We correct the inaccuracies in the proof of Theorem 4.10 of [BE04]. We are thankful to Shishir Agrawal and Lei Fu for alerting us about them.

The functor F is defined in (4.30) of *loc.cit*.. It follows from (4.31) *loc.cit*. that the functor is pro-representable. It follows from (4.34) *loc. cit*. that the functor is pro-smooth. It follows from (4.33) *loc. cit*. that the tangent space is $H^1(X, j_{!*}\mathcal{E}nd(M))$. We first detail this point.

One defines \hat{X} to be the completion along D, and $\hat{U} = \hat{X} \setminus D$ to be the punctured completion. For any scheme Z (formal or not) defined over k, and any k-algebra R, one sets $Z_R = X \times_k \operatorname{Spec}(R)$.

On U one has the abelian category of complexes of coherent sheaves with k-linear differentials. And one has the category of connections on U. An element in $F(k[\epsilon])$ is a connection

(1)
$$\mathcal{M} \to (\omega_U \oplus \epsilon \omega_U) \otimes_{\mathcal{O}_{U[\epsilon]}} \mathcal{M}$$

which is thus an extension (skiping the zeroes left and right) (2)

where N is the U-coherent sheaf, an extension of M by M, associated to \mathcal{M} , and (2) has the property that the extension restricted to \hat{U}

splits. Here we used the shorthand $\hat{M} = M|_{\hat{U}}$. Indeed, one has $\hat{N} \cong p^*\hat{M}$ with $p: \hat{U} \otimes_k k[\epsilon] \to \hat{U}$. Thus as a coherent sheaf on $\hat{U} \otimes_k k[\epsilon]$, one has $\hat{N} \cong \hat{M} \oplus \hat{M}$ and the connection is just $\nabla_{\hat{M}}$ factor-wise. This means that (3) splits. And vice-versa, it (3) splits, since the vertical left arrow is the de Rham complex of M, one has $\hat{N} \cong p^*\hat{M}$. Extensions (2) build a finite dimensional k-vector space $H^1_{dR}(U, \mathcal{E}nd(M))$ while extensions in (3) build a finite dimensional k-vector space $H^1_{dR}(\hat{U}, \mathcal{E}nd(M))$. Thus

(4)
$$F(k[\epsilon]) = \operatorname{Ker}\left(H^{1}_{dR}(U, \mathcal{E}nd(M)) \to H^{1}_{dR}(\hat{U}, \mathcal{E}nd(M))\right).$$

Thus by Remark 4.1 of *loc.cit.* one has

(5)
$$F(k[\epsilon]) = H^1(X, j_{!*}\mathcal{E}nd(M))$$

Let R be the pro-smooth k-algebra pro-representing F. Write $\mathfrak{m} \subset R$ for the maximal ideal. Set $R_n := R/\mathfrak{m}^n$. Let M_n be the universal connection on $U \times \operatorname{Spec}(R_n)$. Recall (p.591 of *loc.cit.*) that a pair of good lattices (V, W) for M on U is a pair of vector bundles on Xextending M such that $V \subset W$, $\nabla(V) \subset \omega_X(D) \otimes W$ and such that for any $m \geq 1$ the inclusion of complexes $(V \to \omega_X(D) \otimes W) \hookrightarrow$ $(V(mD) \to \omega_X(D) \otimes W(mD))$ is a quasi-isomorphism.

Proposition 1. For any pair of good lattices (V, W), there exist algebraic vector bundles \mathcal{V}, \mathcal{W} on X_R , together with an algebraic connection $\nabla : \mathcal{V} \to \omega_{X_R/R}(D) \otimes \mathcal{W}$ such that

- 0) $\mathcal{V}|_{U_R} = \mathcal{W}|_{U_R};$
- 1) $\nabla|_{U_{R_n}}$ is isomorphic to the connection M_n ;
- 2) $\nabla|_X$ is isomorphic to the connection $V \to \omega_X(D) \otimes W$;
- 3) $\nabla|_{\hat{U}_R}$ is isomorphic to $M|_{\hat{U}} \otimes_k R$.

Proof. We have the connections M_n on U_{R_n} and isomorphisms

$$\phi_{n,n+1}: M_{n+1}|_{U_{R_n}} \cong M_n$$

Denoting again by \widehat{M} the restriction of M to \widehat{U} , we also have

(6)
$$\rho_n : \widehat{M} \otimes_k R_n \cong M_n |_{\widehat{U}_{R_n}}$$

Write

(7)
$$\hat{\phi}_{n,n+1} : M_{n+1}|_{\hat{U}_{R_n}} \cong M_n|_{\hat{U}_{R_n}}$$

for the map induced by $\phi_{n,n+1}$. Define

(8)
$$\mu_n := \rho_n^{-1} \circ \hat{\phi}_{n,n+1} \circ (\rho_{n+1} \otimes R_n) : \widehat{M} \otimes_k R_n \cong \widehat{M} \otimes_k R_n.$$

These isomorphisms lift, so we may choose

(9)
$$\sigma_{n+1}: \widehat{M} \otimes_k R_{n+1} \cong \widehat{M} \otimes_k R_{n+1}$$

lifting μ_n . Now redefine

(10)
$$\rho_{n+1,\text{new}} := \rho_{n+1,\text{old}} \circ \sigma_{n+1}$$

We have

(11)
$$\hat{\phi}_{n,n+1} \circ (\rho_{n+1,\text{new}} \otimes R_n) = \hat{\phi}_{n,n+1} \circ (\rho_{n+1,\text{old}} \otimes R_n) \circ \mu_n^{-1} = \\ \hat{\phi}_{n,n+1} \circ (\rho_{n+1,\text{old}} \otimes R_n) \circ (\rho_{n+1,\text{old}} \otimes R_n)^{-1} \circ \hat{\phi}_{n,n+1}^{-1} \circ \rho_n = \rho_n$$

Modifying the ρ_n in this way, we obtain commutative diagrams

Using ρ_n , we glue M_n and $V \otimes_k R_n$ resp. $W \otimes_k R_n$ to obtain a vector bundle \mathcal{V}_n on X_{R_n} , resp. \mathcal{W}_n on X_{R_n} , together with a connection $\mathcal{V}_n \to \omega_{X_{R_n}/R_n}(D) \otimes \mathcal{W}_n$ restricting to M_n on U_{R_n} . The $\phi_{n,n+1}$ give isomorphisms $\mathcal{V}_{n+1} \otimes R_n \cong \mathcal{V}_n$ and $\mathcal{W}_{n+1} \otimes R_n \cong \mathcal{W}_n$. Thus one obtains a formal connection $(\nabla_n)_n : (\mathcal{V}_n)_n \to (\omega_{X_{R_n}/R_n}(D) \otimes \mathcal{W}_n)_n$ which fulfils 0), 1), 2), 3) with ∇ replaced by $(\nabla_n)_n$.

By Grothendieck formal function theorem ([8], Cor. 5.1.6 in *loc. cit.*) \mathcal{V}, \mathcal{W} are algebraic vector bundles on X_R . Replacing the pair (V, W) by the pair (V(mD), W(mD)) for m large enough, we may assume that $H^0(X_R, \mathcal{V})$ spans \mathcal{V} , and satisfies base change, that $H^0(X_R, \omega_{X_R}(D) \otimes$ \mathcal{W}) spans $\omega_{X_R}(D) \otimes \mathcal{W}$ and satisfies base change. In particular $H^0(X_R, \mathcal{V})$ and $H^0(X_R, \omega_{X_R}(D) \otimes \mathcal{W})$ are projective modules of finite rank over R. The connection defines a R-linear map

$$\partial: H^0(X_R, \mathcal{V}) \to H^0(X_R, \omega_{X_R/R}(D) \otimes \mathcal{W}).$$

From the surjectivity $H^0(X_R, \mathcal{V}) \otimes_R \mathcal{O}_{X_R} \twoheadrightarrow \mathcal{V}$, every local section σ of \mathcal{V} can be written (non-uniquely) as $\sigma = \sum_{\text{finite}} v \otimes \lambda$ with $v \in H^0(X_R, \mathcal{V})$ and $\lambda \in \mathcal{O}_{X_R}$. $(\nabla_n)_n(\sigma) = \sum_{\text{finite}} (\partial(v) \otimes \lambda + v \otimes d(\lambda))$, which is a local algebraic section of $\omega_{X_R}(D) \otimes \mathcal{W}$. This shows that the connection is algebraic, proving (0), (1), (2), (3) at the same time.

Proposition 2. With notations as in Proposition 1, there exists a finitely generated k-algebra $A \subset R$ such that

- 1) $\nabla : \mathcal{V} \to \omega_{X_R/R} \otimes \mathcal{W}$ is defined over A; 2) the isomorphism $\nabla|_{\hat{X}_R}$ with $(\mathcal{V}|_{\hat{X}_R} \to \omega_{\hat{X}_R/R}(D) \otimes \mathcal{W}|_{\hat{X}_R})$ is defined over A;
- 3) the isomorphism $\nabla|_{\hat{U}_R}$ with $(\mathcal{V}|_{\hat{U}_R} \to \omega_{\hat{U}_R/R} \otimes \mathcal{V}|_{\hat{U}_R})$ is defined over A.

Proof. By the algebraicity of ∇ from Proposition 1, we deduce 1). Then 2) is the restriction of 1) to \hat{X}_R and 3) to \hat{U}_R . This finishes the proof.

We set S = Spec(A) and for any scheme Z (formal or not) over k, we denote by Z_S its base change $Z \times_k S$. We denote by $\nabla_S : \mathcal{V}_S \to$ $\omega_{X_S/S}(D) \otimes \mathcal{W}_S$ the algebraic connection on X_S .

Proposition 3. The sheaf of \mathcal{O}_S -modules $\operatorname{Hom}_{\nabla}(\mathcal{V}_{U_S}, M \times_k S)$ of flat sections is coherent.

Proof. By Proposition 2 2), 3), the restriction homomorphism

 $\operatorname{Hom}_{\nabla}(\mathcal{V}_{X_S}, V \times_k S) \to \operatorname{Hom}_{\nabla}(\mathcal{V}_{U_S}, M \times_k S)$

is an isomorphism. The left term is equal to

$$\operatorname{Ker}(\operatorname{Hom}(\mathcal{V}_{X_S}, V \times_k S) \to \operatorname{Hom}(\mathcal{W}_{X_S}, \omega_X(D) \otimes W \times_k S))$$

where both terms are coherent and the map is \mathcal{O}_S -linear. This finishes the proof.

Proposition 4. In Proposition 3, we assume now M to be rigid. Then there a torsor $\pi : T \to S$ under the constant groupscheme $Iso_{\nabla}(M, M) \otimes_k S$, together with an isomorphism between

$$(\mathcal{V}_T, \mathcal{W}_T, \nabla_T) \cong (V, W, \nabla) \times_k T.$$

If M is irreducible, this is a \mathbb{G}_m -torsor.

Proof. By definition, for each geometric point $s \in S(k)$, one has an isomorphism between $(\mathcal{V}_s, \mathcal{W}_s, \nabla_s)$ and (V, W, ∇) . The Zariski subsheaf of sets $\operatorname{Iso}_{\nabla}(\mathcal{V}|_{U_S}, M \otimes_k S) \subset \operatorname{Hom}_{\nabla}(\mathcal{V}|_{U_S}, M \times_k S)$ is acted on on the right by $\operatorname{Iso}_{\nabla}(M, M) \times_k S$, which endows it with the structure of a torsor. Then T is the total space of the torsor. The existence of the isomorphism then follows from the definition of the torsor.

We now finish the proof of [BE04, Thm. 4.10]. We have a diagram

(13)
$$\begin{array}{c} I \\ \downarrow \pi \\ \text{Spec}\left(R\right) \xrightarrow{f} S \end{array}$$

As k has characteristic 0 and π is a torsor under a constant groupscheme, π is smooth. As k is algebraically closed, f lifts to g

(14)
$$T \\ \downarrow^{g} \\ \downarrow^{\pi} \\ \operatorname{Spec}(R) \xrightarrow{f} \\ S$$

and thus

(15)
$$(\mathcal{V}, \mathcal{W}, \nabla) = g^* \pi^* (\mathcal{V}_A, \mathcal{W}_A, \nabla_A) = (V, W, \nabla) \otimes_k R.$$

4

By universality and pro-smoothness of R, this shows

(16) $F(k[\epsilon]) = 0$

thus Theorem 4.10 of *loc.cit.* follows from (5).

References

[BE04] Bloch, S., Esnault, H.: Local Fourier transforms and rigidity for D-modules, Asian J. Math. 8 4 (2004), 587–606.
Spencer Bloch and Hélène Esnault