseparable extension in characteristic
p > 0), one should go up to a hypercover built out of such Y . In doing Deligne’s construction of hypercovers with
resolutions of singularities being replaced by de Jong’s morphisms of the type σ in (4), one creates components which
do not dominate X , the cohomology of which is very hard to control. So one perhaps loses the coniveau property.
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