
ON NORI’S FUNDAMENTAL GROUP SCHEME

HÉLÈNE ESNAULT, PHÙNG HÔ HAI, AND XIAOTAO SUN

Abstract. The aim of this note is to give a structure theorem on Nori’s
fundamental group scheme of a proper connected variety defined over a perfect
field and endowed with a rational point.

1. Introduction

For a proper connected reduced scheme X defined over a perfect field k Nori in-
troduced in [8] and [9] the notion of essentially finite bundles. He shows that they
form a k-linear abelian rigid tensor category, denoted subsequently by CN(X). A
k-rational point x of X endows CN(X) with a fiber functor V 7→ V |x with values
in the category of finite dimensional vector spaces over k. This makes CN(X) a
Tannaka category, thus by Tannaka duality ([1, 12]), the fiber functor establishes
an equivalence between CN(X) and the representation category Rep(πN(X, x)) of
an affine group scheme πN(X, x), which turns out to be a pro-finite group scheme
(see Section 2 for an account of Nori’s construction). The purpose of this note is
to study the structure of this Tannaka group scheme.

To this aim, we define two full tensor subcategories C ét(X) and CF (X). The
objects of the first one are étale finite bundles, that is bundles for which the
corresponding representation of πN(X, x) factors through a finite étale group
scheme, and the objects of the second one are F -finite bundles, that is bundles for
which the corresponding representation of πN(X, x) factors through a finite local
group scheme. As Tannaka subcategories they are the representation categories
of Tannaka group schemes πét(X, x) and πF (X, x).

In fact πét(X, x) relates closely to the more familiar fundamental group π1(X, x̄)
defined by Grothendieck ([4, Exposé V]), where x̄ is a geometric point above x,
which is a pro-finite group. One has

πét(X, x)(k̄) ∼= π1(X ×k k̄, x̄)(1.1)

(see Remarks 2.10 for a detailed discussion). Thus the étale piece of Nori’s group
scheme takes into account only the geometric fundamental group and ignores
somehow arithmetics. On the other hand, πF (X, x) reflects the purely inseparable
covers of X. That k is perfect guarantees that inseparable covers come only from
geometry, and not from the ground field.
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The inclusion of C ét(X) (resp. CF (X)) in CN(X) as a full tensor subcategory
induces a surjective homomorphism of groups schemes rét : πN(X, x) → πét(X)
(resp. rF : πN(X) → πF (X)). Our first remark is that the natural homomor-
phism

(rét, rF ) : πN(X, x)→ πét(X, x)× πF (X, x)(1.2)

is surjective but generally not injective. We give an example which is based on
Raynaud’s work [11] on coverings of curves producing a new ordinary part in the
Jacobian (see Corollary 3.7). In particular, it is given as a rank 1 bundle in Pic
of this covering, and thus does not come from a rank 1 bundle on X. The referee
observes here that the morphism induced from (1.2) on the maximal abelian
quotients of CN(X), CF (X), C ét(X) is however an isomorphism. This provides
one reason for the determination of the representation category of the kernel of
(1.2): our work gives some information on the non-abelian part of Nori’s category.

The central theorem of our note is the determination by its objects and mor-
phisms of a k-linear abelian rigid tensor category E , which is equivalent to the
representation category of Ker(rét, rF ) (see Definition 4.3 for the construction
and Proposition 4.4 and Theorem 4.5 to see that it computes what one wishes).
This is the most delicate part of the construction. If S is a finite subcategory
of CN(X) with an étale finite Tannaka group scheme π(X,S, x), then the total
space XS of the π(X,S, x)-principal bundle πS : XS → X which trivializes all the
objects of S has the same property as X. It is proper, reduced and connected.
However, if S is finite but π(X,S, x) is not étale, then Nori shows that XS is
still proper connected, but may not be reduced. We give a concrete example in
Remark 2.3, 2), which is due to P. Deligne.

In order to describe E , we need in some sense an extension of Nori’s theory to
those non-reduced covers. We define on each such XS a full subcategory F(XS)
of the category of coherent sheaves, the objects of which have the property that
their push down on X lies in CN(X) (see Definition 2.4). We show that indeed
those coherent sheaves have to be vector bundles (Proposition 2.7), so in a sense,
even if the scheme XS might be bad, objects which push down to Nori’s bun-
dles on X are still good. In particular, CN(XS) = F(XS) if π(X,S, x) is étale
(Theorem 2.9), so the definition generalizes slightly Nori’s one. For given finite
subcategories S and T of CN(X), with π(X,S, x) étale and π(X,T, x) local, we
introduce in Definition 4.1 a full subcategory E(XS∪T ) ⊂ F(XS∪T ) consisting of
those bundles V , the push down of which on XS is F -finite. Now the objects of
E are pairs (XS∪T , V ) for V an object in E(XS∪T ). Morphisms are subtle as they
do take into account the whole inductive system of such T ′ ⊂ CF (X). We can
formulate our main theorem (see Theorem 4.5 for a precise formulation).

Main Theorem: The functor CN(X) → E which assigns (XS, π
∗
S(V )) to V ,

where S is the maximal étale subcategory the subcategory 〈V 〉 spanned by
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V ∈ Obj(CN(X)), identifies the representation category of Ker(rét, rF ) with E .

We now describe our method of proof. We proceed in two steps. As mentioned
above,the homomorphism rét : πN(X, x)→ πét(X, s) is surjective. We denote its
kernel by L(X, x) and determine its representation category in section 3. The
computation is based on two results. The first one of geometric nature asserts
that sections of an F -finite bundle can be computed on any principal bundle
XS → X with finite étale group scheme (see Proposition 3.2). The second one is
the key to the categorial work and comes from [3, Theorem 5.8]. (For the reader’s
convenience, we give a short account of the categorial statement in Appendix A).
It gives a criterion for the exactness of a sequence of affine group schemes

1→ L→ G→ A→ 1

in terms of their representation categories. Roughly speaking, assuming the ex-
actness at L and A then the exactness at G holds if and only if the following
conditions hold: (i) a representation of G becomes trivial when restricted to L
if and only if it comes from a reprsentation of A; (ii) for a representation V of
G considered as representation of L, its subspace of L-invariants is invariant un-
der G; (iii) each representation of L is embedable into the restriction to L of a
representation of G.

We show that the category Rep(L(X, x)) of (finitely dimensional) representa-
tions of L(X, x) is equivalent to the category D, whose objects are pairs (XS, V )
where XS → X is a principal bundle under an étale finite group scheme and V
is a F -finite bundle on XS. Morphisms are defined naturally via Proposition 3.2.

By definition of L(X, x), the kernel of (rét, rF ) is the kernel of restriction
rF |L : L(X, x)→ πF (X, x) of rF to L(X, x). The second step consists in showing
that the category E constructed in Section 4 is equivalent to the representation
category of the kernel of rF |L. The proof is based on the strengthening of Propo-
sition 3.2, namely Proposition 3.6 and Proposition 4.6 as well as the criterion
mentioned above.

Beyond the technicalities of the proof, let us remark that any finite k-group
scheme G has two natural quotients: its maximal étale quotient Gét and its
maximal local quotient GF . The kernel G0 := Ker(G→ Gét) is the 1-component
of G, in particular is local. If G is abelian, the morphism G0 → GF is an
isomorphism, and then G is the product of Gét with GF . In general, G0 → GF is
surjective. The article here deals in some sense with the prosystem of the kernels
of G0 → GF .

Acknowledgements: Pierre Deligne sent us his enlightening example which we
reproduced in Remark 2.3, 2). It allowed us to correct the main definition of
our category E (Section 5)) which was wrongly stated in the first version of this
article. We profoundly thank him for his interest, his encouragement and his
help. We also warmly thank Michel Raynaud for answering all our questions on
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his work on theta characteristics on curves and on their Jacobians. Finally we
thank the referee for careful reading, accurate remarks and helpful suggestions.

2. Nori’s category

Throughout this work we shall fix a proper reduced scheme X over a perfect
field k, which is connected in the sense that H0(X,OX) = k. We assume that
X(k) 6= ∅ and fix a rational point x ∈ X(k).

In [8], [9], Nori defines a category of “essentially finite vector bundles” which
we recall now. A vector bundle on X is called semi-stable of degree 0 if it is
semi-stable of degree 0 while restricted to each proper curve in X. This is a full
subcategory of the category Qcoh(X) of quasi-coherent sheaves on X, is abelian
[8, Lemma 3.6] and will be denoted by S(X). A vector bundle V on X is called
finite if there are polynomials f 6= g whose coefficients are non-negative integers
such that f(V ) and g(V ) are isomorphic. Nori proves that finite bundles are
semi-stable of degree 0 [8, Corollary 3.5] and that the full abelian subcategory
of S(X), consisting of those bundles which are subquotients in S(X) of a direct
sum of finite bundles, is a k-linear abelian rigid tensor category. We shall denote
this category by CN(X) and call its objects Nori finite bundles.

The fiber functor at x (where by assumption κ(x) = k)

|x : CN(X)→ Vectk, V 7→ V |x := V ⊗OX
κ(x)(2.1)

with values in the category of finite dimensional k-linear vector spaces, implies
that CN(X) is a Tannaka category. We denote by πN(X, x) the corresponding
Tannaka group scheme over k. Tannaka duality ([1, Theorem 2.11]) yields an
equivalence of categories

CN(X)
|x ∼=−−−→ Rep(πN(X, x)).(2.2)

We denote by η the inverse functor

η : Rep(πN(X, x))→ CN(X).(2.3)

Recall that for an affine group scheme G over k, a k-morphism j : P → X is
said to be a principal G-bundle on X if

(i) j is a faithfully flat affine morphism
(ii) φ : P ×G→ P defines an action of G on P such that j ◦ φ = j ◦ p1

(iii) (p1, φ) : P ×G→ P ×X P is an isomorphism.

Given such a principal G-bundle P one associates to it an exact tensor functor

ηP : Rep(G)→ Qcoh(X)(2.4)

as follows. For each representation V of G, one has the diagonal action of G on
the trivial bundle OP ⊗k V . Using Grothendieck flat descent [4, Exposé VIII],
one obtains a vector bundle ηP (V ) on X by taking the G invariants of OP ⊗k V ,
denoted by P ×G V . Conversely, consider the regular representation of G in k[G]
given by (gf)(h) = f(hg), g, h ∈ G, h ∈ k[G]. Then a functor η : Rep(G) →
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Qcoh(X) yields a principal G-bundle on X, which is the spectrum of the OX-
algebra η(k[G]). These two constructions are inverse to each other.

Consider the regular representation of πN(X, x) in k[πN(X, x)]. Then the dis-
cussion above applied to functor η in (2.3) yields a (universal) principal πN(X, x)-

bundle π̃ : X̃ → X together with the identity π̃−1(x) = πN(X, x). The unit

element of πN(X, x) yields a distinguished rational point of X̃ lying above x.

The projection π̃ : X̃ → X is in fact pro-finite in the following sense. Let
S be an abelian tensor full subcategory of CN(X) generated by finitely many
objects Si, i = 1, . . . r. That is, objects of S are subquotients of direct sums of
tensor products of copies of Si and Si

∨ (the dual bundle to Si). In the sequel
we shall simply call S a finitely generated tensor subcategory of CN(X). S is a
Tannaka category by means of the fibre functor at x and denote its Tannaka
group by π(X,S, x). The discussion above applied to the forgetful functor ηS :
S → Qcoh(X) yields a π(X,S, x)-principal bundle πS : XS → X and a rational
point xS lying above x. Then π(X,S, x) is a finite group scheme, which is a
quotient of πN(X, x) and

πN(X, x) = lim←−
S

π(X,S, x), X̃ = lim←−
S

XS, π̃ = lim←−
S

πS, x̃ = lim←−
S

xS,(2.5)

where S runs in the pro-system of finitely generated full abelian tensor subcate-
gories of CN(X). Moreover the scheme XS is connected:

H0(XS,OXS
) = k(2.6)

Furthermore, πS is universal in the following sense:

V ∈ Obj(S)⇐⇒ π∗S(V ) trivializable.(2.7)

Indeed, if π∗SV is trivializable on XS, then the injective map V ↪→ πS∗π
∗
SV
∼=

πS∗O⊕dXS
, where d is the rank of V , shows that V ∈ Obj(S). Conversely, for

V ∈ S the construction in (2.4) shows that π∗V is trivializable on XS.
Finally we notice that πN(X, x) respects base change for algebraic extensions

of k, that is

πN(X ×k K, x×k K) ∼= πN(X, x)×k K(2.8)

for any algebraic extension K ⊃ k, in particular for K = k̄. We refer to [9,
Chapters I,II] for the exposition above.

For a finite bundle V , denote by 〈V 〉 the tensor subcategory generated by V .

Definition 2.1. An étale finite bundle is a Nori finite bundle for which π(X, 〈V 〉, x)
is étale (equivalently is smooth). If k has characteristic p > 0, an F -finite bundle
is a Nori finite bundle for which π(X, 〈V 〉, x) is local. We denote by C ét(X), resp.
CF (X), the full tensor subcategory of CN(X) of étale, resp. F -, finite bundles.

The categories C ét(X) and CF (X) are both abelian tensor full subcategories,
thus via the fiber functor at x they yield Tannaka k-group schemes πét(X, x) and
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πF (X, x), respectively. Furthermore, one has

C ét(X) ∩ CF (X) = {trivial objects}(2.9)

where {trivial objects} means the full subcategory of CN(X) consisting of trivi-
alizable bundles.

Following the method of [9, II, Proposition 5] we obtain the following lemma.

Lemma 2.2. The group schemes πét(X, x) and πF (X, x) respect base change for
algebraic extensions of k, that is 2.8 holds with N replaced by ét and F .

Remark 2.3. 1) It is shown in [7, Section 2] that a Nori finite bundle V is F -
finite if and only if there is a natural number N > 0, such that (FN

abs)
∗(V ) is

trivial, where Fabs is the absolute Frobenius.

2) If S ⊂ CN(X) is a finite subcategory, with π(X,S, x) étale, then XS is still
proper, reduced and connected. However, if π(X,S, x) is finite but not étale, XS

is still proper and connected [9, Chapter II, Proposition 3], but not necessarily
reduced. Indeed there are principal bundles Y → X under a finite local group
scheme, such that the total space Y is not reduced. We reproduce here an
example due to P. Deligne. Let k be algebraically closed of characteristic p > 0,
and let X ⊂ P2 be the union of a smooth conic X ′ and a tangent line X ′′.
Thus X ′ ∩ X ′′ is isomorphic to Spec k[ε]/(ε2) as a k-scheme. One constructs
π : Y → X by gluing the trivial µp-torsors X ′ ×k µp to X ′′ ×k µp along a non-
constant section of Spec k[ε]/(ε2)×k µp → Spec k[ε]/(ε2). For example, one may
take the non-constant section Spec k[ε]/(ε2) → Spec k[ε]/(ε2) ×k µp defined by
k[ξ, ε]/(ξp− 1, ε2)→ k[ε]/(ε2), ξ 7→ 1 + ε. Then Y is projective, non-reduced, and
yet fulfills the condition H0(Y,OY ) = k.

If XS is not reduced, there is no good notion of semi-stable vector bundles
on XS. However, for later use in this article, we introduce a category F(XS)
on the principal π(X,S, x)-bundle πS : XS → X where S ⊂ CN(X) is a finitely
generated full tensor subcategory. F(XS) will play on XS the rôle CN(X) plays
on X.

Definition 2.4. Let S ⊂ CN(X) be a finitely generated abelian tensor full sub-
category. Define F(XS) ⊂ Qcoh(XS) to be the full subcategory of Qcoh(XS), the
objects of which are quasi-coherent sheaves V on XS such that (πS)∗V ∈ CN(X).

Notice that F(XS) is an abelian category. In fact, for a morphism f : V → W
in F(XS), by the exactness of (πS)∗, we have (πS)∗Kerf = Ker((πS)∗f) ∈ CN(X),
as CN(X) is full in Qcoh(X), and the same holds for imf . We will show in
Proposition 2.7 below that F(XS) is k-linear abelian rigid tensor category and
its objects are vector bundles on XS, and when π(X,S, x) is reduced F(XS)
coincides with CN(XS).
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Let S ⊂ S ′ ⊂ CN(X) be finitely generated abelian tensor full subcategories.
Then one has the following commutative diagram

XS′
πS′,S //

πS′ !!CC
CC

CC
CC

XS

πS}}||
||

||
||

X

(2.10)

Further one has a surjective (hence faithfully flat) homomorphism

GS′ := π(X,S ′, x)→ π(X,S, x) =: GS(2.11)

Lemma 2.5. The morphism πS′,S : XS′ → XS is a principal bundle under a
group GS′,S which is the kernel of the homomorphism (2.11).

Proof. It is well-known that the morphism GS′ → GS is a principal bundle under
the group GS′,S. In fact, the map GS′×GS

GS′ → GS′×GS′,S is given by (g, h) 7→
(g, g−1h) and its inverse is given by (g, k) 7→ (g, gk), where g, h ∈ GS′ , k ∈ GS′,S.
Now apply the fibre functor ηS′ to the corresponding function algebras k[GS′ ] and
k[GS] we obtain the required isomorphism

XS′ ×XS
XS′
∼= XS′ ×GS′,S

(recall that ηS′(k[GS′ ]) is theOX-algebra that determinesXS′ , similarly ηS′(k[GS]) =
ηS[k(GS)] is the one that determines XS). �

The principal bundle πS′,S : XS′ → XS yields a tensor functor

ηS′,S : Rep(GS′,S)→ Qcoh(XS), ηS′,S(V ) := XS′ ×GS′,S V.(2.12)

Lemma 2.6. The functor ηS′,S in (2.12) is fully faithful and exact. Consequently
GS′,S is isomorphic to the Tannaka group of the category im(ηS′,S).

Proof. It is enough to check that η := ηS′,S is full, i.e., any morphism η(V ) →
η(W ) in Qcoh(XS) is induced by a morphism V → W in Rep(GS′,S). This is
equivalent to showing H0(XS, η(V )) ∼= V GS′,S for any V ∈ Rep(GS′,S). Recall
that η(V ) := XS′ ×GS′,S V . Thus

H0(XS, η(V )) ∼= H0(XS′ ,OXS′
⊗k V )GS′,S ∼= V GS′,S(2.13)

since H0(XS′ ,OXS′
) = k. �

Proposition 2.7. The category F(XS) defined in Definition 2.4 is a Tannaka
category, whose objects are vector bundles.

Proof. We first show that for any V ∈ F(XS), there are W1, W2 ∈ CN(X) and
a morphism f : π∗SW1 → π∗SW2 in Qcoh(XS) such that V = coker(f). One
takes W2 := (πS)∗V which by definition lies in CN(X), and defines V1 to be
the kernel of the surjection π∗SW2 � V. Then W1 := (πS)∗V1 ∈ CN(X) and
f : π∗SW1 � V1 ↪→ π∗SW2 satisfying coker(f) = V .
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Let S ′ ⊂ CN(X) be the full tensor subcategory generated by W1, W2 and S.
Then the pullbacks of π∗SW1 and π∗SW2 to XS′ (under πS′,S : XS′ → XS) become
trivial, thus π∗SW1 and π∗SW2 are in the image of

ηS′,S : Rep(GS′,S)→ Qcoh(XS).(2.14)

By Lemma 2.6, the functor ηS′,S is fully faithful, thus V = coker(f) is also in the
image of ηS′,S. In particular, V is a vector bundle.

It is now easy to check that F(XS) is a k-linear abelian rigid tensor category.
Since XS has a rational point xS, F(XS) is a Tannaka category. �

Next we show F(XS) = CN(XS) when π(X,S, x) is reduced. To this aim, recall
that a bundle V on X is said to be strongly semi-stable of degree 0 if for any non-
singular projective curve C and any morphism f : C → X, the pullback f ∗V
is semi-stable of degree 0 on C. It is known that strongly semi-stable bundles
of degree 0 on X form a k-linear Tannaka full subcategory of Qcoh(X) [10,
Theorem 3.23]. On the other hand as Nori finiteness is preserved under pull-back
by any f : C → X, we see that CN(X) is a full subcategory of the category of
strongly semi-stable bundles of degree 0.

Lemma 2.8. If π(X,S, x) is a smooth finite group scheme, and if V ∈ CN(XS),
then π∗S(πS∗V ) ∈ CN(XS) and W := πS∗V is strongly semi-stable of degree 0.

Proof. Let G := π(X,S, x), π := πS, Y := XS and y := xS. Since strong semi-
stability and Nori finiteness are compatible with base change by algebraic field
extensions of k, we can assume that k = k̄. Consider

Y ×k G

µ

&&∼= //

p1
&&MMMMMMMMMMM

Y ×X Y //

��
�

Y

π

��
Y π

// X

(2.15)

where µ : Y ×k G→ Y is the action of G, p1 is the projection to the first factor
and Y ×k G ∼= Y ×X Y is induced by (p1, µ). Then

π∗π∗V ∼= p1∗µ
∗V =

⊕
g∈G(k)

Vg(2.16)

where Vg is the translation of V by g. Thus π∗π∗V ∈ CN(Y ).
To show that W := π∗V is strongly semi-stable, we consider the fiber square

YC

�

g //

πC

��

Y

π

��
C

f
// X
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So in particular, πC is still a principal bundle under G. Since π is finite, one has

f ∗W = f ∗(π∗V ) = πC∗(g
∗V ).

Denote VC := g∗V. Since VC ∈ CN(YC), the discussion above shows that π∗C(f ∗W ) =
π∗C(πC∗VC) ∈ CN(YC). In particular, π∗C(f ∗W ) is semi-stable of degree 0, which
implies that f ∗W is semi-stable of degree 0. Indeed, for any subbundle U ⊂ f ∗W ,
the bundle π∗CU is a subbundle of π∗C(f ∗W ), hence has negative degree, conse-
quently the degree of U is also negative. �

Theorem 2.9. Assume that π(X,S, x) is a smooth finite group scheme. Then
F(XS) = CN(XS) and there is an exact sequence of group schemes

1→ πN(XS, xS)→ πN(X, x)→ π(X,S, x)→ 1(2.17)

Proof. By Proposition 2.7, F(XS) ⊂ CN(XS). We prove the inverse inclusion.
Thus let V ∈ CN(XS). By Lemma 2.8, W := πS∗V semi-stable of degree 0 and
π∗SW ∈ CN(XS). Let 〈W 〉∪S be the full tensor subcategory generated by W and
objects of S in the Tannaka category of strongly semi-stable bundles of degree
0 and denote by G its Tannaka group with respect to the fiber functor at x.
To show W ∈ CN(X), it suffices to show that G is a finite group scheme (see
construction in (2.4)).

The full subcategory of 〈W 〉 ∪ S whose objects become trivial when pulled-
back to XS is precisely S (see (2.7)). The functor π∗S : 〈W 〉 ∪ S → 〈π∗SW 〉 yields
a sequence of homomorphisms of group schemes

1→ π(XS, 〈π∗SW 〉, xS)→ G→ π(X,S, x)→ 1(2.18)

which we claim to be exact.
The surjectivity of G→ π(X,S, x) and the injectivity of π(XS, 〈π∗SW 〉, xS)→

G follow from the definition and A.1, (i), (ii). We show the exactness at G, using
Theorem A.1, (iii). Condition (a) in A.1, (iii), follows from (2.7).

We check condition (c). Let M ∈ 〈π∗SW 〉. By definition, M is a subquotient of
π∗SN , N ∈ 〈W 〉 ∪ S. Thus πS∗M is a subquotient of πS∗π

∗
SN = N ⊗ πS∗π∗SOXS

∈
〈W 〉 ∪S. Hence πS∗M lies in 〈W 〉 ∪S. Now we have the required surjective map
π∗S(πS∗M)→M .

As for (b) we use projection formula

H0(XS, π
∗
SN) = H0(X, πS∗π

∗
SN) = HomOX

(πS∗O∨XS
, N) =

r⊕
i=1

k · φi(2.19)

where φi : (πS∗OXS
)∨ → N . Let N0 =

∑
i im(φi) ⊂ N . Then N0 is in S and any

morphism φ : (πS∗OXS
)∨ → N has image in N0. By comparing the ranks, we see

that π∗SN0 is the maximal trivial subbundle in π∗SN .
Thus the sequence in (2.18) is exact, hence G is finite. The exactness of (2.17)

follows from the exactness of (2.18) by taking the projective limit on S. �
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Remarks 2.10. The group scheme πét(X, x) can be considered as the k- lineari-
zation of Grothendieck’s fundamental group ([4, Exposé V]), which we recall now.
Grothendieck considers the category of finite étale coverings of X with morphisms
being X-morphisms. A geometric point x̄ ∈ X(K) (K = K̄) defines a fiber func-

tor from this category to the category of finite sets: Gr : (Y
π−→ X) 7→ π−1(x̄).

The fundamental group π1(X, x̄) of the connected scheme X with base point x̄
is defined to be the automorphism group of the fiber functor. This is a pro-finite
group, hence has a natural topology in which subgroups of finite index are open
and form a basis of topology at the unit element. The main theorem claims
an equivalence between the category of finite étale coverings and the category
of finite sets with continuous action of Gr (finite sets are endowed with discrete

topology). Further there exists a pro-finitie étale covering π̂ : X̂ → X which is
universal in the sense that

MorX(X̂, Y ) ∼= Gr(Y )(2.20)

for any finite covering Y → X ([4, Theorem V.4.1]). One recovers the group
π1(X, x̄) as the fiber π̂−1(x̄). Notice that it suffices to check (2.20) for Galois
coverings Y → X.

Assume that k is moreover algebraically closed. Then the fundamental group
π1(X, x) with base point at x is called the geometric fundamental group. Upon
the algebraically closed field k, a reduced finite group scheme is uniquely deter-
mined by its k-points, which is a finite group. Therefore for any S ⊂ C ét(X),
πS : XS → X is a Galois covering of X under the group π(X,S, x)(k). Con-

versely, any Galois covering Y
π−→ X under a finite group H can be considered

as a principal bundle under the constant (finite) group scheme defined by H. It
is easy to check that the covering πét : XCét(X) → X given in (2.5) satisfies the

universal property (2.20). We conclude that the group of k-points of πét(X, x) is
isomorphic to π1(X, x).

If k is perfect but not algebraically closed, take X = Spec(k) with the rational
point point x = X ∈ X(k). Then C ét(X) is equivalent via the fibre functor to
Vectk, and consequently πét(X, x) = {1}. On the other hand, Grothendieck’s fun-
damental group is then Gal(k̄/k), which is highly nontrivial. However, according
to Lemma 2.2 we have an isomorphism of k̄-group schemes

πét(X ×k k̄, x×k k̄)
∼=−→ πét(X, x)×k k̄.

So we conclude in general

π1(X ×k k̄, x̄) = πét(X, x)(k̄).

The aim of our article is to understand the relationship between the groups
πN(X, x), πét(X, x) and πF (X, x). We first notice that Theorem A.1, (i), applied
to the full subcategories C ét(X)→ CN(X), resp. CF (X)→ CN(X), shows that the
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restriction homomorphisms πN(X, x)
rét−→ πét(X, x), resp. πN(X, x)

rF−→ πF (X, x)
are faithfully flat.

Notation 2.11. We set L(X, x) = Ker(πN(X, x)→ πét(X, x)).

3. The representation category of the difference between Nori’s
fundamental group scheme and it’s étale quotient

We continue to fix X/k and x ∈ X(k) as in section 2. The purpose of this
section is to determine the representation category of the kernel L of the map
πN(X, x)→ πét(X, x). To this aim, we first observe the following.

Lemma 3.1. The group scheme πét(X, x) is the largest quotient pro-finite group
scheme of πN(X, x) which is reduced.

Proof. For S ⊂ CN(X) an abelian tensor full subcategory generated by finitely
many objects we set

S ét := S ∩ C ét(X),(3.1)

i.e. the full subcategory consisting of objects in CN(X), isomorphic both to an
object in S and an object in C ét(X). Thus π(X,S ét, x) is a reduced quotient of
π(X,S, x). We claim that this is the largest quotient of π(X,S, x).

Tannaka duality shows that any quotient map π(X,S, x) � H of group schemes
over k yields a fully faithful functor from Rep(H) to CN(X) with image, say (H),
lying in S, and consequently yielding an H-principal bundle π(H) : X(H) → X
which is proper, connected, with a rational point x(H) mapping to x, so that
V ∈ (H) if and only if π∗(H)(V ) is trivial. If H is reduced then (H) consists only

of étale finite bundles, thus (H) ⊂ S ét. Hence π(X,S, x) → H factors through
π(X,S, x) → π(X,S ét, x) → H. This shows that π(X,S ét, x) is the maximal
reduced quotient of π(X,S, x). Now the claim of Lemma follows by passing to
the limit. �

In the rest of this section, S will denote a finitely generated tensor subcategory
of C ét(X). Thus πS : XS → X is étale and XS is reduced.

Proposition 3.2. Let X be a proper reduced connected scheme defined over a
perfect field k. Let V be an F -finite bundle on X. Then

π∗S : H0(X, V )→ H0(XS, π
∗
SV )

is an isomorphism.

Proof. To simplify the notations, we set Y := XS, π := πS. Let V0 be the
maximal trivial subobject of V . Since π is étale, the bundles associated to π∗OY ,
and therefore to (π∗OY )∨, are étale finite. The image under a morphism of
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(π∗OY )∨ to V is therefore at the same time étale- and F -finite, hence (see (2.9))
lies in the maximal trivial subobject V0 of V . By projection formula we have

H0(Y, π∗V ) = H0(X, (π∗OY )⊗ V ) ∼= HomX((π∗OY )∨, V )(3.2)

⊂ HomX((π∗OY )∨, V0) ∼= H0(Y, π∗V0) = H0(X, V0).

as H0(Y,OY ) = k by (2.6). Hence

H0(X, V0) ⊂ H0(X, V ) ⊂ H0(Y, π∗V ) ⊂ H0(Y, π∗V0) = H0(X, V0),(3.3)

so one has everywhere equality. �

Denote the directed system of finitely generated tensor subcategories of C ét(X)
with respect to the inclusion

S ét =
{
S ⊂ C ét(X), finitely generated

}
.(3.4)

Let X̃ ét → X denote the universal pro-étale covering associated to πét(X, x),
defined similarly as in (2.5). Thus

X̃ ét = lim←−
S∈S ét

XS, π̃S : X̃ � XS.(3.5)

By means of Proposition 3.2 we have the following isomorphism for any V ∈
CF (XS),

H0(XS, V ) ∼= H0(X̃, π̃∗SV ).(3.6)

Definition 3.3. The category D has for objects pairs (XS, V ) where S ∈ S ét,
V ∈ CF (XS), and for morphisms

Hom((XS1 , V ), (XS2 ,W )) := HomX̃(π̃∗S1
V, π̃∗S2

W ).

For any two abelian tensor full subcategories S1, S2 ∈ S ét, denote S1 ∪ S2

the abelian tensor full subcategory generated by objects of S1 and S2. One has
S1 ∪ S2 ∈ S ét. We also extend this notation for several subcategories.

Proposition 3.4. The category D is an abelian, rigid k-linear tensor category,
with the tensor structure defined by

(XS1 , V )⊗ (XS2 ,W ) = (XS1∪S2 , π
∗
S1∪S2,S1

(V )⊗ π∗S1∪S2,S2
(W ))(3.7)

The functor

ω : D → Vectk, (XS, V ) 7→ V |xS(3.8)

makes D a Tannaka category.

Proof. We define the kernel, image and cokernel of a homomorphism f : (XS1 , V )→
(XS2 ,W ) in D as follows. By means of (3.6), one has an isomorphism

HomX̃ ét(π̃
∗
S1
V, π̃∗S2

W ) ∼= HomXS
(π∗S1∪S2,S1

V, π∗S1∪S2,S2
W ),(3.9)
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under which f corresponds to fS. Then the kernel, image and cokernel of f are
defined to be the kernel, image and cokernel of fS respectively. It is clear that D
is an abelian category.

The unit object is (X,OX), the endomorphism ring of the unit object is thus
k. The dual object is given by (XS, V )∨ = (XS, V

∨). �

We observe that (XS,OXS
) is isomorphic to (X,OX) in D. More generally, for

S1 ∈ S ét,
(XS1 , V ) is isomorphic to (XS1∪S2 , π

∗
S1∪S2,S1

V ) in D for all S2 ∈ S ét.(3.10)

For V ∈ CN(X), the category 〈V 〉ét is defined as in (3.1). According to Lemma
2.5, for S ′ = 〈V 〉 and S = 〈V 〉ét, X〈V 〉 → X〈V 〉ét is a principal bundle under the
group H = Ker(G〈V 〉 → G〈V 〉ét), which, according to the proof of Lemma 3.1, is
a local group. Therefore π∗〈V 〉ét(V ) is an F -finite bundle on X〈V 〉ét . Define the

functor

q : CN(X)→ D, V 7→ (X〈V 〉ét , π
∗
〈V 〉ét(V )).(3.11)

Then q is an exact tensor functor which is compatible with the fiber functors ω
and |x. Thus q yields a homomorphism of group schemes

q∗ : G(D)→ πN(X, x).(3.12)

Denote by G(D) the Tannaka group scheme over k with respect to ω. The functor
q has the property that V ∈ CN(X) is étale finite if and only if q(V ) is trivial in
D. Therefore the composition

G(D)
q∗−→ πN(X, x)→ πét(X, x)(3.13)

is the trivial homomorphism. That is q∗ factors though a homomorphism (de-
noted by the same letter) to L (see Notation 2.11).

Theorem 3.5. The representation category of the kernel L(X, x) of the homo-
morphism rét : πN(X, x) → πét(X, x) is equivalent to D by means of the functor
q.

Proof. We show that the sequence of k-group schemes (3.13) is exact. We shall
use the criterion given in Theorem A.1, (iii). Condition (a) there is satisfied by
(2.8).

Let (XS, V ) be an object in D. Then, by Theorem 2.9, W := (πS)∗V is an
object in CN(X). Moreover one has a surjection q(W ) � (XS, V ) in D. Thus
every object of D is a quotient of the image by q of an object in CN(X). Condition
(c) of A.1, (iii), is satisfied.

It remains to check condition (b) of A.1, (iii). For V ∈ CN(X) set S = 〈V 〉ét
then q(V ) = (XS, π

∗
SV ). Applying projection formula we obtain

H0(XS, π
∗
S(V )) = HomOX

((πS∗OXS
)∨, V ) =

r⊕
i=1

k · ϕi,(3.14)
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where ϕi : (πS∗OXS
)∨ → V . Let Vét ⊂ V be the image of

⊕r1ϕi :
r⊕
1

(πS∗OXS
)∨ → V.(3.15)

As (πS∗OXS
)∨ is étale finite, Vét is étale finite and lies in S, hence π∗SVét is a trivial

bundle by (2.7). Thus q(Vét) is a trivial subobject of q(V ). We show that it is
the largest one. By the definition of Vét, one has

H0(X, (πS∗OXS
)⊗ V ) = H0(X, (πS∗OXS

)⊗ Vét).(3.16)

Applying the projection formula again, one has

H0(X, (πS∗OXS
)⊗ Vét) = H0(XS, π

∗
S(Vét)).(3.17)

That is, q(Vét) is the maximal trivial subobject of q(V ). �

Our next aim is to study the kernel of rét × rF . For this we shall need a
strengthening of Proposition 3.2.

Proposition 3.6. Let S ⊂ C ét(X) be a finitely generated tensor subcategory.
Then the homomorphism of group schemes πF (XS, xS) → πF (X, x) induced by
π∗S is surjective.

Proof. To simplify notations, we set Y := XS, π := πS in the proof. According
to Lemma 2.2 if suffices to consider the case where k is algebraically closed.
According to Theorem A.1, (i), one has to show that for any V ∈ CF (X) and
any inclusion ϕ : W ↪→ π∗V in CF (XS), there exists an inclusion ι : V0 ↪→ V
in CF (X), such that ϕ = π∗ι : π∗V0 → π∗V . We first assume that W is simple.
The bundle V has a decomposition series V0 ⊂ V1 ⊂ . . . ⊂ VN = V with Vi/Vi−1

simple. Then there exists an index i such that the image of ϕ(W ) in π∗(Vi/Vi−1)
is not zero. Thus we may assume that V itself is simple. It suffices now to show
that ϕ is an isomorphism.

Using the adjointness between π∗ and π∗ we have

HomXS
(W,π∗V ) ∼= HomXS

(π∗V ∨,W∨) ∼= HomX(V ∨, π∗(W
∨)) ∼=(3.18)

Hom((π∗(W
∨))∨, V ).

Thus ϕ corresponds to a non-zero morphism ψ : π∗(W
∨)∨ → V . Since V is

simple, ψ is surjective and hence so is π∗ψ : π∗π∗(W
∨)∨ → π∗V . On the other

hand, as in Lemma 2.8, we have

π∗π∗W =
⊕
g∈G(k)

Wg.(3.19)

Since W is simple, so are Wg, g ∈ G(k). This shows that π∗V , being a quotient
of a direct sum of simple objects, is semi-simple. According to Proposition 3.2,
π∗V has to be simple. Therefore W = π∗V .

The general case follows by induction on the length of the decomposition of
W . �
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Corollary 3.7. The natural map πN(X, x)
rét×rF−−−−→ πét(X, x) × πF (X, x) is sur-

jective and in general not an isomorphism.

Proof. In fact, the surjectivity of rét×rF holds for any pro-finite group, as it holds
for finite groups. In our case this can also be seen from the proof of Proposition
3.6.

The claim of Corollary is equivalent to showing that the induced homomor-
phism rF |L : L(X, x) → πF (X, x) is surjective and not necessarily an isomor-
phism. This homomorphism is Tannaka dual to the restriction q|CF (X) : CF (X)→
D, for functor q defined in (3.11), which is the identity functor q|CF (X)(V ) =
(X, V ). Now the proof of Proposition 3.6 and the injectivity criterion A.1, (ii),
prove the corollary.

It remains to exhibit an example when rF |L is not an isomorphism. According
to the discussion above, this amounts to finding an F -finite bundle on XS which
does not come from X. By [11], Théorème 4.3.1, if X is a smooth projective
curve of genus g ≥ 2 over an algebraic closed field k of characteristic p > 0, then
for ` 6= p prime with ` + 1 ≥ (p − 1)g, there is a cyclic covering π : Y → X of
degree ` (thus étale), such that Pic0(Y )/Pic0(X) is ordinary. Since π is Galois
cyclic of order `, it is defined as SpecX(⊕`−1

0 Li) for some L étale finite of rank 1
over X and of order `, thus π = π〈L〉 and Y = X〈L〉. We conclude that there are
p-power torsion rank 1 bundles on X〈L〉 which do not come from X. �

4. The representation category of the difference between Nori’s
fundamental group and the product of its étale and local

quotients

The aim of this section is to describe the representation category of the kernel
of the homomorphism rét × rF . Recall that X is a reduced proper scheme over
a perfect field of characteristic p > 0 with a rational point x ∈ X(k) and is
connected in the sense that H0(X,OX) = k.

In order to determine the representation category E of the kernel of rét×rF we
shall need an auxiliary category E(XS∪T ), where S is a finitely generated tensor
full subcategory of C ét(X) and T is a finitely generated tensor full subcategory
of CF (X).

Definition 4.1. For S a finitely generated tensor subcategory of C ét(X) and T
a finitely generated tensor full subcategory of CF (X), one defines E(XS∪T ) ⊂
F(XS∪T ) (for the definition of F(XS∪T ), see Definition 2.4) to be the full sub-
category whose objects V have the property that (πS∪T,S)∗V ∈ CF (XS).

Denote the directed system of finitely generated tensor subcategories of CF (X)
with respect to inclusion

T ` :=
{
T ⊂ CF (X), finitely generated

}
.(4.1)

Lemma 4.2. Let S ⊂ S ′ ∈ S ét, T ⊂ T ′ ∈ T ` and V ∈ E(XS∪T ). Then:
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1) The following commutative diagram is cartesian

XS′∪T
πS′∪T,S′//

πS′∪T,S∪T
��

XS′

πS′,S
��

XS∪T πS∪T,S

// XS

2) E(XS∪T ) is a k-linear abelian, rigid tensor category.
3) π∗S∪T ′,S∪TV ∈ E(XS∪T ′).
4) π∗S′∪T,S∪TV ∈ E(XS′∪T ).
5) The canonical homomorphism

H0(XS∪T , V )→ H0(XS′∪T , π
∗
S′∪T,S∪TV )(4.2)

is an isomorphism.

Proof. 1) We first show the following commutative diagram

XS∪T
πS∪T,S //

πS∪T,T

��

XS

πS

��
XT πT

// X

(4.3)

is cartesian. Indeed, πS : XS → X is a principal bundle under π(X,S, x), and
similarly for πT , πS∪T . So the assertion is equivalent to showing that the natural
homomorphism

π(X,S ∪ T, x)→ π(X,S, x)× π(X,T, x)(4.4)

induced by the embeddings S ⊂ (S ∪ T ), T ⊂ (S ∪ T ) of categories is an isomor-
phism. Since π(X,S, x) (resp. π(X,T, x)) is a reduced (resp. local) quotient of
π(X,S ∪ T, x), (4.4) is surjective. On the other hand, by definition, every object
in S ∪ T is a subquotient of tensors of objects in S and objects in T , thus by
A.1,(ii), (4.4) is injective. Therefore we have

XS′ ×XS
XS∪T = XS′ ×XS

(XS ×X XT ) = XS′∪T .(4.5)

This shows 1).
2) Note that πS∪T,S : XS∪T → XS is a principal π(X,T, x)-bundle since (4.3) is

cartesian, thus (πS∪T,S)∗OXS∪T is F -finite on XS. The pullback by πS∪T,S of any
F -finite bundle on XS lies in E(XS∪T ). Then it is easy to write any V ∈ E(XS∪T )
as a cokernel of a morphism π∗S∪T,SW1 → π∗S∪T,SW2, where W1, W2 ∈ CF (XS).
Thus 2) follows.

3) and 4) are easy by chasing diagrams and using projection formula, as we
did already many times.
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To show 5), one uses Proposition 3.2 and projection formula

H0(XS′∪T , π
∗
S′∪T,S∪TV ) = H0(XS′ , (πS′∪T,S′)∗π

∗
S′∪T,S∪TV )(4.6)

= H0(XS′ , π
∗
S′,S(πS∪T,S)∗V )

(Prop. 3.2)
= H0(XS, (πS∪T,S)∗V ) = H0(XS∪T , V ).

�

Fix S in S ét and consider the principal bundle XS∪CF (X) associated to S ∪
CF (X), that is

XS∪CF (X) = lim←−
T∈T `

XS∪T , π̃S,T : XS∪CF (X) � XS∪T .(4.7)

The cartesian diagram in (4.3) implies that XS∪CF (X) is the product of XS with

X̃F = XCF (X) over X. For each V ∈ E(XS∪T ), set

H0
T `(XS∪T , V ) := H0(XS∪CF (X), π̃

∗
S,TV ).(4.8)

Recall that (2.6) implies thatH0(XS∪CF (X),O) = k. Consequently, H0(XS∪CF (X), π̃
∗
S,TV )

is a finite dimensional k-vector space and one has

H0(XS∪CF (X), π̃
∗
S,TV ) = lim−→

T⊂T ′∈T `

H0(XS∪T ′ , π
∗
S∪T ′,S∪TV ).(4.9)

So in fact,

H0(XS∪CF (X), π̃
∗
S,TV ) = H0(XS∪T ′ , π

∗
S∪T ′,S∪TV ) for some T ′ ⊃ T, T ′ ∈ T `.

(4.10)

Denote U := C ét(X) ∪ CF (X) and XU the associated principal bundle. Thus

XU = lim←−
S∈Sét
T∈T `

XS∪T , π̃S∪T : XU � XS∪T .(4.11)

Then for any bundle V ∈ E(XS∪T ) we have, by means of (4.2),

H0(XU , π̃
∗
S∪TV ) ∼= H0

T `(XS∪T , V ).(4.12)

Definition 4.3. The category E has for objects pairs (XS∪T , V ), where S ∈ S ét,
T ∈ T ` and V ∈ E(XS∪T ), and for morphisms

HomE((XS1∪T1 , V ), (XS2∪T2 ,W )) := HomXU (π̃∗S1∪T1
V, π̃∗S2∪T2

W ).(4.13)

Proposition 4.4. The category E in Definition 4.3 is a Tannaka cateogry over
k, with tensor product defined by (S := S1 ∪ S1, T := T1 ∪ T2)

(XS1∪T1 , V )⊗ (XS2∪T2 ,W ) := (XS∪T , π
∗
S∪T,S1∪T1

(V )⊗ π∗S∪T,S2∪T2
(W ))

the unit object is (X,OX), and a fiber functor

E → Vectk, (XS∪T , V ) 7→ V |xS∪T .(4.14)
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Proof. We first show that E is an abelian category. The kernel, image and cokernel
of a morphism f : ((XS1∪T1 , V ), (XS2∪T2 ,W )) are defined as follows. Set S :=
S1 ∪ S2, T := T1 ∪ T2. By means of (4.12), f corresponds to an element fS of
H0
T `(XS∪T , π

∗
S∪T,S1∪T1

V ∨⊗π∗S∪T,S2∪T2
W ), which by means of (4.10) is represented

by an element fS∪T ′ in HomXS∪T ′
(π∗S∪T ′,S1∪T1

V, π∗S∪T ′,S2∪T2
W ). Now we define

the kernel, image and cokernel of f to be the kernel, image and cokernel of
fS∪T ′ respectively. It is clear that E is thus an abelian category. With respect
to the tensor product in E , the dual of an object is defined by (XS∪T , V )∨ =
(XS∪T , V

∨). �

One notices that the kernel (image, cokernel) of f does depend on the choice
of T ′, in particular, for an object (XS∪T , V ) in E , and for any T ′ ∈ T `, T ′ ⊃ T

(XS∪T , V ) is isomorphic with (XS∪T ′ , π
∗
S∪T ′,S∪T (V )) in E .(4.15)

Let G(E , x) be the Tannaka group scheme of E with respect to the given fiber
functor. Consider the tautological functor p : D → E , (XS, V ) 7→ (XS, V ) which is
clearly compatible with the fiber functors of D and E . It yields a homomorphism
p∗ : G(E , x)→ L(X, x) which is clearly injective.

Theorem 4.5. The k-group scheme homomorphism q∗ : G(E , x)→ L(X, x) is the
kernel of the homomorphism L(X, x)→ πF (X, x) and consequently is the kernel
of rét × rF : πN(X, x)→ πét(X, x)× πF (X, x). In other words the representation
category of Ker(rét × rF ) is equivalent to E.

Proof. We use Theorem A.1, (iii), to show that the sequence

G(E)→ L(X, x)→ πF (X, x)(4.16)

is exact.
If (XS∪T , V ) is an object in E , then

π∗S∪T,S(πS∪T,S)∗V � V(4.17)

and since (XS, (πS∪T,S)∗V ) is an object of D, every object of E is the quotient of
an object coming from D via q. Thus condition (c) in A.1, (iii), is fulfilled.

The maximal trivial subobject of (XS, V ) in E is an object (XS∪T , V0) for
some T ∈ T ` and V0 is the maximal trivial subobject of π∗S∪T,S(V ) in E(XS∪T ).
Proposition 4.6 below shows that there exists an F -finite bundle W ∈ T on X
and an inclusion j : π∗SW ↪→ V , such that

π∗S∪T,S(j) : π∗S∪TW
∼= V0.

Thus condition (b) in A.1, (iii), is fulfilled.
Finally recall that the homomorphism L(X, x)→ πF (X, x) is induced from the

functor CF (X, x) → D, V 7→ (X, V ). On the other hand the above discussion
also shows that (XS, V ) is trivial if and only if the inclusion j : π∗SW → V is
an isomorphism, that is (XS, V ) is isomorphic to (X,W ) in D (see 3.10). Thus
condition (a) is also fulfilled. �
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It just remains to prove

Proposition 4.6. Let V ∈ CF (XS), and V0 ⊂ π∗S∪T,S(V ) be the maximal trivial
subobject of π∗S∪T,S(V ) in E(XS∪T ). Then there exists an F -finite bundle W ∈ T
on X equipped with an inclusion j : π∗S(W ) ↪→ V such that

π∗S∪T,S(j) : π∗S∪T (W ) = V0 ⊂ π∗S∪T,S(V ).

Proof. Using the cartesian diagram (4.3), we have

H0(XS∪T , π
∗
S∪T,SV ) ∼= H0(XT , πS∪T,T∗π

∗
S∪T,SV )(4.18)

(4.3)∼= H0(XT , π
∗
TπS∗V ) ∼= H0(X, πT ∗OXT

⊗ πS∗V )

∼= HomX((πT ∗OXT
)∨, πS∗V ) = ⊕r1k · ϕi

for some morphisms ϕi : (πT ∗OXT
)∨ → πS∗V . Let W ⊂ πS∗V be the image of

⊕r1ϕi : ⊕r1(πT ∗OXT
)∨ → πS∗V.(4.19)

Then W is trivializable by πT and in particular W ∈ T is F -finite. We show that
the map j : π∗SW → V , induced from the inclusion i : W ↪→ πS∗V , is injective.

Indeed, let V ′ = imj ⊂ V thus V ′ is a quotient of π∗SW and according to
Proposition 3.6 and Theorem A.1, (i), we conclude that there is a quotient q :
W → W ′ of W such that the quotient map π∗W → V ′ is the pull back π∗Sq :
π∗SW → π∗SW

′. Now the inclusion π∗SW
′ = V ′ ⊂ V corresponds to a morphism

i′ : W ′ → V which is compatible with i in the sense that i = i′◦q. By assumption
q is surjective and i is injective, hence i′ is an isomorphism, consequently j is
injective.

On the other hand, one has from (4.19)

HomX((πT ∗OXT
)∨, πS∗V ) = HomX((πT ∗OXT

)∨,W )(4.20)

Thus

H0(XS∪T , π
∗
S∪T,SV ) = H0(XT , π

∗
TW ) = H0(XS∪T , π

∗
S∪TW )(4.21)

which means that π∗S∪T (W ) = V0 ⊂ π∗S∪T,S(V ). �

Remark 4.7. Using Proposition 2.7, replacing X by XS and XS by XS∪T , one
sees that the objects of E(XS∪T ) are precisely those bundles which come from a
representation of a local fundamental group over k.

Appendix A. Exact sequences of Tannaka group schemes

In this appendix, we summarize the material on Tannaka categories which we
used throughout the article. The statements and their proofs are taken from [3],
but for the reader’s convenience, we gather the information in a compact form
here.
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Let L
q−→ G

p−→ A be a sequence of homomorphism of affine group scheme over
a field k. It induces a sequence of functors

Rep(A)
p∗−→ Rep(G)

q∗−→ Rep(L)(A.1)

where Rep denotes the category of finite dimensional representations over k.

Theorem A.1. With the above settings we have

(i) The map p : G → A is faithfully flat (and in particular surjective) if
and only if p∗Rep(A) is a full subcategory of Rep(G), closed under taking
subquotients.

(ii) The map q : L → G is a closed immersion if and only if any object of
Rep(L) is a subquotient of an object of the form q∗(V ) for some V ∈
Rep(G).

(iii) Assume that q is a closed immersion and that p is faithfully flat. Then

the sequence L
q−→ G

p−→ A is exact if and only if the following conditions
are fulfilled:
(a) For an object V ∈ Rep(G), q∗(V ) in Rep(L) is trivial if and only if

V ∼= p∗U for some U ∈ Rep(A).
(b) Let W0 be the maximal trivial subobject of q∗(V ) in Rep(L). Then

there exists V0 ⊂ V in Rep(G), such that q∗(V0) ∼= W0.
(c) Any W in Rep(L) is embeddable in (hence, by taking duals, a quotient

of) q∗(V ) for some V ∈ Rep(G).

Proof. The statements (i) and (ii) are due to Saavedra [12]. We refer also to [1,
Proposition 2.21] for a nice proof. We show (iii).

Assume that q : L→ G is the kernel of p : G→ A. Then (a), (b) follow from
the well-know properties of normal subgroups (cf. [13, Chapter 13]). It remains
to show (c).

Let Ind : Rep(L) → Rep(G) be the induced representation functor, it is the
right adjoint functor to the restriction functor Res : Rep(G) → Rep(L) that is,
one has a functorial isomorphism

HomG(V, Ind(W ))
∼=−→ HomL(Res(V ),W ).(A.2)

It is easy to check

Ind(W ) ∼= (k[G]⊗k W )L(A.3)

where L acts on k[G] on the right. It is well-known that k[G] is faithfully flat
over it subalgebra k[A] ([13, Chapter 13]) and there is the following isomorphism

k[G]⊗k[A] k[G] ∼= k[L]⊗k k[G](A.4)

which precisely means that G→ A is a principal bundle under L. Consequently

k[G]⊗k[A] Ind(W ) ∼= k[A]⊗k V(A.5)

Thus the functor Ind : Rep(L)→ Rep(G) is exact.
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Setting V = Ind(W ) in (A.2), one obtains a canonical map uW : Ind(W )→ W
in Rep(L) which gives back the isomorphism in (A.2) as follows:

HomG(V, Ind(W )) 3 h 7→ uW ◦ h ∈ HomL(Res(V ),W ).

The map uW is non-zero whenever W is non-zero. Indeed, since Ind is faithfully
exact, Ind(W ) is non-zero whenever W is non-zero. Thus, if uW = 0, then both
sides of (A.2) were zero for any V . On the other hand, for V = Ind(W ), the right
hand side contains the identity map. This show that uW can’t vanish.

We want to show that uW is always surjective. Let U = Im(uW ) and T = W/U .
We have the following diagram

0 // Ind(U) //

uU

��

Ind(W ) //

uT

��

Ind(T ) //

uW

��

0

0 // U // W // T // 0

(A.6)

By assumption, the composition Ind(W ) � Ind(T )→ T is 0, therefore Ind(T )→
T is a zero map, implying T = 0.

Since Ind(W ) is the union of its finite dimensional subrepresentations, we can
find a finite dimensional G-subrepresentation W0(W ) of Ind(W ) which still maps
surjectively on W . In order to obtain the statement on the embedding of W , we
dualize W0(W∨) � W∨.

Conversely, assume that (a), (b), (c) are satisfied. Then it follows from (a)
that for U ∈ Rep(A), q∗p∗(U) ∈ Rep(L) is trivial. Hence pq : L → A is the
trivial homomorphism. Recall that by assumption, q is injective, p is surjective.
Let q̄ : L̄→ G be the kernel of p. Then we have commutative diagram

L
i //

q
��?

??
??

??
? L̄

q̄����
��

��
��

G

⇐⇒ Rep(L) Rep(L̄)
i∗oo

Rep(G)

q∗

eeKKKKKKKKKK q̄∗

99ssssssssss

(A.7)

with injective homomorphisms. It remains to show that i is surjective, which
amounts to saying that the category i∗Rep(L̄) in Rep(L) is full and closed under
taking subquotients.

We first show the fullness. Let W̄0, W̄1 be objects in Rep(L̄) and ϕ : W0 :=
i∗(W̄0) → i∗(W̄1) =: W1 be a morphism in Rep(L). Since Rep(L̄) also satisfies
(c), there exists V0, V1 in Rep(G) with a surjective morphism π : q̄∗(V0) → W̄0,
and an injective morphism ι : W̄1 → q̄∗(V1). These yield a morphism

ψ := i∗(ι)ϕi∗(π) : q∗(V0)→ q∗(V1)(A.8)

The morphism ψ induces and element in H0(L, q∗(V ∨0 ⊗ V1)). Now, by (b) and
by the fact that Rep(L̄) also satisfies (b) we conclude that ψ = i∗(ψ̄), for some
ψ̄ : q̄∗(V0) → q̄∗(V1). Since ι is injective and π is surjective, we conclude that
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ϕ = ϕ̄, for some ϕ̄ : W̄0 → W̄1 in Rep(L̄). Thus the category i∗Rep(L̄) is full in
Rep(L).

On the other hand, for any W ∈ Rep(L), by (c) there exist V0, V1 in Rep(G)
and ϕ : q∗(V0) → q∗(V1) such that W ∼= imϕ. By the fullness of i∗Rep(L̄) in
Rep(L), ϕ = i∗ϕ̄, hence W ∼= i∗(imϕ̄). Thus we have proved that any object in
Rep(L) is isomorphic to the image under i∗ of an object in Rep(L̄). Together
with the discussion above this implies that L ∼= L̄. �
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