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THE FUNDAMENTAL GROUPOID SCHEME AND
APPLICATIONS

by Hélène ESNAULT & Phùng Hô HAI (*)

Abstract. — We define a linear structure on Grothendieck’s arithmetic fun-
damental group π1(X, x) of a scheme X defined over a field k of characteristic 0. It
allows us to link the existence of sections of the Galois group Gal(k̄/k) to π1(X, x)
with the existence of a neutral fiber functor on the category which linearizes it. We
apply the construction to affine curves and neutral fiber functors coming from a
tangent vector at a rational point at infinity, in order to follow this rational point
in the universal covering of the affine curve.

Résumé. — Nous définissons une structure linéaire sur le groupe fondamental
arithmétique π1(X, x) d’un schéma X défini sur un corps k de caractéristique 0.
Cela nous permet de lier l’existence de sections du groupe de Galois Gal(k̄/k) vers
π1(X, x) à l’existence d’un foncteur neutre sur la catégorie qui linéarise ce dernier.
Nous appliquons cette construction à une courbe affine et aux foncteurs neutres
qui proviennent d’un vecteur tangent à l’infini. Nous pouvons ainsi suivre ce point
rationnel dans le revêtement universel de la courbe affine.

1. Introduction

For a connected scheme X over a field k, Grothendieck defines in [6,
Section 5] the arithmetic fundamental group as follows. He introduces the
category ECov(X) of finite étale coverings π : Y → X, the Hom-Sets be-
ing X-morphisms. The choice of a geometric point x ∈ X defines a fiber
functor π

ωx−−→ π−1(x) with values in the category FSets of finite sets. He
defines the arithmetic fundamental group with base point x to be the auto-
morphism group π1(X, x) = Aut(ωx) of the fiber functor. It is an abstract
group, endowed with the pro-finite topology stemming from its finite im-
ages in the permutation groups of π−1(x) as π varies. The main theorem

Keywords: Finite connection, tensor category, tangential fiber functor.
Math. classification: 14F05, 14L17, 18D10.
(*) Partially supported by the DFG Leibniz Preis and the DFG Heisenberg program.
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is the equivalence of categories ECov(X) ωx−−→ π1(X, x)-FSets between the
étale coverings and the finite sets acted on continuously by π1(X, x). This
equivalence extends to pro-finite objects on both sides. When applied to
the set π1(X, x), acted on by itself as a group via translations, it defines
the universal pro-finite étale covering π̃x : X̃x → X based at x. It is a Ga-
lois covering of group π1(X, x) and π̃−1

x (x) = π1(X, x). Furthermore, the
embedding of the sub-category ECov(k) of ECov(X), consisting of the étale
coverings X ×k Spec(L) → X obtained from base change by a finite field
extension L ⊃ k, with L lying in the residue field κ(x) of x, induces an
augmentation map π1(X, x) ε−→ Gal(k̄/k). Here k̄ is the algebraic closure of
k in κ(x). Then ε is surjective when k is separably closed in H0(X,OX).
Grothendieck shows that the kernel of the augmentation is identified with
π1(X ×k k̄), thus one has an exact sequence

1→ π1(X ×k k̄, x)→ π1(X, x) ε−→ Gal(k̄/k).(1.1)

Via the equivalence of categories, one has a factorization

X̃x
//

π̃x ##G
GGGGGGGG X ×k k̄

��
X

(1.2)

identifying the horizontal map with the universal pro-finite étale covering
of X ×k k̄, based at x viewed as a geometric point of X ×k k̄. In particular,
X̃x is a k̄-scheme.

The aim of this article is to linearize Grothendieck’s construction in the
case where X is smooth and k has characteristic 0. There is a standard way
to do this using local systems of Q-vector spaces on Xét, which is a Q-linear
abelian rigid tensor category ([1, Section 10]). Rather than doing this, we
go to the D-module side of the Riemann-Hilbert correspondence, where
we have more flexibility for the choice of a fiber functor. Before describing
more precisely our construction, the theorems and some applications, let
us first recall Nori’s theory.

For a proper, reduced scheme X over a perfect field k, which is connected in
the strong sense that H0(X,OX) = k, Nori defines in [11, Chapter II] the
fundamental group scheme as follows. He introduces the category CN (X) of
essentially finite bundles, which is the full sub-category of the coherent cate-
gory on X, spanned by Weil-finite bundles V , that is for which there are two
polynomials f, g ∈ N[T ], f 6= g, with the property that f(V ) is isomorphic
to g(V ). It is a k-linear abelian rigid tensor category. The choice of a rational
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FUNDAMENTAL GROUPOID SCHEME 2383

point x ∈ X(k) defines a fiber functor V
ρx−→ V |x with values in the cate-

gory of vector spaces Veck over k, thus endows CN (X) with the structure
of a neutral Tannaka category. Nori defines his fundamental group scheme
with base point x to be the automorphism group πN (X, x) = Aut⊗(ρx)
of ρx. It is a k-affine group scheme, and its affine structure is pro-finite in
the sense that its images in GL(V |x) are 0-dimensional (i.e. finite) group
schemes over k for all objects V of CN (X). Tannaka duality ([3, Theo-
rem 2.11]) asserts the equivalence of categories CN (X)

ρx−→ Rep(πN (X, x)).
The duality extends to the ind-categories on both sides. When applied to
k[πN (X, x)] acted on by πN (X, x) via translations, it defines a principal
bundle πρx : Xρx → X under πN (X, x). One has π−1

ρx
(x) = πN (X, x). In

particular, the k-rational point 1 ∈ πN (X, x)(k) is a lifting in Xρx
of the

k-rational point x ∈ X(k) . On the other hand, one has the base change
property for CN (X). Any k̄-point x̄ → X lifting x yields a base change
isomorphism πN (X, x) ×k k̄ ∼= πN (X ×k k̄, x̄), where k ⊂ k̄ is given by
x̄ → x. Denoting by ρx̄ the fiber functor V

ρx̄−→ V |x̄ on CN (X ×k k̄), it
implies an isomorphism (X ×k k̄)ρx̄

∼= Xρx
×k k̄. Given those two parallel

descriptions of π̃x : X̃x → X and πρx
: Xρx

→ X in Grothendieck’s and
in Nori’s theories, together with the base change property of CN (X), one
deduces π1(X ×k k̄, x) ∼= πét(X ×k k̄, x)(k̄), where πét(X, x) is the quotient
of πN (X, x) obtained by considering the quotient prosystem of étale group
schemes (see [4, Remarks 3.2, 2)]). So in particular, if k has characteristic
zero, one has π1(X×k k̄, x) ∼= πN (X×k k̄, x)(k̄). We conclude that πρx̄ = π̃x̄.
So (1.2) has the factorization

X̃x̄

��

//

π̃x̄ ##G
GG

GG
GG

GG
G X ×k k̄

��
Xρx πρx

// X

(1.3)

(See Theorem 2.11 and Remarks 2.13). Summarizing, we see that
Grothendieck’s construction is very closed to a Tannaka construction, ex-
cept that his category ECov(X) does not have a k-structure. On the other
hand, the comparison of π1(X, x) with πN (X, x), aside of the assumptions
under which πN (X, x) is defined, that is X proper, reduced and strongly
connected, and x ∈ X(k), requests the extra assumption that k be alge-
braically closed. In particular, the sub-category ECov(k) of ECov(X) is not
seen by Nori’s construction, so the augmentation ε in (1.1) is not seen ei-
ther, and there is no influence of the Galois group of k. The construction
only yields a k-structure on π1(X×k k̄, x) under the assumption that x is a
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rational point. However, when this assumption is fulfilled, it yields a k-form
of the universal pro-finite étale covering which carries a rational pro-point.

The purpose of this article is to reconcile the two viewpoints, using
Deligne’s more evolved Tannaka formalism as developed in [2]. From now
on, we will restrict ourselves to the characteristic 0 case. We illustrate the
first idea on the simplest possible example X = x = Spec(k). Then cer-
tainly CN (X) is the trivial category, that is every object is isomorphic to
a direct sum of the trivial object, thus πN (X, x) = {1}. Let us fix x̄ → x

corresponding to the choice of an algebraic closure k ⊂ k̄. It defines the
fiber functor CN (X)

ρx̄−→ Veck̄ which assigns V |x̄ = V ⊗k k̄ to V . It is a non-
neutral fiber functor. It defines a groupoid scheme Aut⊗(ρx̄) over k, acting
transitively on x̄ via (t, s) : Aut⊗(ρx̄)→ x̄×k x̄. In fact Aut⊗(ρx̄) = x̄×k x̄

and Deligne’s Tannaka duality theorem [2, Théorème 1.12] asserts that the
trivial category CN (X) is equivalent to the representation category of the
trivial k-groupoid scheme x̄ ×k x̄ acting on x̄. We define (x̄ ×k x̄)s to be
x̄ ×k x̄ viewed as a k̄-scheme by means of the right projection s. Galois
theory then implies that the k̄-points of (x̄ ×k x̄)s form a pro-finite group
which is the Galois group of Gal(k̄/k) where the embedding k ⊂ k̄ corre-
sponds to x̄ → x. Thus the geometry here is trivial, but the arithmetic is
saved via the use of a non-neutral fiber functor. This is the starting point
of what we want to generalize.

In order to have a larger range of applicability to not necessarily proper
schemes, we extend in section 2 Nori’s definition to smooth schemes of
finite type X over k which have the property that the field k, which we
assume to be of characteristic 0, is exactly the field of constants of X,
that is k = H0

DR(X). In particular, it forces the augmentation ε in (1.1)
to be surjective. We define the category FConn(X) to be the category of
finite flat connections, that is of bundles V with a flat connection ∇ : V →
Ω1

X ⊗OX
V , such that (V,∇) is a sub-quotient connection of a Weil-finite

connection. The latter means that there are f, g ∈ N[T ], f 6= g so that
f((V,∇)) is isomorphic to g((V,∇)). The Hom-Sets are flat morphisms.
FConn(X) is a k-linear rigid tensor category (see Definitions 2.1 and 2.4).
Theorem 2.15 shows that if X is smooth proper, with k = H0(X,OX) of
characteristic 0, then the forgetful functor FConn(X)→ CN (X), (V,∇) 7→
V is an equivalence of k-linear abelian rigid tensor categories.

A fiber functor ρ : FConn(X)→ QCoh(S) in the quasi-coherent category
of a scheme S over k endows FConn(X) with a Tannaka structure. One
defines Π = Aut⊗(ρ) to be the groupoid scheme over k acting transitively
on S, with diagonal S-group scheme Π∆. The fiber functor ρ establishes

ANNALES DE L’INSTITUT FOURIER
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an equivalence FConn(X)
∼= ρ−−→ Rep(S : Π) ([2, Théorème 1.12]). Our first

central theorem says that one can construct a universal covering in this
abstract setting, associated to S and ρ, as a direct generalization of the
easily defined πρx : Xρx → X sketched in (1.3).

Theorem 1.1 (See precise statement in Theorem 2.7). — There is a
diagram of k-schemes

Xρ

pρ

����
��

��
��

��
��

��
�

sρ

��
πρ

��3
33

33
33

33
33

33
33

S×kX

p1
||xx

xx
xx

xx
x

p2
##F

FF
FF

FF
FF

S X

(1.4)

with the following properties.
1) sρ is a Π∆-principal bundle, that is

Xρ ×S×kX Xρ
∼= Xρ ×S Π∆.

2) R0(pρ)∗DR(Xρ/S) := R0(pρ)∗(Ω•Xρ/S) = OS .
3) For all objects N = (W,∇) in FConn(X), the connection

π∗ρN : π∗ρW → π∗ρW ⊗OXρ
Ω1

Xρ/S

relative to S is endowed with a functorial isomorphism with the rel-
ative connection

p∗ρρ(N) = (p−1
ρ ρ(N)⊗p−1

ρ OS
OXρ

, 1⊗ d)

which is generated by the relative flat sections p−1
ρ ρ(N).

4) One recovers the fiber functor ρ via Xρ by an isomorphism

ρ(N) ∼= R0(pρ)∗DR(Xρ/S, π∗ρN)

which is compatible with all morphisms in FConn(X). In particular,
the data in (1.4) are equivalent to the datum ρ (which defines Π).

Furthermore this construction is functorial in S. While applied to S =
X, ρ((V,∇)) = V , Xρ is nothing but Π with (pρ, πρ) = (t, s) (Defini-
tion 2.8, 2)). While applied to S = Spec(k̄), ρ((V,∇)) := ρx̄((V,∇)) = V |x̄
for a geometric point x̄→ X with residue field k̄, then πρx̄

is an étale pro-
finite covering, which will turn out to be Grothendieck’s universal pro-finite
étale covering. Let us be more precise.

Theorem 1.1 is proven by showing that s∗OΠ is a representation of the
groupoid scheme Π, by analyzing some of its properties, and by translating
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them via Tannaka duality. It invites one to consider the scheme Π consid-
ered as a S-scheme via s, which we denote by Πs. In case S = Spec(k̄), ρ =
ρx̄, we denote Aut⊗(ρx̄) by Π(X, x̄). We show

Theorem 1.2 (See Theorem 4.4). — The rational points Π(X, x̄)s(k̄)
carry a structure of a pro-finite group. One has an exact sequence of pro-
finite groups

1→ Π(X̄, x̄)(k̄)→ Π(X, x̄)s(k̄)→ (Spec(k̄)×k Spec(k̄))s(k̄)→ 1(1.5)

together with an identification of exact sequences of pro-finite groups

1 // Π(X̄, x̄)(k̄) //

=

��

Π(X, x̄)s(k̄)

=

��

// (Spec(k̄)×k Spec(k̄))s(k̄) //

=

��

1

1 // π1(X̄, x̄) // π1(X, x̄)
ε // Gal(k̄/k) // 1

(1.6)

A corollary is that πρx̄ : Xρx̄ → X is precisely the universal pro-finite
étale covering of X based at x̄ (see Corollary 4.5). One interesting con-
sequence of Theorem 1.2 is that it yields a Tannaka interpretation of
the existence of a splitting of the augmentation ε. Indeed, (1.5) does not
have to do with the choice of the category FConn(X). More generally, if
(t, s) : Π→ Spec(k̄)×k Spec(k̄) is a k-groupoid scheme acting transitively
upon Spec(k̄), then we show

Theorem 1.3 (See Theorem 3.2).

1) There exists a group structure on Πs(k̄) such that the map

(t, s)|Πs : Πs(k̄)→ (Spec(k̄)×k Spec(k̄))s(k̄) ∼= Gal(k̄/k)

is a group homomorphism.
2) Splittings of (t, s)|Πs

: Πs(k̄)→(Spec(k̄)×kSpec(k̄))s(k̄) ∼= Gal(k̄/k)
as group homomorphisms are in one to one correspondence with
splittings of (t, s) : Π → Spec(k̄) ×k Spec(k̄) as k-affine groupoid
scheme homomorphisms.

3) There is a one to one correspondence between neutral fiber functors
of Rep(k̄ : Π), up to natural equivalence, and splittings of (t, s) up
to an inner conjugation of Π given by an element of Π∆(k̄).

In particular we show that splittings of ε in (1.6) up to conjugation with
π1(X̄, x̄) are in one to one correspondence with neutral fiber functors of
FConn(X)→ Veck (see Corollary 4.6).

ANNALES DE L’INSTITUT FOURIER
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We now discuss an application. Grothendieck, in his letter to G. Faltings
dated June 27-th, 1983 [7], initiated a program to recognize hyperbolic al-
gebraic curves defined over function fields k over Q via the exact sequence
(1.1). His anabelian conjectures have essentially been proven, with the no-
table exception of the so-called section conjecture. It predicts that if X

is a smooth projective curve of genus > 2 defined over k of finite type
over Q, then conjugacy classes of sections of ε in (1.1) are in one to one
correspondence with rational points of X.

In fact, Grothendieck conjectures a precise correspondence also for affine
hyperbolic curves. If X is affine and hyperbolic, the correspondence is not
one-to one, there are many sections that correspond to a rational point at
infinity. More precisely, let X∧ be the smooth compactification of X, X̃∧

be the normalization of X∧ in X̃x̄:

X̃x̄
� � //

��

X̃∧

��
X

� � // X∧

(1.7)

Then the conjecture says that each section of ε defines a k-form of X̃∧

which carries a unique rational pro-point, which maps to a rational point
y of X∧, lying either on X or at infinity, i.e. on X∧ r X.

In view of our construction, the k-form and its rational pro-point map-
ping to y ∈ X is nothing but the pro-scheme Xρy

associated to the fiber
functor at y and the resulting rational pro-point.

Section 5 is devoted to the points at infinity. We use the tangential
(neutral) fiber functors η : FConn(X) → Veck on FConn(X) as defined by
Deligne [1, Section 15], and Katz [9, Section 2.4]. They factor through the
category of finite connections on the local field of a rational point at ∞,
and are defined by a tangent vector. The construction yields k-forms with
pro-points that descend to points at infinity.

Theorem 1.4 (See Theorem 5.2). — Let X/k be a smooth affine curve
over a characteristic 0 field k, and let y be a k-rational point at infinity.
Set X ′ := X ∪ {y}. Let η : FConn(X) → Veck be the neutral fiber functor
defined by a tangent vector at y. Fix a geometric point x̄→ X with residue
field k̄. Then the universal pro-finite étale covering X̃x̄ based at x̄ has a
k-structure Xη, i.e. X̃x̄

∼=k̄ Xη ×k k̄, with the property that the k-rational
point y lifts to a k-rational pro-point of the normalization (Xη)′ of X ′ in
k(Xη).

TOME 58 (2008), FASCICULE 7
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This gives an explicit description of the easy part of the conjecture formu-
lated in [7], page 8, by Grothendieck. So we can say that Tannaka methods,
which are purely algebraic, and involve neither the geometry of X nor the
arithmetic of k, can’t detect rational points on X. But they allow one, once
one has a rational point on X, to follow it in the pro-system which underlies
the Tannaka structure, in particular on Grothendieck’s universal covering.

They also allow to generalize in a natural way Grothendieck’s conjecture
to general fiber functors ρ : FConn(X) → QCoh(S). (See Remark 2.13 2).)
Theorem 1.1 2) says that ρ is always cohomological in the sense that there
is an isomorphic fiber functor which is cohomologically defined. Theorem
1.3 suggests to ask under which conditions on the geometry of X and the
arithmetic of k one may say that X has an S-point if and only if an S-
valued ρ exists. Further Theorem 1.1 allows one to ask for a generalization
to S-pro-points of Theorem 1.4.

Acknowledgements. — We thank Alexander Beilinson and Gerd Faltings
for clarifying discussions, for their interest and their encouragements. We
thank the referee for a thorough, accurate and helpful report.

2. Finite connections

In this section, we introduce the category of finite connections in the
spirit of Weil and follow essentially verbatim Nori’s developments in [11, I,
Section 2.3] for the main properties.

Definition 2.1. — Let X be a smooth scheme of finite type over a
field k of characteristic 0, with the property that

k = H0
DR(X) := H0(X,OX)d=0.

The category Conn(X) of flat connections has objects M = (V,∇) where V

is a vector bundle (i.e. a locally free coherent sheaf) and∇ : V → Ω1
X⊗OX

V

is a flat connection. The Hom-Sets are flat morphisms f : V → V ′, i.e.
morphisms of coherent sheaves which commute with the connection. The
rank of M is the rank of the underlying vector bundle V .

Throughout this section, we fix a scheme X as in Definition 2.1, except
in Proposition 2.14, where we relax the smoothness condition but request
the scheme to be proper.

Definition 2.2. — A k-linear abelian category is said to be locally
finite if the Hom-set of any two objects is a finite dimensional vector space

ANNALES DE L’INSTITUT FOURIER
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over k and each object has a decomposition series of finite length. Such a
category is called finite if it is spanned by an object, i.e. each object in the
category is isomorphic to a subquotient of a direct sum of copies of the
mentioned object.

Properties 2.3.
1) Standard addition, tensor product and exact sequences of connec-

tions endow Conn(X) with the structure of an abelian k-linear rigid
tensor category.

2) Conn(X) is locally finite.

Proof. — This is classical, see e.g. [9]). �

Definition 2.4. — FConn(X) is defined to be the full sub-category of
Conn(X) spanned by Weil-finite objects, where M is Weil-finite if there
are polynomials f, g ∈ N[T ], f 6= g, such that f(M) is isomorphic to g(M),
where Tn(M) := M⊗· · ·⊗M n-times and nT (M) := M⊕· · ·⊕M n-times.
Thus an object in FConn(X) is a sub-quotient in Conn(X) of a Weil-finite
object.

Properties 2.5.
1) An object M of Conn(X) is Weil-finite if and only if M∨ is Weil-

finite.
2) An object M in Conn(X) is Weil-finite if and only the collection of

all isomorphism classes of indecomposable objects in all the tensor
powers M⊗n, n ∈ N r {0}, is finite.

3) The full tensor sub-category 〈M〉, the objects of which are sub-
quotients of directs sums of tensor powers of M , is a finite tensor
category.

4) Let L ⊃ k be a finite field extension, we shall denote X ×k Spec(L)
by X ×k L for short. Denote by α : X ×k L → X the base change
morphism. Then α∗α∗M � M , resp. N ⊂ α∗α

∗N for every object
M in Conn(X ×k L) resp. for every N in Conn(X).

Proof of Properties 2.5. — For 1), f(M) ∼= g(M) if and only if f(M∨) ∼=
g(M∨). For 2), one argues as in [11, I, Lemma 3.1]. One introduces the naive
K ring KConn(X) which is spanned by isomorphism classes of objects M of
Conn(X) modulo the relation [M ] · [M ′] = [M⊗M ′] and [M ]+[M ′] = [M⊕
M ′]. Since in Conn(X) every object has a decomposition in a direct sum of
finitely many indecomposable objects, which is unique up to isomorphism,
KConn(X) is freely spanned by classes [M ] with M indecomposable. Then
the proof of 2) goes word by word as in loc. cit. Properties 2.3 2). Now 2)
implies 3) and 4) is obvious. �

TOME 58 (2008), FASCICULE 7
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We will show in the sequel that each object of FConn(X) is Weil-finite
using Tannaka duality.

We first recall some basic concepts of groupoid schemes. Our ongoing
reference is [2].

An affine groupoid scheme Π over k acting transitively over S is a k-
scheme equipped with a faithfully flat morphism (t, s) : Π −→ S ×k S

and

– the multiplication m : Π s×t
S

Π −→ Π, which is a morphism of S×k

S-schemes,
– the unit element morphism e : S −→ Π, which is a morphism of

S ×k S-schemes, where S is considered as an S ×k S-scheme by
means of the diagonal morphism,

– the inverse element morphism ι : Π −→ Π of S×k S-schemes, which
interchanges the morphisms t, s: t ◦ ι = s, s ◦ ι = t,

satisfying the following conditions:

m(m× Id) = m(Id×m),(2.1)

m(e× Id) = m(Id×e) = Id,

m(Id×ι) = e ◦ t, m(ι× Id) = e ◦ s.

One defines the diagonal group scheme Π∆ over S by the cartesian diagram

Π∆ //

��
�

Π

(t,s)

��
S

∆
// S ×k S

(2.2)

where ∆ : S → S ×k S is the diagonal embedding, and the S-scheme Πs

by

Πs = S − scheme Π s−→ S.(2.3)

For (b, a) : T → S ×k S, one defines the T -scheme Πb,a by the cartesian
diagram

Πb,a

��

//

�

Π

(t,s)

��
T

(b,a)
// S ×k S

(2.4)

ANNALES DE L’INSTITUT FOURIER
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For three T points a, b, c : T → S of S, the multiplication morphism m

yields the map

Πc,b ×T Πb,a → Πc,a.(2.5)

By definition, the (abstract) groupoid Π(T ) has for objects morphisms
a : T → S and for morphisms between a and b the set Πb,a(T ) of T -points
of Πb,a. The composition law is given by (2.5).

Moreover, the multiplication m induces an S ×k S-morphism

µ : Πs ×
S

Π∆ = Π s×
S

Π∆ → Π ×
S×kS

Π

by the following rule: for

T

a
��?

??
??

??
f // Π

s

��
S

T

a
  B

BB
BB

BB
B

g // Π∆

��
S

with t ◦ f = b : T → S, one has f ∈ Πba(T ), g ∈ Πaa(T ), thus one can
compose fg ∈ Πba(T ) (as morphisms in the groupoid Π(T )) and define

µ(f, g) = (f, fg).

One has

µ defines a principal bundle structure(2.6)

i.e. Πs ×S Π∆ ∼= Π×S×kS Π .

Indeed one has to check that µ is an isomorphism which is a local property
on S. In [5, Lemma 6.5] this fact was checked for the case S = Spec(K),
K ⊃ k a field, the proof can be easily extended for any k-algebras.

By definition, Πt,s is the fiber product Π ×S×kS Π, seen as a Π-scheme
via the first projection. Thus the identity morphism IdΠ : Π → Π can be
seen as a morphism between the two objects t, s : Π → S in the groupoid
Π(Π). This is the universal morphism. Let V be a quasi-coherent sheaf on
S. A representation χ of Π on V is a family of maps

χb,a : Πb,a(T ) −→ IsoT (a∗V → b∗V )(2.7)

for each (b, a) : T → S ×k S, which is compatible with the multiplication
(2.5) and the base change T ′ → T . Then χ is determined by the image of
IdΠ under χt,s

χt,s(IdΠ) : s∗V
∼=−→ t∗V.
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The category of quasi-coherent representations of Π on S is denoted by
Rep(S : Π). Each representation of Π is the union of its finite rank represen-
tations. That is Rep(S : Π) is the ind-category of the category Repf (S : Π)
of representations on coherent sheaves on S. The category Repf (S : Π) is
an abelian rigid tensor category. Its unit object is the trivial representation
of Π on OS . On the other hand, since Π is faithfully flat over S ×k S, one
has

EndRep(S:Π)(OS) = k.(2.8)

Thus Repf (S : Π) is a k-linear abelian rigid tensor category.
We notice that those notations apply in particular to Π = S ×k S, the

trivial groupoid acting on S, and one has

Veck
∼= Rep(S : S ×k S).(2.9)

In this case, (S ×k S)∆ = S via the diagonal embedding, and (S ×k S)s

is the scheme S ×k S viewed as a S-scheme via the second projection. In
order not to confuse notations, we denote the left projection S ×k S → S

by p1 and by p2 the right one. Thus p1 = t, p2 = s.

Theorem 2.6. — Let Π be an affine groupoid scheme over k acting
transitively on a k-scheme S.

1) The formula (2.5) defines p2∗OS×kS and s∗OΠ as objects in
Rep(S : Π).

2) p2∗OS×kS and s∗OΠ are algebra objects in Rep(S : Π).
3) The inclusion p2∗OS×kS → s∗OΠ of quasi-coherent sheaves on S

yields a p2∗OS×kS-algebra structure on s∗OΠ.
4) The maximal trivial sub-object of s∗OΠ in Rep(S : Π) is the sub-

object p2∗OS×kS .

Proof. — We first prove 1). Fixing f ∈ Πb,a(T ), (2.5) yields a morphism
Πbc → Πac and consequently an OT -algebra homomorphism a∗s∗OΠ →
b∗s∗OΠ. It is easily checked that this yields a representation of Π on s∗OΠ.
In particular, the groupoid S ×k S has a representation in p2∗OS×kS . The
homomorphism of groupoid schemes (t, s) : Π −→ S ×k S yields a repre-
sentation of Π in p2∗OS×kS , which is in fact trivial. For 2), the algebra
structure stemming from the structure sheaves is compatible with the Π-
action. Then 3) is trivial.

As for 4), one notices that this property is local with respect to S, thus
we can assume that S = Spec R, where R is a k-algebra. Then OΠ is a
k-Hopf algebroid acting on R. One has an isomorphism of categories

Rep(S : Π) ∼= Comod(R,OΠ)(2.10)
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where Comod(R,OΠ) denotes the category of right OΠ-comodules in ModR.
Under this isomorphism, the representation of Π in s∗OΠ corresponds to the
coaction of OΠ on itself by means of the coproduct ∆ : OΠ −→ OΠ s⊗t

R
OΠ.

For M ∈ Rep(S : Π), one has the natural isomorphism

HomRep(S:Π)(M, s∗OΠ) ∼= HomR(M,R), f 7→ e ◦ f(2.11)

where e : OΠ → R is the unit element morphism. Indeed, the inverse to
this map is given by the coaction of δ : M →M ⊗t

R
OΠ as follows(

ϕ : M → R
)
7→

(
(ϕ⊗ Id)δ : M →M ⊗t OΠ → OΠ

)
.(2.12)

In particular, if we take M = R, the trivial representation of Π, then we
see that

HomComod(R:OΠ)(R,OΠ) ∼= R.(2.13)

Notice that in Comod(R,OΠ), one has HomComod(R,OΠ)(R,R) ∼= k. We
conclude that the maximal trivial sub-comodule of OΠ is R ⊗k R. This
finishes the proof. �

In order to apply the theory of Tannaka duality as developed by Deligne
in [2], one needs a fiber functor. Let S be a scheme defined over k and let

ρ : FConn(X)→ QCoh(S)(2.14)

be a fiber functor with values in the category of quasi-coherent sheaves over
S, as in [2, Section 1]. Such a ρ exists. For example, a very tautological one
is provided by S = X, ρ = τ (for tautological):

FConn(X)→ QCoh(X), (V,∇) 7→ V.

Then the functor from S×k S-schemes to Sets, which assigns to any (b, a) :
T → S×k S the set of natural isomorphisms Iso⊗T (a∗ρ, b∗ρ) of fiber functors
to QCoh(T ), is representable by the affine groupoid scheme

(t, s) : Π := Aut⊗(ρ)→ S ×k S

defined over k and acting transitively over S ([2, Théorème 1.12]):

Iso⊗T (a∗ρ, b∗ρ) ∼= MorS×kS(T,Π).(2.15)

Tannaka duality asserts in particular that ρ induces an equivalence between
FConn(X) and the category Repf (S : Π) of representations of Π in coherent
sheaves over S. This equivalence extends to an equivalence between the
ind-category Ind-FConn(X) of connections which are union of finite sub-
connections and the category Rep(S : Π) of representations of Π in quasi-
coherent sheaves on S.
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It follows from (2.15) for T = Π, (b, a) = (t, s) that there is an isomorphism

s∗ρ ∼= t∗ρ.(2.16)

We now translate via Tannaka duality the assertions of Theorem 2.6.

Theorem 2.7. — Let X be a smooth scheme of finite type defined over
a field k of characteristic 0. Let S be a k-scheme and ρ : FConn(X) →
QCoh(S) be a fiber functor. Let Π = Aut⊗(ρ) be the corresponding Tan-
naka k-groupoid scheme acting on S. Then there is a diagram of k-schemes

Xρ

pρ

����
��

��
��

��
��

��
�

sρ

��
πρ

��3
33

33
33

33
33

33
33

S×kX

p1
||xx

xx
xx

xx
x

p2
##F

FF
FF

FF
FF

S X

(2.17)

with the following properties.

1) sρ is a Π∆-principal bundle, that is

Xρ ×S×kX Xρ
∼= Xρ ×S Π∆.

2) R0(pρ)∗DR(Xρ/S) := R0(pρ)∗(Ω•Xρ/S) = OS .
3) For all objects N = (W,∇) in FConn(X), the connection

π∗ρN : π∗ρW → π∗ρW ⊗OXρ
Ω1

Xρ/S

relative to S is endowed with an isomorphism with the relative
connection

p∗ρρ(N) = (p−1
ρ ρ(N)⊗p−1

ρ OS
OXρ , Id⊗dXρ/S)

which is generated by the relative flat sections p−1
ρ ρ(N). This iso-

morphism is compatible with all morphisms in FConn(X).
4) One recovers the fiber functor ρ via Xρ by an isomorphism

ρ(N) ∼= R0(pρ)∗DR(Xρ/S, π∗ρN)

which is compatible with all morphisms in FConn(X). In particular,
the data in (2.17) are equivalent to the datum ρ (which defines Π).

5) This construction is compatible with base change: if u : T → S is
a morphism of k-schemes, and u∗ρ : FConn(X) → QCoh(T ) is the
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composite fiber functor, then one has a cartesian diagram

Xu∗ρ //

su∗ρ

��
�

Xρ

sρ

��
T ×k X

u×1
// S ×k X

(2.18)

which makes 1), 2), 3) functorial.

Proof. — We define A = (B,D) ⊂ M = (V,∇) to be the objects in
Ind-FConn(X) which are mapped by ρ to p2∗OS×kS ⊂ s∗OΠ defined in
Theorem 2.6. By construction, B = p2∗OS×kX , where p2 : S ×k X → X.
Since p2∗OS×kS is an OS-algebra with trivial action of Π, it follows that
A, as an object in Ind-FConn(X), is trivial and is an algebra over (OX , d).
The algebra structure forces via the Leibniz formula the connection D to
be of the form p2∗(D′), where D′ is a relative connection on S ×k X/S.
The inclusion (OX , d) ⊂ (B,D) implies that D′(1) = d(1) = 0, hence
D′ = dS×kX/S . Thus we have

SpecX B = S ×k X, B = (p2)∗OS×kX ,(2.19)

D = (p2)∗(dS×kX/S : OS×kX −→ Ω1
S×kX/S)

ρ((p2)∗(OS×kX , dS×kX/S)) = (p2)∗OS×kS .

We now apply to M ⊃ A a similar argument. Since s∗OΠ is a p2∗OS×kS-
algebra as a representation of Π, M is an A-algebra object in Ind-FConn(X).
The geometric information yields that V is a B-algebra. Thus, setting Xρ =
SpecX V , we obtain a morphism sρ : Xρ → S ×k X. The algebra structure
in Ind-FConn(X) forces ∇ to be coming from a relative connection ∇′ :
OXρ → Ω1

Xρ/S . Moreover the inclusion A ⊂ M implies ∇′(1) = D(1) = 0,
thus ∇′ = dXρ/S . Summarizing, Theorem 2.6, 3) translates as follows

Xρ = SpecX(V )

πρ

''PPPPPPPPPPPPP

sρ // S ×k X

p2

��
X

(2.20)

V = (πρ)∗OXρ
, ∇ = (πρ)∗(dXρ/S : OXρ −→ Ω1

Xρ/S),

ρ((πρ)∗(OXρ , dXρ/S)) = s∗OΠ.

Now Theorem 2.6, 1) together with (2.6) shows 1). To show 2) we first
notice that Ind-FConn(X) is a full sub-category of the category of flat
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connections on X. Therefore, by Theorem 2.6 4), (B,D) is the maxi-
mal trivial sub-connection of (V,∇) in the latter category. So one ob-
tains that H0

DR(X, M) = B, or said differently, R0(pρ)∗DR(Xρ/S) :=
R0(pρ)∗(Ω•Xρ/S) = OS .

We prove 3). For N in FConn(X), one has s∗ρ(N) ∼= t∗ρ(N) by (2.16).
Since ρ(N) is locally free ([2, 1.6]), projection formula applied to s yields
ρ(N)⊗OS

s∗OΠ
∼= s∗t

∗ρ(N) as representations of Π. The Tannaka dual of
the left hand side is (πρ∗π

∗
ρN while the Tannaka dual of the right hand

side is (πρ)∗(p−1
ρ ρ(N)⊗p−1

ρ OS
OXρ , 1⊗ dXρ/S). This shows 3).

For Claim 4), we just notice that by projection formula applied to the
locally free bundle ρ(N) and the connection π∗ρN relative to S, one has

R0(pρ)∗DR((p−1
ρ ρ(N)⊗p−1

ρ OS
OXρ , 1⊗ dXρ/S))

= ρ(N)⊗OS
R0(pρ)∗DR(OXρ , dXρ/S)

By 2), this expression is equal to ρ(N), while by 3), it is isomorphic to
R0(pρ)∗DR(Xρ/S, π∗ρN). This shows 4). Finally, the functoriality in 5) is
the translation of the base change property [2, (3.5.1)]. �

Definition 2.8.

1) We fix an embedding k ⊂ k̄ which defines Spec(k̄) as a k-scheme.
Let ρ : FConn(X)→ Veck̄ be a fiber functor. Then πρ : Xρ → X in
(2.13) has the factorization

Xρ

πρ

##H
HHHHHHHH

sρ // k̄ ×k X

p2

��
X

(2.21)

where sρ is a principal bundle over X under the k̄-pro-finite group
scheme Π∆. In particular it is a pro-finite étale covering. Thus πρ is
an (infinite) étale covering of X which we call the universal covering
of X associated to ρ.

2) Let ρ = τ be the tautological functor which assigns to a connection
(V,∇) its underlying bundle V . Then by definition(

Xτ
sτ−→ X ×s X

)
=

(
Π

(t,s)−−−→ X ×k X
)
,

with Π = Aut⊗(τ). Since this groupoid plays a special rôle, we
denote it by Π(X, τ) and call it the total fundamental groupoid
scheme of X.
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Proposition 2.9. — Let ρ : FConn(X) −→ Veck be a neutral fiber
functor. Then for all finite field extensions L ⊃ k, ρ lifts uniquely to ρL :
FConn(X ×k L)→ VecL.

Proof. — Since ρ is a neutral functor, Π = Aut⊗(ρ) is a group scheme
over k. Tannaka duality reads FConn(X)

ρ−→ Rep(Π). By Property 2.5,
4), FConn(X ×k L) is the L-base change of FConn(X) in the sense of [8,
Corollary 5.6]. So Tannaka duality lifts to the duality ρL : FConn(X) →
RepL(Π×k L) which fits in the following commutative diagram

FConn(X)
ρ

∼=
//

��

Repk(Π)

��
FConn(X ×k L)

ρL

// RepL(Π×k L).

(2.22)

We define the functor ρL as follows. Let π be the projection X ×k L →
X. Then for any connection N ∈ FConn(X ×k L) one has the canoni-
cal projection π∗π∗N → N of connections in FConn(X ×k L). Conse-
quently, by considering the dual connection N∨, one obtains an injection
N → (π∗π∗N∨)∨ ∼= π∗(π∗N∨)∨. Thus N is uniquely determined by a mor-
phism fN ∈ H0

DR(X ×k L, π∗((π∗N)∨ ⊗ (π∗N∨)∨)). Via the base change
isomorphism

H0
DR(X ×k L, π∗M)

∼=−→ H0
DR(X, M)⊗k L,(2.23)

one can interpret fN as an element of

H0
DR(X, (π∗N)∨ ⊗ (π∗N∨)∨)⊗k L ∼= HomFConn(X) π∗N, (π∗N∨)∨)⊗k L

We define now the functor ρL on objects of FConn(X ×k L) of the form
π∗M by setting ρL(π∗M) = ρ(M) ⊗k L and (2.23) allows us to define ρL

on morphisms from π∗M to π∗M ′.

Next, we extend ρL to an arbitrary object N by defining ρL(N) to be
the image of ρL(fN ) in ρL((π∗N∨)∨).

As for unicity, if ρ′ is another lifting of ρ, then it has to agree on fN with
ρL, thus has to agree with ρL for all N . �

Notation 2.10. — With notations as in Proposition 2.9, we denote by
ρL the unique lifting of ρ to X ×k L and by ρ ×k k̄ the induced lifting on
X ×k k̄, once an algebraic closure k ⊂ k̄ of k has been fixed.

Theorem 2.11. — Let X be a smooth scheme of finite type defined
over a field k of characteristic 0. We fix an embedding k ⊂ k̄ which
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defines Spec(k̄) as a k-scheme. Assume there is a neutral fiber functor
ρ : FConn(X)→ Veck. Then one has an isomorphism

Xρ ×k k̄

sρ×kk̄ ''PPPPPPPPPPPP

∼= // Xρ×kk̄

sρ×kk̄wwooooooooooo

X ×k k̄ = k̄ ×k X

(2.24)

In particular, this yields a cartesian diagram

Xρ×kk̄
∼= k̄ ×k Xρ

��

//

�

k̄ ×k X

p2

��
Xρ sρ

// X

.(2.25)

Proof. — If Π = Aut⊗(ρ) is as in the proof of Proposition 2.9, then by
construction, Π×k k̄ = Aut⊗(ρ)×k k̄. Thus base change as in Theorem 2.7,
5) implies the wished base change property for Xρ. �

We now come back to the converse of Properties 2.5, 3).

Corollary 2.12. — Let X be as in Definition 2.1. Then FConn(X) is a
semi-simple category. Consequently any object of FConn(X) is Weil-finite.

Proof. — We have to show that an exact sequence ε : 0 → M → P →
N → 0 splits, or equivalently, that the corresponding cohomology class in
H1

DR(X, N∨⊗M), also denoted by ε, vanishes. Since de Rham cohomology
fulfills base change, ε vanishes if and only if ε⊗k k̄ vanishes in H1

DR(X ×k

k̄, N∨ ⊗ M). Thus we may assume that k = k̄. Then we can find a k-
rational point x ∈ X(k) and FConn(X) is a (neutral) Tannaka category
with respect to the fiber functor ρx((V,∇)) = V |x. The exact sequence
ε : 0→M → P → N → 0 lies in the category 〈M ⊕N ⊕P 〉, which is finite
by Properties 2.5, 3). Hence its Tannaka group H is a finite group scheme
over k̄, and one has a surjective factorization

Xρ // //

πρ
!!C

CC
CC

CC
C

XH

πH

��
X

(2.26)

where πH is a principal bundle under H. As π∗H is injective on de Rham
cohomology, we are reduced to the case where N = M = (OX , d), P ∼=
(OX , d)⊕ (OX , d). Then necessarily ε splits. �
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Remarks 2.13.
1) The notations are as in Theorem 2.7. Assume that ρ is a neutral

fiber functor. Then Π = Aut⊗(ρ) is an affine pro-finite k-group
scheme, S = Spec(k) and by definition s∗OΠ = k[Π]. Then (2.20)
yields in particular

ρ((πρ)∗(OXρ , dXρ/k)) = k[Π].(2.27)

Let us assume that ρ = ρx, where x ∈ X(k) and ρx((V,∇)) = V |x.
Then (2.27) reads

(πρx)∗(OXρx
)|x = k[Π].(2.28)

Here the k-structure on the k-group scheme Π is via the residue
field k of x. Thus in particular,

1 ∈ Π(k) = π−1
ρx

(x)(k) ⊂ Xρx(k)(2.29)

and the rational point x of X lifts all the way up to the universal
covering of X associated to ρx.

2) Theorem 2.7, 4) says in loose terms that all fiber functors of
FConn(X) are cohomological, as they are canonically isomorphic
to a 0-th relative de Rham cohomology. On the other hand, there
are not geometric in the sense that they do not come from ra-
tional points of X or of some compactification (for the latter, see
discussion in section 5). A simple example is provided by a smooth
projective rational curve defined over a number field k, and without
any rational point. Then FConn(X) is trivial, thus has the neutral
fiber functor M = (V,∇) 7→ H0

DR(X, V ). Yet there are no rational
points anywhere around.

Recall the definition of Nori’s category of Nori finite bundles ([11, Chap-
ter II]). Let X be a proper reduced scheme defined over a perfect field k.
Assume X is connected in the sense that H0(X,OX) = k. Then the cat-
egory CN (X) of Nori finite bundles is the full sub-category of the quasi-
coherent category QCoh(X) consisting of bundles which in QCoh(X) are
sub-quotients of Weil-finite bundles, where a bundle is Weil-finite when
there are polynomials f, g ∈ N[T ], f 6= g so that f(M) is isomorphic to
g(M).

Let ω : CN (X) −→ QCoh(X) be a fiber functor, where S is a scheme
over k. Then one can redo word by word the whole construction of Theo-
rem 2.7 with (FConn(X), ρ) replaced by (CN (X), ω), as it goes purely via
Tannaka duality. We denote by ΠN = Aut⊗(ω) the k-groupoid scheme
acting transitively on S. One obtains the following.
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Proposition 2.14. — Let X be a connected proper reduced scheme
of finite type over a perfect field k. Let ω be a fiber functor CN (X) −→
QCoh(S) where S is a k-scheme and let ΠN = Aut⊗(ω) be the correspond-
ing Tannaka groupoid scheme acting on S. Then there is a diagram of
k-schemes

XN
ω

pN
ω

����
��

��
��

��
��

��
�

sNω
��

πN
ω

��3
33

33
33

33
33

33
33

S×kX

p1
||xx

xx
xx

xx
x

p2
##F

FF
FF

FF
FF

S X

(2.30)

with the following properties.
1’) sN

ω is a (ΠN )∆-principal bundle, that is

XN
ω ×S×kX XN

ω
∼= XN

ω ×S (ΠN )∆.

2’) R0(pN
ω )∗(OXN

ω
) = OS .

3’) For all objects V in CN (X), the bundle (πN
ω )∗V is endowed with an

isomorphism with the bundle (pN
ω )∗ω(V ) which is compatible with

all morphisms in CN (X).
4’) One recovers the fiber functor ω via XN

ρ by an isomorphism

ω(M) ∼= R0(pN
ω )∗(Xω/S, π∗ωM)

which is compatible with all morphisms in CN (X). In particular,
the data in (2.30) are equivalent to the datum ω (which defines
ΠN ).

5’) This construction is compatible with base change: if u : T → S

is a morphism of k-schemes, and u∗ω : CN (X) → QCoh(T ) is the
composite fiber functor, then one has a cartesian diagram

XN
u∗ω

//

sN
u∗ω

��
�

XN
ω

sN
ω

��
T ×k X

u×1
// S ×k X

(2.31)

which make 1), 2), 3) functorial.
6’) (see Definition 2.8, 2). If ω is the tautological fiber functor ι defined

by ι(V ) = V , then(
XN

ι
sτ−→ X ×s X

)
=

(
ΠN (t,s)−−−→ X ×k X

)
.
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Theorem 2.15. — Let X be a smooth proper scheme of finite type
over a field k of characteristic 0 with k = H0(X,OX). Then the functor
F : FConn(X) → CN (X), F ((V,∇)) = V is an equivalence of Tannaka
categories.

Proof. — Since both categories FConn(X) and CN (X) satisfy the base
change property in the sense of Property 2.5, 4), we may assume that k = k̄.

Let V be a finite bundle, we want to associate to it a connection ∇V , such
that (V,∇V ) is a finite connection. Denote by T the full tensor sub-category
of CN (X) generated by V . It is a finite category. We apply the construction
in Proposition 2.14 to ω = ι : T −→ QCoh(X), defined by ι(V ) = V . Then
(2.30) reads

XT = ΠT

t

����
��

��
��

��
��

��
��

��
s

��7
77

77
77

77
77

77
77

7

X×kX

p1
zzuuu

uuu
uuu

u

p2
$$II

III
III

II

X X

(2.32)

where t, s are the structure morphisms. The scheme XT is a principal bun-
dle over X ×k X under the finite X-group scheme (ΠT )∆. For an object V

in T , 3’) becomes a functorial isomorphism

t∗V ∼= s∗V.(2.33)

Let drel denote the relative differential OXT → Ω1
XT

/s∗Ω1
X on XT /X with

respect to the morphism s. Then the bundle s∗V carries the canonical
connection

s∗V = s−1V ⊗s−1OX
OXT

IdV ⊗drel−−−−−−→ s−1V ⊗s−1OX
(Ω1

XT
/s∗Ω1

X).(2.34)

Then (2.33) implies that (2.34) can be rewritten as

t∗V
IdV ⊗drel−−−−−−→ t∗(V )⊗OXT

t∗(Ω1
X).(2.35)

Applying R0t∗ to (2.35), the property 2’) together with projection formula
implies that one obtains a connection

∇V := R0t∗(IdV ⊗drel) : V → V ⊗OX
Ω1

X .(2.36)

Integrability of IdV ⊗drel implies integrability of ∇V . The compatibility of
IdV ⊗drel with morphisms in CN (X) implies the compatibility of ∇V with
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morphisms in CN (X) as well. We conclude that ∇V defines a functor

CN (X)→ Conn(X), V 7→ (V,∇V ).(2.37)

It remains to show that (V,∇V ) is in FConn(X). To this aim, we fix a
k-rational point x : Spec(k) → X and consider the restriction of (2.32)
to XT ,x → X ×k x, where XT ,x = s−1x. The restriction of t to XT ,x

will be denoted by tx : XT ,x → X. This is a principal bundle under the
finite k-group scheme (Πτ )∆|x, the fiber of (Πτ )∆ → X above x. Since
the connection IdV ⊗drel in (2.34), or equivalently (2.35) is relative to the
X-factor on the right, we can restrict it to XT ,x to obtain a connection

(IdV ⊗drel)|XT ,x
: t∗xV

IdV ⊗drel−−−−−−→ t∗x(V )⊗OXT ,x
t∗x(Ω1

X).

Since t∗V was generated by the relatively flat sections s−1V of IdV ⊗drel,
t∗xV is generated by the relative flat sections V |x of (IdV ⊗drel)|XT ,x

. On
the other hand, by construction

tx
∗(V,∇V ) = (IdV ⊗drel)|XT ,x

.(2.38)

Thus (V,∇V ) is trivializable when pulled back to the principal bundle
tx : XT ,x → X under the finite group scheme (Πτ )∆|x. Hence (V,∇V ) is
a sub-connection of a direct sum of copies of the connection (W,∇W ) :=
(tx)∗(OXT ,x

, drel), which is known to be finite as it fulfills the equation

(W,∇W )⊗2 ∼= (W,∇W )⊕rankW .(2.39)

Hence (V,∇) is finite. We conclude that (2.37) has image in FConn(X).
Since the composite functor

FConn(X) F ↪→−−−→ CN (X)
(2.37) ↪→−−−−−−→ FConn(X)(2.40)

is the identity, and both F and (2.37) are full. This finishes the proof. �

3. Splitting of groupoid schemes

Notation 3.1. — Throughout this section, we will use the following no-
tations. k is a field of characteristic 0, endowed with an algebraic clo-
sure k̄ ⊃ k. C is an abelian k-linear rigid tensor category, endowed with a
fiber functor ρ : C → Veck̄. By [2, Théorème 1.12], the groupoid scheme
Π = Aut⊗(ρ) over k, acting on Spec(k̄), via (t, s) : Π→ Spec(k̄)×kSpec(k̄),
is affine and acts transitively. C is equivalent via the fiber functor to the
category of finite dimensional representations of Π:

C ρ ∼=−−→ Repf (Spec(k̄) : Π).(3.1)
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As in (2.3), we denote by Πs the scheme Π viewed as a k̄-scheme via the
projection s : Π→ Spec(k̄). So

Πs(k̄) =
{

Spec(k̄) //

Id $$I
IIIIIIII

Π

s

��

Spec(k̄)
}

.

(3.2)

For C the trivial category, the objects of which being sums of finitely many
copies of the unit object, Π is the groupoid scheme Spec(k̄)×kSpec(k̄) while
Πs(k̄) is identified via Galois theory with the pro-finite group Gal(k̄/k).

Theorem 3.2.

1) There exists a group structure on Πs(k̄) such that the map

(t, s)|Πs
: Πs(k̄)→ (Spec(k̄)×k Spec(k̄))s(k̄) ∼= Gal(k̄/k)

is a group homomorphism, the kernel of which is Π∆(k̄).
2) Splittings of

(t, s)|Πs : Πs(k̄)→ (Spec(k̄)×k Spec(k̄))s(k̄) ∼= Gal(k̄/k)

as group homomorphisms are in one to one correspondence with
splittings of (t, s) : Π → Spec(k̄) ×k Spec(k̄) as k-affine groupoid
scheme homomorphisms.

3) There is a one to one correspondence between neutral fiber functors
of C, up to natural equivalence, and splittings of (t, s) up to an inner
conjugation of Π given by an element of Π∆(k̄).

Proof. — Let θ ∈ Πs(k̄), set γ = tθ : Spec(k̄) θ→ Πs
t→ Spec(k̄). As the

morphisms are all over Spec(k), γ is an element of Gal(k̄/k). By definition,
θ is a tensor isomorphism between ρ and γ∗(ρ), where γ∗(ρ) is the Spec(k̄)-
valued fiber functor on C which is the composite of ρ : C → Veck̄ with
γ∗ : Veck̄ → Veck̄, V 7→ V ⊗γ k̄:

ρ
θ ∼=−−→ γ∗ ◦ ρ.(3.3)

Thus given θ′ with image γ′, the group structure is simply given by the
compositum

θ · θ′ : ρ
θ′ ∼=−−−→ (γ′)∗ ◦ ρ

(γ′)∗θ∼=−−−−−→ (γ′)∗ ◦ γ∗ ◦ ρ = (γ ◦ γ′)∗ ◦ ρ.(3.4)

The inverse to θ is γ∗(θ−1). This shows 1).
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Assume that one has a splitting σs : Gal(k̄/k) → Πs(k̄) of the map
(t, s)|Πs(k̄) : Πs(k̄)→ Gal(k̄/k). This means that to any γ in Gal(k̄/k), one
assigns a map σs(γ) : Spec(k̄)→ Πs(k̄), such that

σs(γ) · σs(γ′) = σs(γ ◦ γ′); t(σ(γ)) = γ.

As in the discussion above, σs(γ) defines a natural isomorphism σs(γ) :
ρ → ρ⊗γ k̄. For a k̄-vector space V we identify V ⊗γ k̄ with V by setting
v ⊗γ a 7→ vγ(a). Consequently σs(γ) yields a natural action of Gal(k̄/k)
on ρ:

γ : ρ
σs(γ)−→ ρ⊗γ k̄ ∼= ρ, γ ∈ Gal(k̄/k).(3.5)

Here “natural action” means that it commutes with morphism in C. Galois
theory applied to the values of the fiber functor ρ implies that there exists
a k-form ρ0 for ρ: ρ = ρ0 ⊗k k̄. Now the Tannaka construction of Π from
ρ [2, Section 4.7] tells us that there exists a homomorphism of groupoid
schemes acting on Spec(k̄): Π −→ Spec(k̄)×k Spec(k̄). The converse claim
is trivial. This finishes the proof of 2).

We turn now to the proof of 3). Notice that the structure map (t, s)
considered as a homomorphism of groupoid schemes corresponds through
Tannaka duality to the tautological fully faithful functor β : Vecf

k → C,
V 7→ V ⊗k I, which has the property that ρ ◦ β is the base change τ :
Vecf

k → Veck̄, V 7→ V ⊗k k̄. Here Vecf
k means the category of finite dimen-

sional k-vector spaces. (See [3, Proof of Theorem 2.11]). Then splittings of
(t, s) as homomorphisms of k-groupoid schemes acting on Spec(k̄) are in
one to one correspondence with splittings σ of the functor β which are com-
patible with τ and ρ. This means one has a functor σ : C → Vecf

k such that
σ ◦ β = Id, together with an isomorphism of tensor functor d : τ ◦ σ → ρ.
So the following diagram

Vecf
k

τ
""E

EE
EE

EE
E

C

ρ
~~~~

~~
~~

~~
~

σoo

Veck̄

commutes up to d.
By [2, Proposition 8.11], the isomorphism functor Iso⊗(ρ, τ ◦ σ) is rep-

resentable by a torsor over Spec(k̄) under the k̄-group scheme Π∆. Thus,
through Tannaka duality, neutral fiber functors of C are in one to one cor-
respondence with splittings to (t, s) up to an inner conjugation of Π given
by an element of Π∆(k̄). This finishes the proof of 3). �
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4. Grothendieck’s arithmetic fundamental group

For a scheme X defined over a field k Grothendieck introduces in [6,
Section 5] the category ECov(X) of finite étale coverings π : Y → X, with
Hom-Sets being X-morphisms. The choice of a geometric point x̄ of X de-
fines a fiber functor π 7→ π−1(x̄) with value in the category of finite sets.
The automorphism group of this functor is called the arithmetic funda-
mental group of X with base point x̄ and is denoted by π1(X, x̄). It is an
abstract group, endowed with the pro-finite topology stemming from all
its finite quotients. The main theorem claims an equivalence between finite
sets with continuous π1(X, x̄)-action and finite étale coverings of X. The
equivalence also extends to an equivalence between pro-finite sets with con-
tinuous π1(X, x̄)-action and pro-finite étale coverings of X. In particular,
the action of π1(X, x̄) on itself via translations defines the universal pro-
finite étale covering of X based at x̄. It will be denoted by π̃x̄ : X̃x̄ → X.
By definition, π̃−1

x̄ (x̄) = π1(X, x̄).
This section is devoted to the comparison between Grothendieck’s arith-

metic fundamental group and our fundamental groupoid scheme, as well
as between the universal pro-finite étale covering and a special case of the
covering constructed in Theorem 2.7.

Notation 4.1. — In this section, X is again a smooth scheme of finite
type over a field k of characteristic 0, with the property k = H0

DR(X). For
a fiber functor ρ of FConn(X) we denote by

Π(X, ρ) = Aut⊗(ρ)

the corresponding Tannaka k-groupoid scheme. (As compared to the no-
tations of section 2 where we simply used the notation Π, we empha-
size here ρ). For a geometric point x̄ : Spec(k̄) → X, we denote by
ρx̄ : FConn(X) → Veck̄ the fiber functor that assigns to a connection the
fiber of the underlying bundle at x̄. We simplify the notation by setting

Π(X, x̄) := Π(X, ρx̄).

We call this k-groupoid scheme acting on Spec(k̄) the fundamental groupoid
scheme of X with base point x̄.
Recall that the embedding k ⊂ k̄ here is defined by the residue field of x̄.
Let L be a finite field extension of k in k̄. We define the L-base change
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Π(X, x̄)L of Π(X, x̄) by the following cartesian product

Π(X, x̄)L

�

q //

��

Π(X, x̄)

��
Spec L

∆
// Spec(L)×k Spec(L)

where the morphism Π(X, x̄) → Spec(L) ×k Spec(L) is the composition
of (t, s) with the projection Spec(k̄) ×k Spec(k̄) → Spec(L) ×k Spec(L).
Then Π(X, x̄)L is an L-groupoid scheme acting on Spec(k̄) and we have
the following commutative diagram

Π(X, x̄)L
//

(t,s)

��

Π(X, x̄)

(t,s)

��

//

(t,s)

��

Spec(L)×k Spec(L)

Id

��
Spec(k̄)×L Spec(k̄) // Spec(k̄)×k Spec(k̄) // Spec(L)×k Spec(L)

(4.1)

which is an exact sequence of groupoid schemes in the sense of [8].

Lemma 4.2. — For all finite extensions L ⊃ k with L ⊂ k̄, one has a
canonical isomorphism

Π(X ×k L, x̄) ∼= Π(X, x̄)L

which implies that Π(X ×k k̄, x̄) ∼= Π(X, x̄)∆. Consequently the following
diagram is an exact sequence of groupoid schemes

Π(X ×k k̄, x̄)

��

// Π(X, x̄)

(t,s)

��

// Spec(k̄)×k Spec(k̄)

Id

��
Spec(k̄)

∆
// Spec(k̄)×k Spec(k̄)

Id
// Spec(k̄)×k Spec(k̄),

(4.2)

where ∆ is the diagonal embedding.

Proof. — We apply the base change property 2.5, 4) and [8, Corol-
lary 5.11] to obtain Π(X ×k L, x̄) ∼= Π(X, x̄)L. Taking the limit on all L,
one obtains Π(X ×k k̄, x̄) ∼= Π(X ×k k̄, x̄)∆. �

In the sequel, we use the simpler notation X̄ := X ×k k̄.
Applying the construction of Theorem 2.7 to the category FConn(X̄)

equipped with the fiber functor at x̄, ones obtains an étale cover

πρx̄ : (X̄)ρx̄ −→ X̄(4.3)
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Lemma 4.3. — The covering πρx̄ : (X̄)ρx̄ −→ X̄ is the universal pro-
finite étale covering π̃x̄ : (̃X̄)x̄ → X̄ based at x̄. In particular, one has the
identification κ̄ : Π(X̄, x̄)(k̄) =−→ π1(X̄, x̄) which decomposes as

κ̄ : Π(X̄, x̄)(k̄) = π−1
ρx̄

(x̄) = π̃−1
x̄ (x̄) = π1(X̄, x̄).(4.4)

Proof. — Since X̄ is defined over an algebraically closed field k̄, its uni-
versal pro-finite étale covering based at x̄ is the pro-limit of finite Galois
coverings Y

G−→ X̄ with H0
DR(Y ) = k̄, which over k̄ simply means Y is

connected. On the other hand, according to Theorem 2.7, πρx̄ is a prin-
cipal bundle under the k̄-group scheme Π(X̄, x̄). In fact, any finite full
tensor sub-category T of FConn(X) defines a principal bundle (X̄)T ,ρx̄

un-
der the k̄-group scheme ΠT (X̄, x̄), hence an étale Galois covering of X

under the finite group ΠT (X̄, x̄)(k̄) (since in characteristic 0, a finite group
scheme is étale). Also according to Theorem 2.7, 2), H0

DR((X̄)T ,ρx̄
) = k̄,

thus (X̄)T ,ρx̄
is connected. Since FConn(X̄) is the union of its finite sub-

categories, πρx̄
: (X̄)ρx̄

→ X̄ is the pro-limit of the πT ,ρx̄
: (X̄)T ,ρx̄

→ X̄.
Furthermore, by construction, π−1

T ,ρx̄
(x̄) = ΠT (X̄, x̄) as a k̄-group scheme,

where k̄ is the residue field of x̄.
Conversely, let p : Y → X be a Galois covering with Galois group

G, with π1(X, x̄) � G, thus with Y connected. Considering G as a k̄-
algebraic constant group, then p : Y → X is a principal bundle under G

with G = p−1(x̄). Then M := p∗(OY , d) is finite as it fulfills the relation
M⊗2 ∼= M⊕deg(p). If we denote by T the full tensor sub-category generated
by p∗(OY , d) then G ∼= ΠT (X̄, x̄)(k̄) and Y ∼= (X̄)T ,ρx̄ . Thus πρx̄ is the
universal pro-finite étale covering of X̄ based at x̄. This shows (4.4) and
finishes the proof. �

Theorem 4.4. — Let X/k be smooth scheme with H0
DR(X) = k. Let

x̄ → X be a geometric point with residue field k̄. Then (4.2) induces an
exact sequence of pro-finite groups

1→ Π(X̄, x̄)(k̄)→ Π(X, x̄)s(k̄)→ (Spec(k̄)×k Spec(k̄))s(k̄)→ 1.(4.5)

Furthermore, the identity κ̄ of Lemma 4.3 extends to an identity of exact
sequences of pro-finite groups

1 // Π(X̄, x̄)(k̄) //

κ̄ =

��

Π(X, x̄)s(k̄)

κ =

��

// (Spec(k̄)×k Spec(k̄))s(k̄) //

=

��

1

1 // π1(X̄, x̄) // π1(X, x̄)
ε // Gal(k̄/k) // 1

(4.6)
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Proof. — Let θ ∈ Π(X, x̄)s(k̄), with image γ ∈ Gal(k̄/k). Then by (3.3),
θ is a tensor isomorphism between ρx̄ and γ∗ ◦ ρx̄. On the other hand, if
π : Y → X is a Galois covering under finite quotient H of π1(X, x̄), then
π∗(OY , d) ∈ FConn(X). Thus θ yields an isomorphism between Oπ−1(x̄) and
γ∗(Oπ−1(x̄)). This implies in particular that θ yields an automorphism of
the set π−1(x̄), that is an element in H. Since, for another finite quotient K

of π1(X, x̄), with K � H, the construction is compatible in the pro-system
π1(X, x̄), and we obtain from θ an element in π1(X, x̄). This defines the
homomorphism κ. As κ̄ is an isomorphism, κ is an isomorphism as well. �

Applying the construction in Theorem 2.7 to the fiber functor ρx̄ one
obtains an étale cover πρx̄

: Xρx̄
−→ X.

Corollary 4.5. — The étale cover πρx̄
: Xρx̄

−→ X is the universal
pro-finite étale covering of X based at x̄.

Proof. — Let π̃x̄ : X̃x̄ → X be the universal pro-finite étale covering
based at x̄. Then, x̄ lifts to the 1-element in π̃−1

x̄ (x̄) = π1(X, x̄) which we
denote by x̃. Thus x̃ ∈ X̃x̄(k̄). By Theorem 4.4, X̃x̄ and Xρx̄

are both Galois
covers of X under the same pro-finite group via κ. Thus an isomorphism
between the two covers over X is uniquely determined by the image of
x̃, which we determine to be the 1-element in Π(X, x̄)(k̄) = ρ−1

x̄ (x̄) ⊂
Xρx̄

(k̄). �

We deduce now the main corollary of the sections 3 and 4.

Corollary 4.6. — Let X/k, x̄, ρx̄ be as in Theorem 4.4. Then there is
a one to one correspondence between splittings of ε as pro-finite groups up
to conjugation by π1(X̄, x̄) and neutral fiber functors FConn(X) → Veck,
up to natural equivalence.

Proof. — By Theorem 4.4, a splitting of ε of pro-finite groups is equiv-
alent to a splitting of Π(X, ρx)s(k̄) → Gal(k̄/k). By Theorem 3.2, 2), the
latter is equivalent to a splitting of (t, s) : Π(X, ρx̄)→ x̄×k x̄ as k-groupoid
schemes acting on x̄. By Theorem 3.2, 3), such splittings are, up to con-
jugation by Π(X̄, x̄)(k̄), in one to one correspondence with neutral fiber
functors on FConn(X), up to natural equivalence. �

5. An application toward Grothendieck’s section
conjecture

In his letter to G. Faltings [7], Grothendieck conjectures that if X is a
smooth projective curve of genus > 2 defined over k of finite type over
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Q, then conjugacy classes of sections of ε in (4.6) are in one to one corre-
spondence with rational points of X. In fact, it follows immediately from
the definition of πét

1 (X) that each rational point of X yields a conjugacy
class of sections of ε. Grothendieck suggests an explicit way to relate to a
conjugacy class of sections of ε a rational point of X, which we shall recall
now. Fix a k̄-point x̄ of X and let X̃x̄ be the universal pro-étale covering of
X based at x̄. Consider X̃x̄ as a k̄-scheme. The given splitting of ε defines
an action of Gal(k̄/k) on X̃x̄. The conjecture is that the set of k̄-points of
X̃x̄, which are invariant under the action of Gal(k̄/k), consists of a unique
point, which descends to a rational point of X.

In terms of Remark 2.13, the conjecture says that the action of Gal(k̄/k)
on X̃x̄, considered as a k̄-scheme, defines a k-form Xρ together with a k-
pro-point, which descends to a k-point of X. It follows from Corollary 4.6
that if Grothendieck’s conjecture is true then the set of k-rational points
of a smooth projective curve X of genus g > 2 over k of finite type over Q
is in bĳection with the set of neutral fiber functors FConn(X) → Veck. In
other words, if Grothendieck’s conjecture was too optimistic, there would
be a smooth projective curve X of genus > 2, and an exotic neutral fiber
functor ρ on FConn(X) which is not geometric, i.e. not of the shape ρ =
ρx, ρx((V,∇)) = V |x for some rational point x ∈ X(k).

Grothendieck goes further to consider the case when X is affine. Let x̄

be a k̄-point of X, X∧ be the smooth compactification of X and X̃∧ be
the normalization of X∧ in X̃x̄:

X̃x̄
� � //

��

X̃∧

��
X

� � // X∧

(5.1)

Also in this case he conjectures that the action of Gal(k̄/k) on X̃∧(k̄), given
by a splitting of ε, has a unique fix point, which descends to a rational point
of X∧. A section of ε is said to be at infinity if the corresponding fix point
in X̃∧ lies in X̃∧ r X̃x̄, and hence descends to a rational point lying at ∞
in X∧rX. To a given rational point at infinity in X∧ there are associated
infinitely many sections at infinity.

The aim of this section is to apply our construction in the previous
sections to understand the last claims of the conjecture. Let y be a rational
point of X∧rX. We construct k-forms of X̃x̄ such that the normalization of
X∧ in it has a k-pro-point lying above y. It suffices to consider X ′ = X∪{y}
instead of X∧.
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We first construct from y a neutral fiber functor η by means of the
Deligne-Katz functor. Let Ôy be the local formal ring at y, and K̂y be its
field of fractions. We choose a local parameter so Ôy

∼= k[[t]] and K̂y
∼=

k((t)).

Let D× := Spec(k((t))) ⊂ D := Spec(k[[t]]) be the punctured formal disk
embedded in the formal disk. In [9, Section 2.1], Katz defines the k-linear
rigid tensor category Conn(D×) of t-adically continuous connections on D×

as follows. Objects are pairs M = (V,∇), where V is a finite dimensional
vector space on k((t)) and ∇ : V → V ⊗k((t)) ωk((t)) a t-adically continuous
connection, with ωk((t))

∼= k((t))dt. The Hom-Sets are flat morphisms. We
define FConn(D×) in the obvious way, as being the full sub-category of
Conn(D×) spanned by Weil-finite objects, with definition as in Definition
2.4. One has the restriction functor

FConn(X) rest−−→ FConn(D×).(5.2)

Let us recall the constructions of Deligne [1, Section 15, 28-36], and Katz
[9, Section 2.4], which are depending on the t chosen. There is a functor of
k-linear abelian rigid tensor categories

FConn(D×) DK−−→ FConn(Gm), Gm := Spec(k[t, t−1])(5.3)

which is the restriction to FConn of a functor defined on the categories of
regular singular connections on D× and Gm (by Deligne), and even of all
connections (by Katz). It is characterized by the property that it is additive,
functorial for direct images by Spec(k′((u))) → D×, un = t, where k′ ⊃ k

is a finite field extension which contains the n-th rooths of unity, and by its
value on nilpotent connections. The choice of a rational point a ∈ Gm(k),
for example a = 1, defines a fiber functor ρGm : FConn(Gm) → Veck by
assigning V |a to (V,∇). We denote the resulting functor

FConn(D×) DK→ FConn(Gm)
ρGm→ Veck

by ϕ. The composite functor FConn(X) rest→ FConn(D×) → Veck will be
denoted by η:

FConn(X)

rest

��

η

%%LLLLLLLLLL

FConn(D×)
ϕ

// Veck.

(5.4)

Recall that Deligne’s fiber functor, that is on regular singular connections,
depends only on the tangent vector underlying the local parameter, i.e.
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on the image of t in 〈t〉/〈t2〉, so a fortiori on finite connections, only the
tangent vector enters the construction.

We apply the construction of Theorem 2.7 to the pair (FConn(X), η) to
obtain a morphism Xη → X. The construction of Theorem 2.7, while ap-
plied to D× = Spec(k((t))) and the pair (FConn(D×), ϕ), yields a covering
D×

ϕ → D×. Indeed, as the connections are t-adically continuous, the finite
sub-category spanned by a finite connection M yields a finite field exten-
sion k((t)) ⊂ LM , which defines D×

M := Spec(LM ), and D×
ϕ = lim←−M

D×
M .

Theorem 2.7, 2) applies here to give H0
DR(D×

ϕ ) = k. Thus, (5.4) implies
that we have the following diagram

D×
ϕ

��

// Xη ×X D×

�

��

// Xη

��
D×

=
// D× // X

(5.5)

We now introduce the partial compactification in y. Since the morphism
D×

ϕ → D× is indeed a pro-system of Spec(LM ) of D×, we define its com-
pactification as the corresponding pro-system of the normalizations of D

in LM . Similarly the compactification of Xη → X is the pro-system of the
normalizations of X ′ in the function fields of the coverings. We denote by ′

the compactifications. This yields

(D×
ϕ )′ → D, (Xη)′ → X ′,(5.6)

and the diagram

(D×
ϕ )′

��

// (Xη)′ ×X′ D

�

��

// (Xη)′

��
D =

// D // X ′.

(5.7)

Note the rational point y ∈ X ′(k) lies in D(k), with defining maximal
ideal 〈t〉.

Lemma 5.1. — The point y ∈ D(k) lifts to a pro-point y′ϕ ∈ (D×
ϕ )′(k),

and thus defines a rational pro-point y′η in (Xη)′(k).

Proof. — Étale coverings of D× are disjoint unions of coverings of the
shape Spec(k′((u))) for some finite field extension k′ ⊃ k and un = t for
some n ∈ N r {0}. Notice that H0

DR(Spec(k′((u)))) = k′. On the other
hand, Theorem 2.7, 2) implies that H0

DR(D×
ϕ ) = k. This means that in the

pro-system defining D×
ϕ , there are only connected coverings with k′ = k.
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Hence y ∈ D(k) lifts to y′ϕ ∈ (D×
ϕ )′(k). Its image y′η in (Xη)′(k) is the

required pro-point. �

On the other hand, the two Veck̄-valued fiber functors η ×k k̄ and ρx̄ on
X ×k k̄ are equivalent, hence one obtains

X̃x̄
∼= Xη ×k k̄ as k̄ − schemes.(5.8)

We summarize:

Theorem 5.2. — Let X/k be a smooth affine curve over a characteristic
0 field k. Let y be a k-rational point at infinity. Set X ′ := X ∪ {y}. Fix a
geometric point x̄ → X with residue field k̄. Then the universal pro-finite
étale covering X̃x̄ based at x̄ has a k-structure Xη, i.e. X̃x̄

∼=k̄ Xη ×k k̄,
with the property that the k-rational point y lifts to a k-rational pro-point
of the normalization (Xη)′ of X ′ in k(Xη).
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