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The Gauss-Manin Connection and Tannaka Duality

Hélène Esnault and Phùng Hô Hai

1 Introduction

If f : X → Spec(K) is a smooth, geometrically connected variety defined over a field of

characteristic 0, K ⊃ k is a field extension, and x ∈ X(K) is a rational point, one consid-

ers three Tannaka categories C(X/K), C(X/k), C(K/k) of flat connections with compatible

fiber functors. The objects of C(X/K) are bundles (i.e., locally free coherent modules of

finite type) with relative flat connections ((V,∇/K),∇/K : V → Ω1X/K ⊗OX
V), the ones of

C(X/k) are bundles with flat absolute connections ((V,∇), ∇ : V → Ω1X/k ⊗OX
V), and the

ones of C(K/k) are K-vector spaces with flat connections ((V,∇), ∇ : V → Ω1K/k⊗KV). The

morphisms are the flat morphisms and the fiber functor has values in the category of fi-

nite dimensional vector spaces VecK over K, defined by the restriction of V to x for C(X/K),

C(X/k) and by V for C(K/k). Then C(X/K) is a neutral Tannaka category, and Tannaka du-

ality [2,Theorem 2.11] yields the existence of a proalgebraic group schemeG(X/K) overK,

so that C(X/K) becomes equivalent to the representation category Repf(G(X/K)) on finite

dimensional K-vector spaces. The two other Tannaka categories C(X/k), C(K/k) are not

necessarily neutral. We assume that they are defined over k, which is to say that k is the

endomorphism ring EndC(K/k)((K, dK/k)) of the unit object, which in this case is the same

as the subfield of K of flat sections. Equivalently, this is saying that k is algebraically

closed in K. Then Tannaka duality [3, théorème 1.12] yields the existence of groupoid

schemes G(X/k), G(K/k) over k acting on Spec(K) ×k Spec(K), so that, in the groupoid

sense, C(X/k) (resp., C(K/k)) becomes equivalent to the representation category Repf(K :

Received 19 September 2005; Revised 10 January 2006; Accepted 25 January 2006

Communicated by Yuri I. Manin

 at U
niversitaetsbibliothek D

uisburg-E
ssen on July 15, 2010 

http://im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org


2 H. Esnault and P. H. Hai

G(X/k)) (resp., Repf(K : G(K/k))) on finite dimensional K-vector spaces. (We refer to the

appendix for the brief review of Deligne’s theory of groupoid schemes.) Since the fiber

functors are compatible, one has natural transformations C(X/k) rest−−→ C(X/K) mapping

an absolute connection (V,∇) to the induced relative one (V,∇/K) and C(K/k) f∗−→ C(X/k)

mapping (V,∇) to f∗(V,∇). This yields the homomorphisms

G(X/K) rest−−−→ G(X/k)Δ, G(X/k) f∗−−−→ G(K/k), (1.1)

where Δ defines the induced group scheme over K which is the restriction of G(X/k) to

the diagonal Δ = Spec(K)→ Spec(K) ×k Spec(K), viewed as a group scheme over K.

On the other hand, if V is an object in Repf(G(X/K)), its cohomology group

Hi(G(X/K), V) is well defined [5, Section 1.4], and is represented by an i-extension. Via

the Tannaka formalism, this i-extension yields an i-extension of connections in C(X/K)

of the trivial connection (OX, d/K) by (V,∇/K) corresponding to V. Via the connecting ho-

momorphism δ : H0DR(X, (OX, d/K)) → HiDR(X, (V,∇/K)), where DR means de Rham coho-

mology relative to K, one defines a homomorphism

Hi
(
G(X/K), V

) −→ HiDR
(
X,

(
V,∇/K

))
, i-extension �−→ δ(1). (1.2)

We show the following (see Proposition 2.2).

Proposition 1.1. The homomorphism (1.2) is an isomorphism for i = 0, 1 and injective

for i = 2, thus, in particular, is an isomorphism when X is an affine curve, and also is an

isomorphism if X is a projective curve of genus g ≥ 1. �

If V is an object of Repf(K : G(X/k)), corresponding to the connection (V,∇) and

its restriction (V,∇/K), then one has the Gauss-Manin connection defined on the finite di-

mensional K-vector spaceHiDR(X, (V,∇/K)). Via (1.2), it corresponds to a groupoid action

of G(K/k) on Hi(G(X/K), V) for i = 0, 1. We investigate the question of whether one can

interpret the Gauss-Manin connection as one does in topology. For the category of local

systems on complex manifolds, G(X/K) corresponds to π1(f−1f(x), x), G(X/k) to π1(X, x),

while G(K/k) corresponds to π1(S, f(x)). So via the standard exact sequence expressing

the absolute fundamental group as an extension of the one on the base with the relative

one, one defines an action of π1(S, f(x)) on Hi(π1(f−1f(x), x), ρ) for a representation ρ of

π1(X, x).
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Gauss-Manin and Tannaka Duality 3

In our setting, the map f∗ of groupoids in (1.1) is surjective, and one defines its

kernel,

0 −→ Lδ −→ G(X/k) f∗−−−→ G(K/k) −→ 0, (1.3)

as a discrete k-groupoid scheme, that is, the k-morphism Lδ → Spec(K)×kSpec(K) factors

through the diagonal Δ → Spec(K) ×k Spec(K). Its representation category is equivalent

to the representation category of the underlying group scheme L ⊂ G(X/k)Δ over K. We

show the following (see Theorem 5.8).

Theorem 1.2. The representation category of L is equivalent to the full subcategory of

C(X/K), the objects of which are both subobjects and quotients of objects in C(X/k). �

On the other hand, the homomorphism rest in (1.1) factors naturally through L.

One defines the subgroup scheme

H := rest
(
G(X/K)

) ⊂ L, (1.4)

over K of L and shows (Proposition 3.1) that its representation category is the full sub-

category of C(X/K), the objects of which are subquotients of objects in C(X/k). This de-

scription allows us to define an obstruction, local at∞ of X, for an object of C(X/K) to lie

in Rep(H). We show that this obstruction does not necessarily vanish, thus, we have the

following (see Proposition 3.2).

Proposition 1.3. The homomorphism G(X/K)→ G(X/k)Δ of K-group schemes is not nec-

essarily injective. �

More precisely we show the following (see Theorem 4.7).

Theorem 1.4. The kernel ofG(X/K)→ G(X/k)Δ has a nontrivial subgroup scheme which

is defined in categorial terms, and which has the property that it has no nontrivial ho-

momorphism into the additive group Ga. �

On the other hand, Deligne shows that any relative subconnection of an absolute

connection is also the quotient that acts as a relative connection of an absolute connec-

tion (Theorem 5.10). Thus the description of Rep(H) and Rep(L) as full subcategories of

Rep(G(X/K)) allows to conclude that H = L. The following is the main result of this arti-

cle (see Theorem 5.11).
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4 H. Esnault and P. H. Hai

Theorem 1.5. The sequence

G(X/K) −→ G(X/k) f∗−−−→ G(K/k) −→ 0 (1.5)

is exact, where exactness means that one sees the k-discrete groupoid scheme Lδ as a

K-group scheme L, and then it is the image of G(X/K). �

Thus there are at least two reasons why one cannot directly apply the standard

argument describing a canonical action of G(K/k) on Hi(G(X/K), V), where V is a finite

representation of G(X/k). Firstly, (1.1) is a sequence of groupoid schemes rather than

group schemes. This means that one has to redo for groupoids the classical theory avail-

able for groups. Secondly, G(X/K) → L is not injective, which is really a new phenome-

non. The reason why, nevertheless, one has thisG(K/k)-groupoid action onHi(G(X/K), V)

comes from the following (see Corollary 4.3 and Theorem 5.12).

Corollary 1.6 and Theorem 1.7. The natural homomorphisms Hi(L, V) → Hi(H,V) →

Hi(G(X/K), V) defined by functoriality are all isomorphisms for i = 0, 1. �

As a corollary, one obtains a Tannaka theoretic formulation of the Gauss-Manin

connection onHiDR(X, (V,∇/K)) (Section 6).

Finally, one can develop the same theory using connections relative to a finite di-

mensional K-vector space D of TK/k. More precisely, let us remark that a connection is

the same as an OX-coherent module endowed with an action of the sheaf of differential

operators. LetD ⊂ TK/k be a finite dimensional K-linear subspace of the tangent vectors

of K/k, which is closed under brackets, such that EndD(K) = k; and let TX/k,D be the in-

verse image of f∗D in TX/k, the tangent sheaf of K/k, under the map TX/k → f∗TK/k. Then

TX/k,D is an extension of f∗D by TX/K, which generates a subalgebra DX/k,D ⊂ DX/k. The

methods developed in this paper could be used to treat the relations C(X/K), C(X/k,D),

C(K/k,D) as well, where C(X/k,D) is the category of OX-coherent modules with an ac-

tion of DX/k,D, and C(K/k,D) is the category of finite dimensional K-vector spaces with a

D(K/k,D), the subalgebra of D(K/k) spanned byD. We do not write the details.

2 The neutral Tannaka category of flat connections

Let f : X → Spec(K) be a smooth geometrically connected variety defined over a field of

characteristic 0.

Definition 2.1. The category C(X/K) of flat connections relative to K (or simply of flat

connections/K) has for objects, the flat connections ((V,∇), ∇ : V→ Ω1X/K ⊗OX
V), where

V is a locally free coherent module of finite type, and for morphisms, the flat morphisms.
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Gauss-Manin and Tannaka Duality 5

It is a rigid abelian tensor category over K, and if we fix a K-rational point x ∈
X(K), we can endow C(X/K) with the fiber functor,

C(X/K) ω−−→ VecK, (V,∇) �−→ ω
(
(V,∇)

)
= V

∣
∣
x

=: V, (2.1)

with values in the category of finite dimensional K-vector spaces. Thus C(X/K) becomes

a neutral Tannaka category, and by the fundamental Tannaka duality [2, Theorem 2.11],

ω defines an equivalence of tensor categories,

C(X/K) ω∼=−−−→ Repf
(
G(X/K)

)
, (2.2)

where G(X/K) is the Tannaka group scheme over K and Repf(G(X/K)) is the category of

its finite dimensional representations.G(X/K) is a progroup scheme over Kwhich fulfills

G(X/K) = lim
←−
V

G(V),

G(V) = Im
(
G(X/K)

)
in GL

(
ω

(
(V,∇)

))
.

(2.3)

Let V be an object of Repf(G(X/K)). One defines its cohomology Hi(G(X/K), V). Recall

from [5, Section 1.4] that ifG is a group scheme, its cohomology is defined as the right de-

rived functor of the functor V �→ VG of invariants, and is computed explicitly by

cochains. Here G(X/K) is proalgebraic, acts on V via its quotient G(V) and the functor

V �→ VG(X/K) of invariants factors through V �→ VG(V) = VG(X/K). Setting O[G(X/K)] :=

lim−→V O[G(V)] for theK-algebra of functions,with its canonicalG(X/K)-action, theG(X/K)-

injective modules are still direct summands of (trivial)⊗KO[G(X/K)], as in [5, Subsection

1.3.10]. In the Ind-category of representations of the proalgebraic group G(X/K), there

are enough injective modules, and one defines Hi(G(X/K), V) as the right derived func-

tor to the functor V �→ VG(X/K) of invariants. As VG(X/K) = HomG(X/K)(K,V), one has, as

in [5, equation 1.4.2(1)], that cohomology is also the derived functor ExtiG(X/K)(K,V) to

V �→ HomG(X/K)(K,V):

Hi
(
G(X/K), V

)
= ExtiRepf(G(X/K))(K,V). (2.4)

On the other hand, if e is an i-extension of K by V in Repf(G(X/K)), via Tannaka duality

(2.2), one has an i-extension ε of (OX, d) by (V,∇) in C(X/K) with

ω(ε) = e, (2.5)
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6 H. Esnault and P. H. Hai

yielding a connecting homomorphism,

δε : H0DR

(
X,

(
OX, d

)) −→ HiDR

(
X, (V,∇)

)
, (2.6)

where HiDR(X, (V,∇)) := H
i(X,Ω•

X/K ⊗OX
V) is the de Rham cohomology of the connection

(V,∇). This defines a homomorphism of K-vector spaces,

δi(X/K) : Hi
(
G(X/K), V

) −→ HiDR

(
X, (V,∇)

)
, e �−→ δε(1). (2.7)

Proposition 2.2. The homomorphism δi(X/K) is an isomorphism for i = 0, 1 and is injec-

tive for i = 2. In particular, if X/K is an affine curve, H2(G(X/K), V) = H2DR(X, (V,∇)) = 0.

Moreover, if X/K is a smooth projective curve of genus g ≥ 1, then it is an isomorphism

for i = 2. �

Proof. For i = 0,H0(G(X/K), V) ⊂ V is the largest trivialG(X/K)-subrepresentation. Thus

by Tannaka duality (2.2), it corresponds to

(
H0DR

(
X, (V,∇)

) ⊗K OX, 1⊗ d
)
, (2.8)

which is the largest trivial subconnection of (V,∇), where ω((V,∇)) = V. For i = 1, (2.4)

says that a class e ∈ H1(G(X/K), V) is represented by an extension e : 0→ V →W → K→

0 in Repf(G(X/K)) and that two such extensions e, e ′ yield the same cohomology class if

there is a commutative diagram

0 V

=

W K

=

0

0 V W ′ K 0

(2.9)

On the other hand, a class ε ∈ H1DR(X, (V,∇)), with Cech cocycle (uij, vj) ∈ C1(V) ×
C0(Ω1X/K ⊗ V), δ(u) = ∇(u) − δ(v) = ∇(v) = 0, on a Cech covering U =

⋃
iUi, is repre-

sented by an extension ε : 0 → (V,∇) → (W,∇W) → (OX, d) → 0, with W|Ui
= (V ⊕ O)|Ui

,

∇W(0⊕ 1) = vi,∇W|V⊕0 = ∇. Two such extensions ε, ε ′ yield the same cohomology class

if and only if there is a commutative diagram

0 (V,∇)

=

(
W,∇W

) (
OX, d

)

=

0

0 (V,∇)
(
W ′,∇W ′

) (
OX, d

)
0

(2.10)

 at U
niversitaetsbibliothek D

uisburg-E
ssen on July 15, 2010 

http://im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org


Gauss-Manin and Tannaka Duality 7

Thus Tannaka duality (2.2) yields the result for i = 1. We remark that the proof also

shows the isomorphism H1DR(X, (V,∇)) = H1(G(X/K), V) for V ∈ Rep(G(X/K)) and (V,

∇), the corresponding connection with V only, quasi-coherent.

We now show injectivity for i = 2. Let J be the injective envelope of V in

Rep(G(X/K)) and let (J,∇) be the corresponding (not necessarily coherent) connection.

As J is injective in Rep(G(X/K)), one has

H1DR

(
X, (J,∇)

)
∼= H1

(
G(X/K), J

)
= 0. (2.11)

Hence, the long exact sequences associated to the exact sequences 0→ V → J→ J/V → 0

and 0→ (V,∇)→ (J,∇)→ (V/J,∇)→ 0 yield

H2
(
G(X/K), V

)
∼= H1

(
G(X/K), J/V

)
∼= H1DR

(
X, (J/V,∇)

)
H2DR

(
X, (V,∇)

)
.

(2.12)

We now prove the last part of the proposition. Let X/K be a smooth projective

curve, and (V,∇) be a connection. Then H2DR(X, (V,∇)) is a Poincaré dual to H0DR(X, (V,

∇)∨), where (V,∇)∨ is the dual connection. The inclusion (H0DR(X, (V,∇)∨)⊗KOX, 1⊗d) ⊂
(V,∇)∨ induces an isomorphism onH0DR, thus the dual projection

(V,∇)
(
H2DR

(
X, (V,∇)

) ⊗K OX, 1⊗ d
)

∼= ⊕h1
(
OX, d

)
,

h = dimKH
2
DR

(
X, (V,∇)

)
,

(2.13)

induces an isomorphism on H2DR. On the other hand, assuming now that g ≥ 1, there are

two classes α,β ∈ H1DR(X), so that 0 
= α ∪ β ∈ H2DR(X) = K. Thus there is a diagram of

extensions:

(
OX, d

)
(E,∇)

(
OX, d

)

(F,∇)

(
OX, d

)

(2.14)

in C(X/K), which corresponds to α for the horizontal extension and β for the vertical

one. Denoting by (E,∇)0 the sub of ⊕h1 (E,∇) which is the inverse image of (OX, d) embed-

ded diagonally in ⊕h1 (OX, d), and setting (F,∇)0 = ⊕h1 (F,∇), (2.14) induces a 2-extension
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8 H. Esnault and P. H. Hai

in C(X/K):

0 −→ ⊕h1
(
OX, d

) −→ (F,∇)0 −→ (E,∇)0 −→
(
OX, d

) −→ 0, (2.15)

which has the property that the image of connecting homomorphismH0DR(X)→⊕h1 H2DR(X)

followed by a projection ⊕h1H2DR(X)→ H2DR(X) is the fundamental class α∪β. Since (2.13)

induces an isomorphism on H2DR, there are connections (E1,∇) and (F1,∇) together with

a commutative diagram of 2-extensions:

0 ⊕h1
(
OX, d

)
(F,∇)0 (E,∇)0

(
OX, d

)
0

0 (V,∇)
(
F1,∇

) (
E1,∇

) (
OX, d

)
=

0

(2.16)

in C(X/K). We apply Tannaka duality to the bottom 2-extension. This yields a 2-extension:

0 −→ V −→ F1 −→ E1 −→ K −→ 0 (2.17)

in Repf(G(X/K)), which has the property that the composite map

H0
(
G(X/K), K

) connecting hom.−−−−−−−−−−−→ H2
(
G(X/K), V

) δ2(X/K)−−−−−−−→ H2DR

(
X, (V,∇)

)

(2.13) iso−−−−−−−→ ⊕h1H2DR(X)
proj.−−−−→ H2DR(X)

(2.18)

is an isomorphism. This shows that δ2(X/K) is surjective and finishes the proof. �

Remark 2.3. If K = C, then the classical Riemann-Hilbert correspondence establishes an

equivalence of Tannaka categories,

Repf
(
π

top
1

(
X(C), x

))
∼= C(X/C), (2.19)

for X a complex smooth projective variety. It defines a homomorphism,

π
top
1

(
X(C), x

) −→ G(X/C)(C), (2.20)
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Gauss-Manin and Tannaka Duality 9

with dense image. In particular, if X/K = P
1/C, then πtop

1 (X(C), x) = 0, thus

H2
(
G(X/K), K

)
= 0, whileH2DR

(
X,

(
OX, d

))
= K. (2.21)

More generally, (2.18) gives a topological hint why the surjectivity on H2 in Proposition

2.2 is true on a curve of genus ≥ 1. Indeed in this case, the universal covering of the

underlying Riemann surface is contractible, thus the Hochshild-Serre spectral sequence

degenerates and one hasH2DR(X/C, (V,∇)) ∼= H2(πtop
1 (X(C), x), V).

3 The not necessarily neutral Tannaka category of flat connections

Let g : X→ Spec(k) be a smooth scheme with k a field of characteristic 0, where g factors

through f : X → Spec(K) as in Section 2, thus X/K is a smooth geometrically connected

variety, and K ⊃ k is a field extension with EndC(K/k)((K, dK/k)) = k. As already men-

tioned in Section 1, this is equivalent to saying that k is algebraically closed in K. Indeed,

EndC(K/k)((K, dK/k)) = K∇ is the ring of flat sections. We have C(X/k) as in Definition 2.1.

The objects of C(X/k) are flat connections ((V,∇), ∇ : V → Ω1X/k ⊗ V), where V is a co-

herent locally free sheaf on X/K, and morphisms are flat morphisms. This is a k-linear

category. As in (2.1), we fix a K-rational point x ∈ X(K) which defines a fiber functor

C(X/k) ω−−→ VecK, (V,∇) �−→ V
∣
∣
x

=: V. (3.1)

Thus C(X/k) becomes a nonneutral Tannaka category when K 
= k. By the fundamental

Tannaka duality [3, théorème 1.12], there is a groupoid scheme G(X/k) defined over k,

acting on Spec(K) ×k Spec(K) so thatω defines an equivalence of tensor categories

C(X/k) ω∼=−−−→ Repf
(
K : G(X/k)

)
, (3.2)

where Repf(K : G(X/k)) denotes the category of finite dimensional K-representations of

G(X/k). See the appendix for a summary of the facts on groupoid schemes which will be

used in the sequel.

We denote by G(X/k)Δ the restriction of G(X/k) to the diagonal. Then G(X/k)Δ is

a discrete groupoid scheme over k. The representation category of a discrete groupoid

scheme is equivalent to the representation category of the underlying group scheme over
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10 H. Esnault and P. H. Hai

K. The embedding of Tannaka categories C(X/k) rest−−→ C(X/K), (V,∇) �→ rest((V,∇)) =

(V,∇/K) with compatible fiber functor yields a homomorphism

G(X/K) rest−−−→ G(X/k)Δ ⊂ G(X/k). (3.3)

Proposition 3.1. The representation category on finite dimensional K-vector spaces of

H := rest(G(X/K)) ⊂ G(X/k)Δ is equivalent to the full subcategory of C(X/K), the objects

of which are subquotients of objects rest((V,∇)). �

Proof. Let us denote by C the full subcategory of C(X/K), the objects of which are sub-

quotients of the objects rest((V,∇)), and by G(C) its Tannaka group scheme. Recall from

[2, Proposition 2.21(a)] that G(X/K) → G(C) is faithfully flat if and only if rest is fully

faithful, which in our case is trivial, and any subobject in C(X/K) of an object in C is an

object in C, which is trivial as well in our case. Recall from [2, Proposition 2.21(a)] that

G(C) → G(X/k)Δ is a closed immersion if and only if any object of C is a subquotient of

an object in Rep(G(X/k)Δ). But by definition, objects in C are subquotients of objects in

C(X/k), thus as fortiori of objects in Rep(C(X/k)Δ). �

Proposition 3.2. The homomorphism of group schemes G(X/K) → G(X/k)Δ over K is not

necessarily injective. �

Proof. We assume that X is an affine curve, and that k = C, K = C(s), where s is a tran-

scendental element. We wish to show that not every connection on X/K is a subquotient

of a flat connection on X/k. We consider a rank 1 connection (L,∇) on X/K. Its formal

completion at a point y ∈ X̄ \ X, which we assume to be K-rational with local parameter

t, is of the shape

L ⊗OX
K

(
(t)

)
= K

(
(t)

) · e,
(∇⊗OX

K
(
(t)

))
(e) = α(t)

dt

t
· e, α(t) ∈ 1

tn
K

[
[t]

]
.

(3.4)

Assume (L,∇) is a subquotient of (V,∇) on X/k. By the Turrittin-Levelt decomposition

(see, e.g., [1, Section 5.9]), one has

(V,∇/K) ⊗OX
K

(
(t)

)
= ⊕iMi ⊗Ui, (3.5)

withUi nilpotent,Mi irreducible, Hom(Mi,Mj) = K · δij. Thus (L,∇)⊗OX
K((t)) has to be

one of theMi, sayM0; and it is not only a subquotient, but also a subrelative connection.
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Gauss-Manin and Tannaka Duality 11

We write the matrix of the connection in a basis adapted to the decomposition (3.5):

(
a 0

0 b

)
dt

t
+

(
A B

C D

)

ds, (3.6)

with coefficients of a, b,A, B, C,D in K((t)), a(dt/t) describing the connection/K onM0⊗
U0, so a = α ⊗ N0 with N0 a sum of nilpotent Jordan blocks, thus, in particular, with

Q-coefficients. The integrability condition implies

∂sa − t∂tA = [a,A]. (3.7)

This implies

Tr Rest=0 ∂s(a)
dt

t
= 0 (3.8)

as [a,A] has trace zero and (∂tA)dt has residue zero. Let us denote by α0 ∈ K the constant

term in the t-expansion of α(t) ∈ (1/tn)K[[t]]. If

α0 ∈ K \ C, (3.9)

the condition (3.8) is not fulfilled and (L,∇) ⊗OX
K((t)) is not a subconnection of a flat

connection/C. Now starting with (L,∇) on X/K, we can always achieve the condition

(3.9). We possibly replaceX by a smaller affineX\Σ so that Γ(X̄\Σ,ω(y)) contains a differ-

ential form η so that α0+(resy η) ∈ K\C, and then replace (L,∇) by ((L,∇)⊗(OX\Σ, d+γ))

on X \ Σ. This finishes the proof. �

Corollary 3.3. The kernelN = Ker(G(X/K)→ G(X/k)Δ) is not trivial. �

We will show in Theorem 4.7 that N has a nontrivial subgroup with no Ga quo-

tient.

4 The universal de Rham extension

In this section, the general assumption is as in Section 3 with the extra assumption on

the transcendence degree of K over k.
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12 H. Esnault and P. H. Hai

Assumptions are

k field of characteristic 0, algebraically closed in K,

tr degK/k ≤ 1,
f : X −→ Spec(K) smooth geometrically connected variety,

g : X −→ Spec(k).

(4.1)

Fixing x ∈ X(K), we have C(X/k) and its groupoid scheme G(X/k) as in (3.1).

Let (V,∇) be a flat connection on X/k. Recall [6, Section 3], that its Gauss-Manin

connection is defined as the connecting homomorphism HiDR(X, (V,∇/K)) GM−−→ Ω1K ⊗K
HiDR(X, (V,∇/K)) on the relative cohomology HiDR(X, (V,∇/K)) := H

i(X,Ω•
X/K ⊗ V) of the

extension

0 −→ Ω1K/k ⊗K
(
Ω•−1
X/K ⊗OX

V
) −→ Ω•

X/k ⊗OX
V −→ Ω•

X/K ⊗OX
V −→ 0. (4.2)

Remark 4.1. As mentioned in [6, (1.2)], the de Rham cohomology HiDR(X, (V,∇/K)) is also

the right derived functor to the left exact global section functor

MIC(X/K) −→ VecqcK ,
(
V,∇/K

) �−→ H0DR

(
X,

(
V,∇/K

))
, (4.3)

where MIC(X/K) is the category of quasi-coherent modules endowed with a flat connec-

tion on X/K, the morphisms being the flat morphisms, and VecqcK is the category of quasi-

coherent K-vector spaces (i.e., of possibly infinite dimensional K-vector spaces). This

category has enough injectives. One defines MIC(X/k) as the category of quasi-coherent

modules endowed with a flat connection on X/k. This category has enough injectives.

Moreover, as tacitly mentioned in [6, Remark 3.1], the restriction functor MIC(X/k) →

MIC(X/K), (V,∇) �→ (V,∇/K) sends injectives to injectives. Indeed, the sheaf of alge-

bras of differential operators P-D Diff(X/k) (see [6, (1.2)] for the notation) is flat over its

sheaf of subalgebras P-D Diff(X/K) as one can choose local coordinates in Zariski local

neighborhoods. Therefore, the restriction functor has an exact left adjoint, that is, forM

defined/k, with restriction to K denoted byM/K, andN defined/K, one has

HomP-D Diff(X/k)
(
P-D Diff(X/k) ⊗P-D Diff(X/K) N,M

)
= HomP-D Diff(X/K)(N,M/K).

(4.4)
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Gauss-Manin and Tannaka Duality 13

This implies that the restriction to K of injective modules/k is injective/K. (We thank N.

Katz for explaining to us in more detail his remark.) Thus for (V,∇), an absolute connec-

tion, and (V,∇) resolution−−−−−−→ I•, an injective resolution in MIC(X/k), one has

HiDR

(
X, (V,∇/K)

)
= Hi

(
H0DR

(
X, I•/K

))
. (4.5)

On the other hand, the restriction of ∇ to H0DR(X, I•/K) ⊂ V is the Gauss-Manin connec-

tion which we denote by GM. This induces the Gauss-Manin connection on HiDR(X, (V,

∇/K)), which we still denote by GM. One obtains a commutative diagram

MIC(X/k)
rest

Hi
DR(/K)

MIC(X/K)

Hi
DR

MIC(K/k)
rest

VecqcK

(4.6)

We still denote by GM the Gauss-Manin connection on the full subcategory C(X/k) ⊂
MIC(X/k). Then (4.6) contains the subcommutative square

C(X/k)
rest

Hi
DR(/K)

C(X/K)

Hi
DR

C(K/k)
rest

VecK

(4.7)

Theorem 4.2. Let the assumptions be as in (4.1) and let (V,∇) be an object in C(X/k).

Then there is an extension in C(X/k):

0 −→ (V,∇) −→ (W,∇) −→ (
H1DR

(
X, (V,∇/K)

) ⊗K OX,GM⊗d) −→ 0, (4.8)

with the property that the connecting homomorphism

H0DR

((
H1DR

(
X, (V,∇/K)

) ⊗K OX, (GM⊗d)/K))

= H1DR

(
X, (V,∇/K)

) connecting−−−−−−−−→ H1DR

(
X, (V,∇/K)

) (4.9)

is the identity. �
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14 H. Esnault and P. H. Hai

Proof. The K-vector space Hom(H1DR(X, (V,∇/K)), H1DR(X, (V,∇/K))), is endowed with the

connection Hom(GM,GM). The identity

1 ∈ Hom
(
H1DR

(
X, (V,∇/K)

)
, H1DR

(
X, (V,∇/K)

))
(4.10)

is a flat section. We apply (4.2) to the flat connection

W := Hom
(
H1DR

(
X, (V,∇/K)

) ⊗ OX,V
)

(4.11)

on X/k. Thus 1 ∈ H1DR(X,W/K), with GM(1) = 0. Thus 1 lifts to a class

1̃ ∈ H1DR(X,W) = H1DR

(
X,Hom

(
H1DR

(
X, (V,∇/K)

) ⊗ OX,V
))
. (4.12)

By the standard cocycle defined in the proof of Proposition 2.2 for a class in H1DR, the

class 1̃ defines an extension (4.8) with (4.9) being the identity. �

Corollary 4.3. Let the assumptions be as in (4.1) and let (V,∇) be an object in C(X/k).

Then the restriction homomorphism

H1
(
H,ω

(
(V,∇/K)

)) −→ H1
(
G(X/K),ω(V,∇/K)

)

= (Proposition 2.2)H1DR

(
X, (V,∇/K)

) (4.13)

is an isomorphism. �

Proof. As by Proposition 3.1, Repf(H) is equivalent to a full subcategory of C(X/K), the

homomorphism

H1
(
H,ω

(
(V,∇/K)

)) −→ H1
(
G(X/K),ω(V,∇/K)

)
(4.14)

is injective. If now e : 0→ (V,∇/K)→ (V ′,∇/K)→ (OX, d/K)→ 0 is an extension in C(X/K)

with class ē ∈ H1DR(X, (V,∇/K)), then by Theorem 4.2, e is isomorphic to the pull-back of

(4.8) via 1 ∈ OX �→ ē ∈ H1DR(X, (V,∇/K)), where (4.8) is now considered as an extension

of relative connections on X/K. Consequently, (V ′,∇/K) is a subconnection of an abso-

lute flat connection, thus (V ′,∇/K) is an object of Repf(H). This shows surjectivity and

finishes the proof. �
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Gauss-Manin and Tannaka Duality 15

Definition 4.4. Define Repf(H) ⊂ Repf(H)t ⊂ Repf(G(X/K)) which contains Repf(H) and

which is thick, that is, whenever two objects are in Repf(H)t, so is any extension.

Lemma 4.5. Repf(H)t is defined by its objects. One successively defines Objn as exten-

sions in Repf(G(X/K)) of objects in Objn−1, with Obj0 = Obj(Repf(H)). Then the objects

of Repf(H)t consist of the union of the Objn. �

Proof. We just have to show that each full subcategory Objn, n ≥ 0, is a Tannaka subcat-

egory. By definition, Objn is obviously closed undertaking the tensor product and dual

objects. Since Objn is full in Repf(G(X/K)), to show that it is an abelian subcategory, it

suffices to check that for any V in Objn, all its sub- and quotient objects are again in Objn.

We show this by induction. Forn = 0,Obj0 = Repf(G), the claim follows from the fact that

G(X/K) → H is injective. In the general case, let 0 → V1 → V → V0 → 0 be the extension

defining V, with Vi ∈ Objn−1. LetW ⊂ V. By induction, V1 ∩W ⊂ V1 andW/(W ∩V1) ⊂ V0
are in Objn−1, hence by definition of Objn, we have W ∈ Objn. Similar discussion holds

for quotients of V.

Remark 4.6. If Ht is the Tannaka group of Repf(H)t, thus Repf(H)t = Repf(H
t), then one

has

G(X/K) −→ Ht −→ H, (4.15)

with G(X/K) → Ht surjective since, as in the proof of Proposition 3.1, every subobject in

Repf(G(X/K)) of an object in Repf(H
t) is in Repf(H

t).

We define the algebraic K-group

Nt := Ker
(
G(X/K) Ht

) ⊂ N = Ker
(
G(X/K) H

)
. (4.16)

One has the following theorem.

Theorem 4.7. Nt is not always trivial, and one hasH1(Nt,Ga) = 0. �

Proof. The example of Proposition 3.2 has rank 1. Since Repf(H)t is defined by its objects

which are extensions in Repf(G(X/K)) of objects in H, Nt could only be trivial if the ex-

ample was an object in Repf(H), which is not. We consider the exact sequence,

0 −→ Nt −→ G(X/K) ι−−→ Ht −→ 0, (4.17)
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16 H. Esnault and P. H. Hai

of K-proalgebraic groups. We consider the relative connection (OX, d/K). As it is the

restriction of an absolute connection, ω((OX, d)) is certainly a representation of H, and

then it is the trivial representation K both forH and forG(X/K). Since Rep(Ht) is thick in

Rep(G(X/K)), ι induces an isomorphism H1(Ht, K) ι∗−→ H1(G(X/K), K). As in the proof of

Proposition 2.2, this implies the injectivity H2(Ht, K) ι∗−→ H2(G(X/K), K). Looking now at

the long cohomology sequence with K-coefficients associated to (4.17), we conclude that

H1(Nt, K) = 0. This finishes the proof. �

Remark 4.8. In order to get rid of the assumption on the transcendence degree of K/k be-

ing ≤ 1, one has to introduce the category of vertical connections, that is, those connec-

tions on X/k, the curvature of which lies in Ω2K ⊗ End(V). This is because the universal

extension (4.8) is a priori only a vertical connection, which is not necessarily flat. This

introduces correspondingly the Tannaka groups Hv, Htv, and so forth with the same con-

clusions as in Corollary 4.3 and Theorem 4.7. Since we do not see any applications of this,

we do not detail the construction.

Remark 4.9. If X/K is an affine curve, then the embedding Repf(H) ι−→ Repf(G(X/K)) is

thick. This is equivalent to saying that H1(H,V) ι∗−→ H1(G(X/K), V) is an isomorphism

for all objects in Repf(H), which we show now. An object of Repf(H) is of the shape V =

V ′/V ′′ with V ′′ ⊂ V ′ ⊂W withW = ω((W,∇)) and (W,∇) an object in C(X/k).

We first assume V ′ = W. Note that for all V ∈ Repf(H), one has H0(H,V) =

H0(G(X/K), V), as G(X/K) → H is surjective, and H2(G(X/K), V) = 0 by assumption on

X and by Proposition 2.2. We have the following commutative diagram with exact rows

(G := G(X/K), V1 = V ′′, V0 = W/V1):

H0
(
H,V0

)

=

H1
(
H,V1

)
H1(H,W)

=

H1
(
H,V0

)
H2

(
H,V1

)

H0
(
G,V0

)
H1

(
G,V1

)
H1(G,W) H1

(
G,V0

)
H2

(
G,V1

)
= 0

(4.18)

By fullness (Proposition 3.1), H1(H,Va) ι∗−→ H1(G(X/K), Va) is injective, a = 0, 1, hence

bijective.

Now consider the exact sequence 0 → V ′′
→ V ′

→ V → 0 with V ′′ ⊂ V ′ ⊂ V/K,

V ∈ C(X/k), which also yields a commutative diagram as above. Here we have isomor-

phisms H1(H,V ′) ∼= H1(G(X/K), V ′) and the same for V ′′. As H1(H,V) ι∗−→ H1(G(X/K), V)

is injective by fullness, then it is surjective as well. This finishes the proof. �
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Gauss-Manin and Tannaka Duality 17

5 The exact sequence of groupoids

The assumptions in this section are the same as in Section 3: g : X→ Spec(k) is a smooth

scheme with k a field of characteristic 0, with factorization f : X → Spec(K), which

makes X a smooth, geometrically connected variety over the extension K ⊃ k. We assume

EndC(K/k)((K, dK/k)) = k. Fixing x ∈ X(K),we have C(X/k) and its groupoid schemeG(X/k),

as in Section 3. See also the appendix.

We recall that G(X/k)Δ is the discrete groupoid scheme, pull back of G(X/k) over

the diagonal Δ → Spec(K) ×k Spec(K). We define similarly G(K/k)Δ, pull back of G(K/k)

over the diagonal Δ→ Spec(K)×k Spec(K). BothG(X/k)Δ andG(K/k)Δ, as K-schemes, are

K-algebraic groups.

Lemma 5.1. The homomorphism of groupoid schemes,

G(X/k) f∗−−−→ G(K/k), (5.1)

is surjective, and induces a surjective homomorphism

G(X/k)Δ f∗−−−→ G(K/k)Δ, (5.2)

of algebraic groups. �

Proof. The composite map G(K/k) x∗−→ G(X/k) f∗−→ G(K/k) is the identity. �

We define the progroup scheme over K:

L = Ker
(
G(X/k)Δ f∗−−−→ G(K/k)Δ

)
. (5.3)

Since the composite of functors,

C(K/k) f∗−−−→ C(X/k) rest−−−→ C(X/K), (5.4)

sends any object to a finite sum of the trivial object, the composite map of groupoid

schemes,

G(X/K) rest−−−→ G(X/k) f∗−−−→ G(K/k), (5.5)

fulfills

rest
(
G(X/K)

)
= H ⊂ L. (5.6)
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18 H. Esnault and P. H. Hai

Recall from Section 3 that Repf(K : G(X/K)) denotes the category of finite dimensional

K-representations of G(X/k) (see the appendix for details).

Lemma 5.2 (key lemma). Let V ∈ Obj(Repf(K : G(X/k))). Then

H0(L, V) = H0
(
G(X/K), V

)
. (5.7)

�

Proof. It is clear that

H0(L, V) ⊂ H0(G(X/K), V
)
. (5.8)

We wish to show surjectivity. We first show the following claim.

Claim 5.3.

f∗H0DR

(
X,

(
V,∇/K)

)
H0DR

(
X, (V,∇/K)

) ⊗K OX ⊂ V (5.9)

is the largest subbundle which is stabilized by ∇ and on which

∇ = f∗δ, with δ = ∇∣
∣
H0

DR(X,(V,∇/K)) so
(
H0DR

(
X, (V,∇/K)

)
, δ

) ∈ Obj
(
C(K/k)

)
.

(5.10)
�

Proof. Indeed, by flatness of ∇, the composite map

H0DR

(
X, (V,∇/K)

) ∇−−→ Ω1K ⊗ V
∇−−→ Ω1K ⊗Ω1X/K ⊗ V (5.11)

is vanishing. On the other hand, one has

Ω1K ⊗ V
∇=1

Ω1
K
⊗(∇/K)

−−−−−−−−−−−−→ Ω1K ⊗Ω1X/K ⊗ V. (5.12)

One concludes that

∇(
H0

(
X, (V,∇/K)

)) ⊂ Ω1K ⊗K Ker(∇/K) = Ω1K ⊗H0(X, (V,∇/K)
)
. (5.13)

Consequently, H0(X, (V,∇/K)) ⊗K OX ⊂ V is stabilized by ∇ and lies in the largest sub-

bundle on which ∇ is of the shape f∗δ. On the other hand, it has to be the largest such, as

any other W ⊂ V would have the property that (∇/K)|W is generated by flat sections. �
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Gauss-Manin and Tannaka Duality 19

Claim 5.3 shows that H0(G(X/K), V) is a G(X/k)-representation on which G(X/k)

acts via its quotient G(K/k), thusH0(G(X/K), V) ⊂ H0(L, V). This finishes the proof. �

Corollary 5.4. If Vi, i = 1, 2 are objects of Repf(K : G(X/k)), with restrictions Vi/K as

objects of Repf(G(X/K)), then

HomL

(
V1, V2

)
= HomG(X/K)

(
V1, V2

)
. (5.14)

�

Proof. We just set V = V∨
1 ⊗ V2 and apply Hom(V1, V2) = H0(V) in the corresponding

category together with Lemma 5.2. �

Lemma 5.5. Let N be a normal subgroup of a proalgebraic group G over Spec(K). Then

any finite dimensional representation of N is a quotient of a finite dimensional repre-

sentation of G considered as a representation ofN. Consequently any finite dimensional

representation of N can be embedded into a finite dimensional representation of G con-

sidered as representation ofN. �

Proof. Let

Ind : Rep(N) −→ Rep(G) (5.15)

be the induced representation functor, it is the right adjoint functor to the restriction

functor

Res : Rep(G) −→ Rep(N), (5.16)

that is, one has a functorial isomorphism

HomG

(
V, Ind(W)

) ∼=−−→ HomN

(
Res(V),W

)
. (5.17)

Let A := G/N be the quotient group. It is well known that O(G) is faithfully flat over its

subalgebra O(A) [9, Chapter 13]. This implies that the functor Ind is faithfully exact [8,

Chapter 2].

Setting V = Ind(W) in (5.17), one obtains a canonical map uW : Ind(W) → W in

Rep(N) which gives back the isomorphism in (5.17) as follows: HomG(V, Ind(W)) � h �→
uW◦h ∈ HomN(Res(V),W). The mapuW is nonzero wheneverW is nonzero. Indeed, since

Ind is faithfully exact, Ind(W) is nonzero whenever W is nonzero. Thus, if uW = 0, then

both sides of (5.17) are zero for any V. On the other hand, for V = Ind(W), the right-hand

side contains the identity map. This shows that uW cannot vanish.
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20 H. Esnault and P. H. Hai

We want to show that uW is always surjective. Let U = Im(uW) and let T = W/U.

We have the following diagram:

0 Ind(U) Ind(W) Ind(T) 0

0 U W T 0

(5.18)

The composition Ind(W) � Ind(T)→ T is 0, therefore Ind(T)→ T is a zero map, implying

T = 0.

Since Ind(W) is a union of its finite dimensional subrepresentations, we can

therefore find a finite dimensional G-subrepresentation W0(W) of Ind(W), which still

maps surjectively onW. In order to obtain the statement on the embedding ofW, we du-

alizeW0(W∨) � W∨. �

Lemma 5.6. LetGΔ be the diagonal subgroup of a k-groupoidG acting transitively upon

Spec(K). Then any finite dimensional representation ofGΔ is a quotient of a finite dimen-

sional representation ofG considered as a representation ofGΔ. Consequently, any finite

dimensional representation of GΔ can be embedded into a finite dimensional represen-

tation of G considered as a representation of GΔ. �

Proof. The proof of this lemma will be given in Section 6.4. �

In our situation, we have the normal group L in the group G(X/k)Δ, which is the

diagonal subgroup of the groupoid G(X/k). Thus, we have the following corollary.

Corollary 5.7. Every finite dimensional representation of L can be embedded into the re-

striction to L of a finite dimensional representation of G(X/k), consequently, it can be

represented as a quotient of the restriction to L of a finite dimensional representation of

G(X/k). �

We are now in the position to prove the following theorem.

Theorem 5.8. The category Repf(L) is equivalent to the full subcategory C of C(X/K), the

objects of which are subobjects as well as quotient objects of the restriction to K of an

absolute connection. �

Remark 5.9. The objects of C are of the shape Im(ϕ), where ϕ ∈ Hom(V1/K, V2/K), with

Vi = ω((Vi,∇i)), (Vi,∇i) are objects of C(X/k) and ϕ a morphism in C(X/K).
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Gauss-Manin and Tannaka Duality 21

Proof of Theorem 5.8. Let us first remark that by definition, C is a full subcategory of

C(X/K), which is trivially closed undertaking the tensor product. We do not know yet

whether it is an abelian subcategory.

We denote by Q : Repf(L) → C(X/K) the functor defined by the homomorphism

q : G(X/K)→ L. By Corollary 5.7 the image of Q lies in C.

Being a tensor functor, Q is faithful. We show that it is also full. Let U0, U1 be

objects in Repf(L) and φ : Q(U0) → Q(U1) a C-morphism, that is, φ is a K-linear map

U0 → U1, which is only G(X/K)-linear where the actions of G(X/K) is induced from the

homomorphism q : G(X/K)→ L. It is to show that φ is in fact L-linear.

By Corollary 5.7 there are L-linear morphisms π : V0 � U0 and ι : U1 ↪→ V1,

where V0 and V1 are objects in Repf(K : G(X/k)). One has Ui = ω((Ui,∇i)) for relative

connections (Ui,∇i) ∈ Obj(C(X/K)), Vi = ω((Vi,∇i)) for absolute connections (Vi,∇i) ∈
Obj(C(X/k)) with (V0,∇0/K) π�−−→ (U0,∇), (U1,∇1) ι↪→−−→ (V1,∇1/K). We set ψ = ιφπ:

U0
φ

V0

ι inj

V0

π surj

ψ
V1

(5.19)

By Corollary 5.4, the map ψ is L-linear. This implies that φ is L-linear as well.

We now show that each object of C is isomorphic to the image under Q of a rep-

resentation of L. An object of C has the form Im(ϕ), where ϕ : V0/K → V1/K, as in

Remark 5.9. By the above discussion, ϕ is also in the image of Q, hence so is Im(ϕ).

Thus the functor Q : Repf(L) → C is fully faithful and each object of C is isomor-

phic to the image of an object of Repf(L). This shows that C is a tensor subcategory in

C(X/K) and Q is an equivalence. �

On the other hand, one has the following theorem.

Theorem 5.10 (Deligne). Let (L,∇) be an object in C(X/K), and assume there is an object

(V,∇V) ∈ C(X/k) so that in C(X/K), one has an injection (L,∇) ⊂ (V,∇V/K). Then there is

an object (W,∇W) ∈ C(X/k) so that in C(X/K), one has a surjection (W,∇W/K) � (L,∇).

�

Proof. Variant of Deligne’s proof. We first assume that (L,∇) is of rank 1. Then we define

the (L,∇)-isotypical component (W,∇) of (V,∇V/K) as follows. Set (V ′,∇) = (V,∇V/K)⊗
(L,∇)∨, which is an object in C(X/K). Then the inclusion (L,∇) ⊂ (V,∇V/K) corresponds

to a nontrivial section inH0DR(X, (V ′,∇)). Set V1 = V ′/(H0DR(X, (V ′,∇))⊗OX), with induced

connection relative to K. If H0DR(X, (V1, induced connection/K)) = 0, then one defines
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22 H. Esnault and P. H. Hai

(W,∇) = H0DR(X, (V ′,∇)) ⊗ (L,∇). If not, define V ′
1 to be the inverse image of H0DR(X, (V1,

∇)) ⊗ OX in V ′. The relative connection on V ′ induced from ∇V/K stabilizes V ′
1. Define

V2 = V ′/V ′
1 with its induced connection. If H0DR(X, (V2,∇)) = 0, one defines, similarly

as before, (W,∇) = (V ′
1, induced connection) ⊗ (L,∇). If not, we go on. So (W,∇) is the

largest subconnection of (V,∇/K), which is a successive extension of (L,∇) by itself. In

particular, (L,∇) is a quotient of (W,∇) as well.

On the other hand, as ∇V/K stabilizes W, one has ∇V(W) ⊂ (Ω1X/k ⊗OX
V) ′ ⊂

Ω1X/k ⊗OX
V, where (Ω1X/k ⊗OX

V) ′ denotes the inverse image ofΩ1X/K ⊗OX
W via the pro-

jectionΩ1X/k⊗OX
V→ Ω1X/K⊗OX

V. Consequently, the composite map W→ Ω1X/k⊗OX
V→

Ω1X/k ⊗OX
(V/W), which is OX-linear, has values in f−1(Ω1K/k) ⊗K (V/W). We denote by

� : W → f−1(Ω1K/k) ⊗K (V/W) the composite map. Integrability of ∇V implies that the

diagram

W
�

∇V/K

f−1
(
Ω1K/k

) ⊗f−1(K) (V/W)

1
Ω1

K/k
⊗(∇V/K)|(V/W)

Ω1X/K ⊗OX
W

�
f−1

(
Ω1K/k

) ⊗f−1(K) Ω
1
X/K ⊗OX

(V/W)

(5.20)

is commutative.

The right vertical map is the tensor product of the K-vector space Ω1K/k with

the relative connection (V/W)
(∇V/K)|(V/W)−−−−−−−−−→ Ω1X/K ⊗OX

(V/W). Thus (f−1(Ω1K/k) ⊗f−1(K)

(V/W), 1Ω1
K/k

⊗ (∇V/K)|(V/W)) is an object in the Ind-category spanned by C(X/K), or sim-

ply in C(X/K) if the transcendence degree of K/k is finite, and � is a morphism in this

category. Consequently, �(W) is a subobject in C(X/K). This implies that �(L) is a subob-

ject in C(X/K) as well, and the projection pr◦�(L) in all ((V/W), (∇V/K)|(V/W)) obtained by

K-linear projectionΩ1K/k → K is a subobject in C(X/K) as well. By definition of W, this im-

plies that pr ◦ �(L) = 0 for all such projections, thus �(L) = 0, thus �(W) = 0. We conclude

that ∇V stabilizes W. We define ∇W = ∇V|W. This finishes the proof in this case.

It remains to consider the case when (L,∇) has a higher rank r. We write

(L,∇) = det(L,∇) ⊗ ∧r−1(L,∇)∨, (5.21)

which shows the existence of a surjective map

(
W ′,∇ ′/K

) ⊗ ∧r−1
(
V,∇V/K

)∨ (L,∇) ⊂ (
V,∇V/K

)
, (5.22)

where (W ′,∇ ′) is the object in C(X/k) constructed in the rank 1 case for det(L,∇). We set

(W,∇W) = (W ′,∇ ′) ⊗ ∧r−1(V,∇V)∨. This finishes the proof. �
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Gauss-Manin and Tannaka Duality 23

Theorems 5.8 and 5.10, together with Proposition 3.1, allow us now to conclude

the following theorem.

Theorem 5.11. Assume as usual that EndC(K/k)((K, dK/k)) = k. Then H = L, that is the

sequence of groupoid schemes,

G(X/K) −→ G(X/k) f∗−−−→ G(K/k) −→ 0, (5.23)

is exact, in the sense that one sees the k-groupoid scheme, Lδ = Ker(f∗), as a K-group

scheme and then Im(G(X/K)) = Ker(f∗). �

Proof. Since both categories Repf(H) ⊃ Repf(L) are full subcategories of Repf(G(X/K)),

it is enough to identify their objects. IfV is an object of Repf(H), then there are E1 ⊂ E ⊂ F
in Repf(G(X/K)), with V = E/E1 and F = ω(F,∇/K), with (F,∇) an object in C(X/k). By

Theorem 5.10, the relative connection (E,∇) withω((E,∇)) = E is the quotient in C(X/K)

of an absolute connection, so the connection (V,∇) with V = ω((V,∇)) is the quotient in

C(X/K) of an absolute connection as well. Applying this result to V∨, one concludes that

(V,∇) is also a subconnection in C(X/K) of an object in C(X/k). This finishes the proof.

�

We now prove the theorem which was one motivation behind the paper.

Theorem 5.12. Assume as usual that EndC(K/k)((K, dK/k)) = k and that the transcen-

dence degree of K/k is ≤ 1. Let V ∈ Obj(Repf(K : G(X/k))). Then

Hi(L, V) = Hi
(
G(X/K), V

)
for i = 0, 1. (5.24)

�

Proof. This is an immediate consequence of Theorem 5.11 together with Corollary 4.3.

�

Corollary 5.13. Under the assumptions of Theorem 5.12, let V = ω((V,∇)) be an object

of Repf(K : G(X/k)). Then the extension defined in (4.8) yields an extension in Repf(K :

G(X/k)):

0 −→ V −→ ω(W,∇) −→ H1DR

(
X, (V,∇/K)

)
= H1(L, V) −→ 0, (5.25)

with the property that the connecting homomorphism,

H0
(
L,H1(L, V)

)
= H1(L, V)

connecting−−−−−−−−→ H1(L, V), (5.26)

is the identity. �
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24 H. Esnault and P. H. Hai

6 The Gauss-Manin connection from the Tannaka viewpoint

As usual, we consider an absolute connection (V,∇) ∈ Obj(C(X/k)) together with its fiber

functor V = V|x ∈ Obj(VecK). The finite dimensional K-vector space H0(L, V) is a G(K/k)-

representation in a natural way. Indeed, for (a, b) : T → Spec(K) ×k Spec(K) and gab ∈
G(K/k)(T)ab, consider g̃ab ∈ G(X/k)(T) a preimage. Then (see Appendix A.3) g̃−1

ab ◦ g̃ab :

a∗V → b∗V → a∗V is the identity on a∗(VL) as g̃−1
ab ◦ g̃ab ∈ L(T)aa. Thus the lifting g̃ab

yields a well-defined action of G(K/k) onH0(L, V).

One considers the following diagram of functors:

Rep
(
K : G(X/k)

) H0(L,V)
Rep

(
K : G(K/k)

)

MIC(X/k)
H0

DR(X,(V,∇/K))
MIC(K/k)

(6.1)

According to Lemma 5.2, the canonical morphism

H0(L, V) −→ H0DR

(
X/K, (V,∇/K)

)
(6.2)

is an isomorphism. Thus the above diagram is commutative. As a consequence, we ob-

tain, canonical morphisms

RnG(X/k)H
0(L, V) −→ RnMICH

0
DR

(
X, (V,∇/K)

)
, (6.3)

where, on the left-hand side, the derived functor is taken in Rep(K : G(X/k)) and on the

right-hand side, the derived functor is taken in MIC(X/k). From Remark 4.1 and the com-

mutative diagram (4.6), we know that the right-hand side is the nth relative de Rham

cohomology,

HnDR

(
X, (V,∇/K)

)
= RnMICH

0
DR

(
X, (V,∇/K)

)
, (6.4)

equipped with the Gauss-Manin connection. It is a finite dimensional K-vector space, as

V if of finite rank. Thus HnDR(X, (V,∇/K)) together with its Gauss-Manin connection is an

object of Repf(K : G(K/k)) and the homomorphism in (6.3) is G(K/k)-equivariant.
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Gauss-Manin and Tannaka Duality 25

The group cohomology Hi(L, V) for any L-representation V is defined as the right

derived functor of the functor

Rep(L)
H0(L,V)−−−−−−−→ VecqcK . (6.5)

In case V is the restriction to L of a representation of G(X/k), there exists a canonical

homomorphism,

RnG(X/k)H
0(L, V) −→ Hn(L, V), (6.6)

defined by constructing a map from an injective resolution of V in Rep(K : G(X/k)) to an

injective resolution in Rep(L) (see the appendix, Lemma A.1).

Proposition 6.1. The canonical homomorphism

RnG(X/k)H
0(L, V) −→ Hn(L, V) (6.7)

is an isomorphism. Consequently, it induces a representation of G(K/k) on Hn(L, V)

which has the property that the canonical homomorphism

Hi(L, V) −→ HiDR

(
X, (V,∇/K)

)
(6.8)

is G(K/k)-equivariant. �

Proof. According to the discussion above, it suffices to show that a representation of

G(X/k), which is injective (as an object in Rep(K : G(X/k))), remains injective when con-

sidered as a representation of L. The proof is based on the following lemma which will

be proved in the rest of the section.

SetG := G(X/k). Let O(G) be the ring of regular functions onG. There is a natural

action of G on O(G) called the left regular action, see the appendix.

Lemma 6.2. The G-representation O(G) restricted to GΔ is injective in the category

Rep(GΔ). �

Let us first assume this lemma. Since L is normal in GΔ, O(GΔ) is injective as an

L-representation. Indeed, O(GΔ) is faithfully flat over O(GΔ/L), [9, Chapter 16], hence by

[8, Theorem 1], it is injective as an L-representation. Therefore any injectiveGΔ-represen-

tation, being direct summand of a direct sum of copies of O(GΔ), remains injective when

considered as an L-representation. Thus O(G) is also an injective L-representation.
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26 H. Esnault and P. H. Hai

According to Lemma A.2 in the appendix, we have the following resolution of V

in Rep(K : G):

V ⊗t O(G) V ⊗t O(G) ⊗t O(G) . . .

V

∼= (6.9)

where the tensor product is taken over K and the action of K on O(G), indicated by the

subscript t, is induced from the map t : G → Spec(K). On each term V ⊗ O(G) ⊗ O(G) ⊗
· · ·⊗O(G) of the complex,G acts by its action on the last tensor term. Hence, as a complex

of GΔ-modules, it is a resolution of V by injective GΔ-modules.

As (6.9) is an injective resolution of V both in Rep(K : G) and in Rep(GΔ), its

cohomology computes R∗H0(L, V) as well asHn(L, V). This shows Proposition 6.1. �

The rest of this section is devoted to the proof of Lemma 6.2.

6.1 The algebra O(GΔ)

We refer to the appendix for the properties of O(G) and O(GΔ).

By definition of GΔ, we have

O
(
GΔ

)
∼= O(G) ⊗K⊗kK K, (6.10)

where K⊗kK→ K is the product map. Then J := Ker(K⊗kK→ K) is generated by elements

of the form λ ⊗ 1 − 1 ⊗ λ, λ ∈ K. Since O(G) is faithful over K ⊗k K, tensoring the exact

sequence 0→ J→ K⊗k K→ K→ 0with O(G) over K⊗k K, one obtains an exact sequence

0 −→ JO(G) −→ O(G) π−−→ O
(
GΔ

) −→ 0. (6.11)

That is, we can identify J⊗K⊗kK O(G) with its image JO(G) in O(G).

6.2 The functor Ind

For any representationW ∈ Rep(GΔ), define Ind(W) to be

Ind(W) :=
(
W ⊗t O(G)

)GΔ

, (6.12)

where GΔ acts on W as usual and on O(G) through the right regular action of G on O(G)

(i.e., O(G) is a right G-module). On this invariant space, G acts through the left regular

action on O(G). Thus Ind is a functor Rep(GΔ)→ Rep(K : G).
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Gauss-Manin and Tannaka Duality 27

The space Ind(W) can also be given as the equalizer of the maps

p : W ⊗t O(G)
ρW⊗id−−−−−−→W ⊗ O

(
GΔ

) ⊗t O(G),

q : W ⊗t O(G) id⊗Δ−−−−−→W ⊗t O(G) s⊗tO(G) π−−→W ⊗ O
(
GΔ

) ⊗t O(G),
(6.13)

where ρW : W →W ⊗ O(GΔ) is the coaction of O(GΔ) onW, Δ is the coproduct on O(G).

Lemma 6.3. There exists a functorial isomorphism

HomG

(
V, Ind(W)

)
∼= HomGΔ(V,W), (6.14)

V ∈ Rep(K : G),W ∈ Rep(GΔ), that is, Ind is the right adjoint to the functor restricting

G-representations to GΔ. �

Proof. The map is given by composing with the canonical projection Ind(W) → W, v ⊗
h �→ vε(h). The converse map is given by f �→ (f⊗ id)ρW . �

Lemma 6.4. The functor Ind is exact if and only if O(G) is injective as a GΔ-module. �

Proof. Since GΔ is a group scheme over a field K, its representations are a union of their

subrepresentations of finite dimension over K. Therefore the injectivity of O(G) requires

only to be checked on finite dimensional representations ofGΔ. For such a representation

W, we have

HomGΔ

(
W,O(G)

)
∼= HomGΔ

(
K,W∗ ⊗ O(G)

)
Ind

(
W∗). (6.15)

Since the dualizing functor (−)∗ and the functor tensoring over K are exact, the claim

follows. �

Let us use the following notation of Sweedler for the coproduct on O(G):

Δ(g) =
∑

(g)

g(1) ⊗ g(2). (6.16)

Lemma 6.5. The following map:

ϕ : O(G) ⊗K⊗kK O(G) −→ O
(
GΔ

) ⊗K tO(G),

g⊗ h �−→
∑

(g)

π(g(1)) ⊗ g(2)h,
(6.17)

is an isomorphism, where π is defined in formula (6.11). �
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28 H. Esnault and P. H. Hai

Proof. We define the inverse map to this map. Let

ψ̄ : O(G) s⊗tO(G) −→ O(G) ⊗K⊗kK O(G) (6.18)

be the map that maps g⊗h �→∑(g) g(1)⊗ ι(g(2))h. We have for λ ∈ K and for t, s : K→ O(G)

ψ̄
(
t(λ)g s⊗th

)
=
∑

(g)

g(1) ⊗ ι
(
t(λ)g(2)

)
h

=
∑

(g)

g(1) ⊗K⊗kK s(λ)ι
(
g(2)

)
h by (A.13)

= s(λ)
∑

(g)

g(1) ⊗K⊗kK ι
(
g(2)

)
h

= ψ̄
(
s(λ)g s⊗th

)
.

(6.19)

Thus ψ̄ maps JO(G) s⊗tO(G) to 0, hence factors through a map ψ : O(GΔ) ⊗t
O(G) → O(G) ⊗K⊗kK O(G). Checking ϕψ = id, ψϕ = id can be easily done using the

property (A.14) of ι. �

Corollary 6.6. For anyW ∈ Rep(GΔ), one has the following isomorphism:

Φ : Ind(W) ⊗K⊗kK O(G) ∼= W ⊗t O(G),

Φ(w⊗ g⊗ h) = w⊗ gh.
(6.20)

The inverse is given by

W ⊗t O(G) −→W ⊗ O
(
GΔ

) ⊗ O(G) Ψ−−→W ⊗t O(G) ⊗K⊗kK O(G),

Ψ =
(

idW ⊗ψ)(
ρW ⊗ id

)
.

(6.21)
�

Proof. Tensoring the isomorphism in (6.17) with W and applying the functor (−)G
Δ

, we

obtainΦ. �

6.3 Proof of Lemma 6.2

According to Lemma 6.4, it suffices to show the exactness of Ind. According to Corollary

6.6, the functor

Ind(−) ⊗K⊗kK O(G) ∼= (−) ⊗t O(G), (6.22)

hence is exact. Since O(G) is faithfully flat over K⊗k K, Ind is faithfully exact.
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Gauss-Manin and Tannaka Duality 29

Remark 6.7. The above proof for groupoid schemes is inspired by Takeuchi’s proof [8]

for the case of group schemes. In particular, it shows that the functor Ind : Rep(GΔ) →

Rep(K : G) is faithfully exact.

6.4 Proof of Lemma 5.6

LetW be a finite dimensional representation of GΔ and uW : Ind(W) → W be the canon-

ical map in Rep(GΔ) (i.e., the map that corresponds to the identity map id : Ind(W) →

Ind(W) through the isomorphism in (6.14) for V = Ind(W)). Then, as in the proof of

Lemma 5.5, the faithful exactness of Ind(W) (Remark 6.7) implies that uW is surjective.

Thus, we can find a finite dimensional G-subrepresentation W0(W) of Ind(W), which

maps surjectively on W. In order to obtain the statement on the embedding for W, one

writes W = (W∨)∨, applies the surjectivity W0(W∨) � W∨ we just constructed, and

dualizes toW ↪→ (W0(W∨))∨.

Appendix

Groupoid schemes

In this appendix, we briefly recall the notions of affine groupoids and their representa-

tions which are used in the paper. Our reference is [3, Section 3].

A.1 Groupoid schemes

We fix a field k. By a k-affine scheme we mean the spectrum of a k-algebra (not necessarily

finitely generated over k). Let S/k be a k-affine scheme. With this terminology, S can be

taken to be the spectrum of a field extension S = K ⊃ k. An affine k-groupoid scheme

acting on S is a k-affine schemeG together with two morphisms (the source and the target

maps), s, t : G→ S, satisfying the following axioms.

(i) There exists a map m : G s×tG → G called the product of G, satisfying the

following associativity property:

m
(
m s×t idG

)
= m

(
idG s×tm

)
. (A.1)

(ii) There exists a map ε : S → G called the unit element map, satisfying the

following property:

m
(
ε s×t idG

)
= m

(
idG s×tm

)
= idG . (A.2)
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30 H. Esnault and P. H. Hai

(iii) There exists a map ι : G→ G, called the inverse map, satisfying the following

properties:

ι ◦ s = t; ι ◦ t = s,

m
(
ι s×t idG

)
= ε ◦ s, m

(
idG s×t ι

)
= ε ◦ t,

(A.3)

where s×t denotes the fiber product over Swith respect to the maps s and t.

Let T be a k-scheme. By definition, the category (S(T), G(T)) has for objects, the

morphisms T → S, and for morphisms between two objects a, b : T → S, the morphisms

φ : T → G satisfying

(a, b) = (s, t)φ : T −→ S× S. (A.4)

The axioms (A.1)–(A.3) for G imply that this category is a groupoid. Note that the set of

all morphisms of (S(T), G(T)) is precisely G(T) = Homk(T,G).

A groupoid schemeG acting on S is said to be acting transitively if (s, t) : G→ S×S
is a faithfully flat map. A groupoid schemeG acting on S is called discrete if the structure

map (s, t) factors through the diagonal map Δ : S → S × S and a map u : G → S. In this

case, G equipped with u is an S-group scheme.

For example, define GΔ as the pull-back of G along the diagonal map Δ : S× S:

GΔ

(s,t)

G

(s,t)

Δ
diagonal

S×k S

(A.5)

Then GΔ is a discrete S-groupoid scheme, which is a subgroupoid scheme in G.

Another simple example is S, which is a groupoid acting on itself by means of the

diagonal map.

A.2 Homomorphisms

A morphism of k-groupoid schemes acting on a k-scheme S is a morphism of the under-

lying k-schemes which is compatible with all structure maps. For instance, the unit ele-

ment map ε : S→ G is a morphism of groupoid schemes.

For two homomorphisms of groupoid schemes Gi → G, i = 1, 2, there exists an

obvious structure of groupoid scheme on G1 ×G G2. In particular, we define the kernel

of a homomorphism f : G1 → G as the fiber product ker f := S ×G G1. It is easy to see

 at U
niversitaetsbibliothek D

uisburg-E
ssen on July 15, 2010 

http://im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org


Gauss-Manin and Tannaka Duality 31

that ker f is a discrete groupoid scheme, defining a group scheme over S. Assuming that

G1 and G act transitively on S, then, by taking the fiber product with S over S × S, that

is, taking the diagonal group schemes, we see that ker f is isomorphic to the kernel of the

homomorphism GΔ1 → GΔ of group schemes:

ker f G1
f

G

ker fΔ GΔ1
fΔ

G

(A.6)

A.3 Representation

Let V be a quasi-coherent sheaf on S. A representation of G in V is an operation ρ, that

assigns to each k-schema T and each morphism φ : T → G a T-isomorphism,

ρ(φ) : a∗V −→ b∗V, (A.7)

where (a, b) = (s, t)φ, the source and the target of φ, and a∗ (resp., b∗) denotes the pull-

back of V along a (resp., b). One requires that this operation be compatible with the com-

position law of the groupoid (S(T), G(T)) and with the base change. The latter means: for

any morphism r : T ′
→ T ,

ρ
(
r∗φ

)
= r∗ρ(φ). (A.8)

In particular, one has the trivial representation of G in R = OS, where all mor-

phisms ρ(φ) are identity morphisms.

A.4 Tannaka duality

Assume thatG acts transitively on S, then representations ofG form an abelian category

which is closed undertaking the tensor product. We denote this category by Rep(S : G).

We denote the full subcategory of Rep(S : G) of those representations which are of finite

rank as sheaf on S by Repf(S : G). Each object of Repf(S : G) is locally free when con-

sidered as sheaf on S, and each object of Rep(S : G) is a filtered union of its finite rank

subrepresentations. Using the inverse map, to each representation in a coherent locally

free OS-module, one can define a representation in the dual coherent sheaf. Finally, for

the trivial representation in OS, the set of endomorphisms is isomorphic to k. See [3, Sec-

tion 3] for details.
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A category with the above properties is called a tensor category over k. Converse-

ly, for any tensor category C over kwith a fiber functor to the category Qcoh(S) of quasi-

coherent sheaves over S, one can construct a groupoid scheme G acting transitively on

S, such that the fiber functor factors becomes an equivalence of tensor categories C
∼=−→

Rep(S : G). This correspondence is in fact a 1 − 1 correspondence between tensor cat-

egories over k equipped with a fiber functor to Qcoh(S) and k-groupoids acting transi-

tively over S, known as the Tannaka duality [3, théorème 1.12].

A.5 Representations of discrete groupoids

If G is a groupoid scheme acting discretely over S, then one can easily deduce from the

definition that representations ofG are in 1-1 correspondence with representations of the

underlying S-group scheme. If (ρ, V) is a representation, for all commutative diagrams,

T
g(a,a)

=

G

T
(a,a)

Δ = S

(A.9)

with T a k-scheme, then ρ(ga,a) is an isomorphism from a∗V to itself. But G(T) = ∅ for

a 
= b. In other words, ρ induces a representation of G, as an S-group scheme, in V. The

converse is also true.

A.6 The function algebra

Let R := O(S) denote the algebra of regular functions on S. The groupoid structure on G

induces the following structures on O(G). The source and the target map for G induce

algebra maps s, t : R → O(G). The transitivity of G on S can be rephrased by saying that

O(G) is faithfully flat over R⊗k Rwith respect to the base map t⊗k s : R⊗k R→ O(G).

The composition law for G induces an R⊗k R-algebra map,

Δ : O(G) −→ O(G) s⊗tO(G), (A.10)

satisfying (Δ⊗ id)Δ = (id⊗Δ)Δ. The unit element of G induces an R⊗k R-algebra map

ε : O(G) −→ R, (A.11)

where R⊗k R acts on R diagonally (i.e., λ⊗k μν = λμν). One has

(ε⊗ id)Δ = (id⊗ε)Δ = id . (A.12)
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Finally, the operation which consists of taking the inverse in G induces an

automorphism ι of O(G) which interchanges the actions t and s:

ι
(
t(λ)s(μ)h

)
= s(λ)t(μ)ι(h), (A.13)

and satisfies the following equations:

m(ι⊗ id)Δ = s ◦ ε m(id⊗ι)Δ = t ◦ ε. (A.14)

A representation ρ of G in V induces a map ρ : V → V ⊗t O(G), called coaction of

O(G) on V, such that

(
idV ⊗Δ)

ρ =
(
ρ⊗ idV

)
,

(
idV ⊗ε)ρ = idV . (A.15)

An R-module equipped with such an action is called O(G)-comodule. Conversely, any

coaction of O(G) on an R-module V defines a representation of G in V. In fact, we have an

equivalence between the category of G-representations and the category of O(G)-

comodules. The discussion in the previous subsection shows that V is projective over R.

In particular, the coproduct on O(G) can be considered as a coaction of O(G) on

itself and hence defines a representation of G in H, called the right regular representa-

tion.

Lemma A.1. LetG be a k-groupoid scheme acting transitively on S. Consider the function

algebra O(G) as G-representation with respect to the left regular action. Then for any

injective R-module V, the G-representation V ⊗R O(G), where the action of G is given by

the action of O(G), is an injective object in Rep(R : G). In particular, when R = K is a field,

Rep(K : G) has enough injective objects. �

Proof. For any O(G)-comodules U, we have the following functorial isomorphism:

HomG

(
U,V ⊗t O(G)

)
∼= HomR(U,V),

f �−→ (id⊗ε)f.
(A.16)

Indeed, the inverse is given by

g �−→ ρV ◦ g, (A.17)

where ρV is the coaction of O(G) on V.

Finally, if K is a field, all K-vector spaces are injective objects. �
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Lemma A.2. Assume that R = K is a field. Let V ∈ Rep(K : G). Then the following complex

is a resolution of V in Rep(S : G):

V ⊗t O(G) V ⊗t O(G) ⊗t O(G) . . .

V

∼= (A.18)

where the tensor product is taken over K and the index t specifies the action t of K. �

Proof. This can be done exactly as in the case of group schemes over a field [5, Chapter

4], and will be omitted. �
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