
We correct the inaccuracies in the proof of Theorem 4.10 of [BE04]. We
are thankful to Shishir Agrawal and Lei Fu for alerting us about them.

The functor F is defined in (4.30) of loc.cit.. It follows from (4.31)
loc.cit. that the functor is pro-representable. It follows from (4.34)
loc. cit. that the functor is pro-smooth. It follows from (4.33) loc. cit.
that the tangent space is H1(X, j!∗End(M)). We first detail this point.

One defines X̂ to be the completion along D, and Û = X̂ \D to be the
punctured completion. For any scheme Z (formal or not) defined over
k, and any k-algebra R, one sets ZR = X ×k Spec(R).

On U one has the abelian category of complexes of coherent sheaves
with k-linear differentials. And one has the category of connections on
U . An element in F (k[ε]) is a connection

M→ (ωU ⊕ εωU)⊗OU [ε]
M(1)

which is thus an extension (skiping the zeroes left and right)

εM∼= M

��

//M∼= N

��

// M

��
(ωU ⊕ εωU)⊗OU [ε] εM∼= ωU ⊗OU M // (ωU ⊕ εωU)⊗OU [ε]M∼= ω1

U ⊗OU N // ωU ⊗OU M

(2)

where N is the U -coherent sheaf, an extension of M by M , associated
to M, and (2) has the property that the extension restricted to Û

M̂

��

// N̂

��

// M̂

��

ωÛ ⊗OÛ M̂ // ω1
Û
⊗ N̂ // ωÛ ⊗OÛ M̂

(3)

splits. Here we used the shorthand M̂ = M |Û . Indeed, one has N̂ ∼=
p∗M̂ with p : Û⊗k k[ε]→ Û . Thus as a coherent sheaf on Û⊗k k[ε], one

has N̂ ∼= M̂⊕M̂ and the connection is just∇M̂ factor-wise. This means
that (3) splits. And vice-versa, it (3) splits, since the vertical left arrow

is the de Rham complex of M , one has N̂ ∼= p∗M̂ . Extensions (2) build
a finite dimensional k-vector space H1

dR(U, End(M)) while extensions

in (3) build a finite dimensional k-vector space H1
dR(Û , End(M)). Thus

F (k[ε]) = Ker
(
H1
dR(U, End(M))→ H1

dR(Û , End(M))
)
.(4)

Thus by Remark 4.1 of loc.cit. one has

F (k[ε]) = H1(X, j!∗End(M)).(5)
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Let R be the pro-smooth k-algebra pro-representing F . Write m ⊂ R
for the maximal ideal. Set Rn := R/mn. Let Mn be the universal
connection on U × Spec (Rn). Recall (p.591 of loc.cit.) that a pair
of good lattices (V,W ) for M on U is a pair of vector bundles on X
extending M such that V ⊂ W , ∇(V ) ⊂ ωX(D) ⊗W and such that
for any m ≥ 1 the inclusion of complexes

(
V → ωX(D) ⊗ W

)
↪→(

V (mD)→ ωX(D)⊗W (mD)
)

is a quasi-isomorphism.

Proposition 1. For any pair of good lattices (V,W ), there exist alge-
braic vector bundles V ,W on XR, together with an algebraic connection
∇ : V → ωXR/R(D)⊗W such that

0) V|UR =W|UR;
1) ∇|URn is isomorphic to the connection Mn;
2) ∇|X is isomorphic to the connection V → ωX(D)⊗W ;
3) ∇|ÛR is isomorphic to M |Û ⊗k R.

Proof. We have the connections Mn on URn and isomorphisms

φn,n+1 : Mn+1|URn ∼= Mn.

Denoting again by M̂ the restriction of M to Û , we also have

(6) ρn : M̂ ⊗k Rn
∼= Mn|ÛRn .

Write

(7) φ̂n,n+1 : Mn+1|ÛRn
∼= Mn|ÛRn

for the map induced by φn,n+1. Define

(8) µn := ρ−1
n ◦ φ̂n,n+1 ◦ (ρn+1 ⊗Rn) : M̂ ⊗k Rn

∼= M̂ ⊗k Rn.

These isomorphisms lift, so we may choose

(9) σn+1 : M̂ ⊗k Rn+1
∼= M̂ ⊗k Rn+1

lifting µn. Now redefine

(10) ρn+1,new := ρn+1,old ◦ σn+1.

We have

(11) φ̂n,n+1 ◦ (ρn+1,new ⊗Rn) = φ̂n,n+1 ◦ (ρn+1,old ⊗Rn) ◦ µ−1
n =

φ̂n,n+1 ◦ (ρn+1,old ⊗Rn) ◦ (ρn+1,old ⊗Rn)−1 ◦ φ̂−1
n,n+1 ◦ ρn = ρn.
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Modifying the ρn in this way, we obtain commutative diagrams

(12)

M̂ ⊗k Rn
ρn+1⊗Rn−−−−−→ Mn+1|ÛRn∥∥∥ yφ̂n,n+1

M̂ ⊗k Rn
ρn−−−→ Mn|ÛRn

Using ρn, we glue Mn and V ⊗k Rn resp. W ⊗k Rn to obtain a vector
bundle Vn on XRn , resp. Wn on XRn , together with a connection
Vn → ωXRn/Rn(D) ⊗ Wn restricting to Mn on URn . The φn,n+1 give
isomorphisms Vn+1⊗Rn

∼= Vn andWn+1⊗Rn
∼=Wn. Thus one obtains

a formal connection (∇n)n : (Vn)n → (ωXRn/Rn(D)⊗Wn)n which fulfils
0), 1), 2), 3) with ∇ replaced by (∇n)n.

By Grothendieck formal function theorem ([8], Cor. 5.1.6 in loc. cit.)
V ,W are algebraic vector bundles on XR. Replacing the pair (V,W ) by
the pair (V (mD),W (mD)) for m large enough, we may assume that
H0(XR,V) spans V , and satisfies base change, that H0(XR, ωXR(D)⊗
W) spans ωXR(D)⊗W and satisfies base change. In particularH0(XR,V)
and H0(XR, ωXR(D) ⊗ W) are projective modules of finite rank over
R. The connection defines a R-linear map

∂ : H0(XR,V)→ H0(XR, ωXR/R(D)⊗W).

From the surjectivity H0(XR,V) ⊗R OXR � V , every local section
σ of V can be written (non-uniquely) as σ =

∑
finite v ⊗ λ with v ∈

H0(XR,V) and λ ∈ OXR . (∇n)n(σ) =
∑

finite(∂(v) ⊗ λ + v ⊗ d(λ)),
which is a local algebraic section of ωXR(D)⊗W . This shows that the
connection is algebraic, proving 0), 1), 2), 3) at the same time.

�

Proposition 2. With notations as in Proposition 1, there exists a
finitely generated k-algebra A ⊂ R such that

1) ∇ : V → ωXR/R ⊗W is defined over A;
2) the isomorphism ∇|X̂R with (V|X̂R → ωX̂R/R(D) ⊗ W|X̂R) is

defined over A;
3) the isomorphism ∇|ÛR with (V|ÛR → ωÛR/R ⊗ V|ÛR) is defined

over A.

Proof. By the algebraicity of∇ from Proposition 1, we deduce 1). Then

2) is the restriction of 1) to X̂R and 3) to ÛR. This finishes the proof.
�

We set S = Spec(A) and for any scheme Z (formal or not) over k,
we denote by ZS its base change Z ×k S. We denote by ∇S : VS →
ωXS/S(D)⊗WS the algebraic connection on XS.
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Proposition 3. The sheaf of OS-modules Hom∇(VUS ,M ×k S) of flat
sections is coherent.

Proof. By Proposition 2 2), 3), the restriction homomorphism

Hom∇(VXS , V ×k S)→ Hom∇(VUS ,M ×k S)

is an isomorphism. The left term is equal to

Ker
(
Hom(VXS , V ×k S)→ Hom(WXS , ωX(D)⊗W ×k S)

)
where both terms are coherent and the map is OS-linear. This finishes
the proof.

�

Proposition 4. In Proposition 3, we assume now M to be rigid.
Then there a torsor π : T → S under the constant groupscheme
Iso∇(M,M)⊗k S, together with an isomorphism between

(VT ,WT ,∇T ) ∼= (V,W,∇)×k T.

If M is irreducible, this is a Gm-torsor.

Proof. By definition, for each geometric point s ∈ S (k), one has an
isomorphism between (Vs,Ws,∇s) and (V,W,∇). The Zariski subsheaf
of sets Iso∇(V|US ,M ⊗k S) ⊂ Hom∇(V|US ,M ×k S) is acted on on the
right by Iso∇(M,M) ×k S, which endows it with the structure of a
torsor. Then T is the total space of the torsor. The existence of the
isomorphism then follows from the definition of the torsor.

�

We now finish the proof of [BE04, Thm. 4.10]. We have a diagram

(13)

Tyπ
Spec (R)

f−−−→ S

As k has characteristic 0 and π is a torsor under a constant group-
scheme, π is smooth. As k is algebraically closed, f lifts to g

T

π

��
Spec(R)

g
;;

f // S

(14)

and thus

(V ,W ,∇) = g∗π∗(VA,WA,∇A) = (V,W,∇)⊗k R.(15)
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By universality and pro-smoothness of R, this shows

F (k[ε]) = 0(16)

thus Theorem 4.10 of loc.cit. follows from (5).
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