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DECOMPOSITION OF THE DIAGONAL AND EIGENVALUES OF
FROBENIUS FOR FANO HYPERSURFACES

By SPENCER BLOCH, HÉLÈNE ESNAULT, and MARC LEVINE

Abstract. Let X ⊂ Pn be a possibly singular hypersurface of degree d ≤ n, defined over a finite
field Fq. We show that the diagonal, suitably interpreted, is decomposable. This gives a proof that
the eigenvalues of the Frobenius action on its �-adic cohomology Hi(X̄,Q�), for � �= char(Fq), are
divisible by q, without using the result on the existence of rational points by Ax and Katz.

1. Introduction. If X is a variety defined over a finite field k = Fq, one
encodes the number of its rational points over all finite extensions Fqs ⊃ Fq in
the zeta function, defined by its logarithmic derivative

ζ ′(X, t)
ζ(X, t)

=
∑
s≥1

|X(Fqs)|ts−1.(1.1)

By the theorem of Dwork [11], we know that ζ(t) is a rational function

ζ(X, t) ∈ Q(t).(1.2)

We assume that X is projective and we denote by U = Pn \ X the complement
of a projective embedding. The Grothendieck-Lefschetz trace formula [17] gives
a cohomological formula for the numerator and the denominator of the rational
function

ζ(U, t) =
2 dim(U)∏

i=0

det(1 − Fit)
(−1)i+1

,(1.3)

where Fi is the geometric Frobenius acting on the compactly supported �-adic
cohomology Hi

c(U, Q�). Letting Hi
prim(X, Q�) denote the primitive cohomology

Hi(X, Q�)/Hi(Pn, Q�) of X, we have

Hi
c(U, Q�) ∼=

{
Hi−1

prim(X, Q�) for (i − 1) ≤ 2 dim(X),

Hi(Pn, Q�) for i ≥ 2 dim(X) + 2.
(1.4)
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For X smooth and complete, the Weil conjectures [9] assert that the the eigen-

values of Fi in any complex embedding Q� ⊂ C have absolute values q
(i−1)

2 if

i ≤ 2 dim (X) + 1 and q
i
2 if i ≥ 2 dim (X) + 2. In particular, there is no possible

cancellation of eigenvalues between the numerator and the denominator of the
zeta function. Consequently, the property

|X(Fqs)| ≡ |Pn(Fqs)| mod qκs(1.5)

for all s ≥ 1, and some κ ∈ N \ {0}, is equivalent to the property that

the eigenvalues of Fi are divisible by qκ, as algebraic integers.(1.6)

However, if X is singular, one does not have in general the purity of weights of
Frobenius on Hi

c. Thus, a cancellation between the numerator of the zeta function
and its denominator is at least in principle possible, and the property (1.5) is no
longer a priori equivalent to the property (1.6). The purpose of this article is to
study the relation between (1.5) and (1.6) in the case of hypersurfaces of degree
d ≤ n.

Let X be a complete intersection in Pn defined by r equations of degrees
d1 ≥ d2 ≥ · · · ≥ dr with the property

1 ≤ κ = [
n − d2 − · · · − dr

d1
].(1.7)

The theorem of Ax and Katz says precisely that (1.5) holds true. On the other
hand, we also know by [7], [10], [12], that if the finite field is replaced by a
field of characteristic 0, the Hodge type of X is κ for all cohomology groups
of X. (See [4] for a more precise discussion of those theorems). This gives a
strong indication that (1.6) should be true as well. Indeed, as explained to us
by Daqing Wan, (1.7) is true for κ = 1. One knows by [8], Theorem 5.5.3, that
q divides the eigenvalues of Frobenius acting on Ha(X, Q�) for a > dim(X),
and since this cohomology vanishes for complete intersections for a < dim(X),
the theorem of Ax and Katz implies divisibility by q for a = dim(X) as well.
Similarly, using vanishing and Ax-Katz’s result, and replacing [8], Theorem 5.5.3
by the corresponding statement for the slopes of the Frobenius action on rigid
cohomology ([22], p. 820), one obtains that the slopes of the Frobenius action
on rigid cohomology are ≥ 1.

The purpose of this note is to give a motivic interpretation for Fano hyper-
surfaces and κ = 1 of the divisibility result, which does not use the theorem by
Ax and Katz.

We now describe our method. Let us first assume that X is smooth. By
Roitman’s theorem [21], we know that CH0(X ×k K) = Z for any field extension
K ⊃ k which is algebraically closed. By [2, Appendix to lecture 1], this implies
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that the class of the diagonal in CHn−1(X×X) goes to zero in CHn−1(X×X\ (ξ×
X∪X×A))Q for some divisor A on X and some 0-cycle ξ. Letting this class act as
a correspondence, it follows that the restriction map Hi(X, Q�) → Hi(X \ A, Q�)
is zero for i ≥ 1. This shows divisibility, as in [13], Lemma 2.1.

For singular varieties, the proof of the Hodge-type statement in the complete
intersection singular case ([12]) shows that the cohomology with compact support
Hi

c(U) =: Hi(Pn, X) carries the necessary information, and is easier to deal with
than its dual Hj(U). To carry out the argument used in the smooth case, one
needs a version of the Chow groups which is related to compactly supported
cohomology. If X is a strict normal crossing divisor, one can use the relative
motivic cohomology H2n

M (Pn×U, X×U, Z(n)), as defined in [20], chapter 4, 2.2 and
p. 209; this relative motivic cohomology acts as correspondences on H∗

c (U, Q�).
Due to the lack of resolution of singularities in positive characteristic, we will in
general need an alteration π: (P, Y) → (Pn, X) of (Pn, X), that is, a projective,
generically finite morphism π: P → Pn, with P smooth, such that Y := π−1(X)
is a strict normal crossing divisor. We then use the relative motivic cohomology
H2n

M (P × U, Y × U, Z(n)).
Recall that Hm

M(P × U, Y × U, Z(n)) is the homology H2n−m(Zn(P × U, Y ×
U, ∗)), where Zn(P×U, Y ×U, ∗) is the single complex associated to the double
higher Chow cycle complex

· · ·
∂

��

· · ·
∂

��

· · ·
∂

��
Zn(P × U, 1)

∂

��

rest �� Zn(Y (1) × U, 1)

∂
��

rest �� Zn(Y (2) × U, 1)

∂
��

Zn(P × U, 0) rest �� Zn(Y (1) × U, 0)
rest �� Zn(Y (2) × U, 0).

(1.8)

Here Y (a) is the normalization of all the strata of codimension a, Zn(Y (a) ×U, b)
is a group of cycles on Y (a) × U × Sb where S• is the cosimplicial scheme
Sn = Spec (k[t0, . . . , tn]/(

∑
ti − 1)) with face maps Sn ↪→ Sn+1 defined by ti = 0.

More precisely, Zn(Y (a) × U, b) is generated by the codimension n subvarieties
Z ⊂ Y (a)×U×Sb such that, for each face F of Sb, and each irreducible component
F′ ⊂ Y (a) of the strata of Y we have codimF′×U×F(Z ∩ (F′ × U × F)) ≥ n. The
horizontal restriction maps are the intersection with the smaller strata, the vertical
∂’s are the boundary maps.

For technical reasons, we find it convenient to use a subcomplex Zn(P ×
U, I(Y ×U), ∗) of Zn(P×U, Y ×U, ∗). For T a smooth k-scheme of finite type,
and A a closed subset, let Zn(T , I(A), m) be the subgroup of Zn(T , m) consisting
of the cycles W ∈ Zn(T , m) with Supp(W) ∩ (A × Sm) = ∅. The Zn(T , I(A), m)
evidently form a subcomplex Zn(T , I(A), ∗) of Zn(T , ∗), functorial for flat pull-
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back and proper push-forward. Set

Hm
M(T , I(A), Z(n)) := H2n−m(Zn(T , I(A), ∗)).(1.9)

The inclusion Zn(P×U, I(Y ×U), ∗) → Zn(P×U, ∗) extends to a map of com-
plexes Zn(P×U, I(Y ×U), ∗) → Zn(P×U, Y ×U, ∗). We call Hm

M(T , I(A), Z(n))
the motivic cohomology with modulus.

Let ∆ ⊂ P× U be the inverse image of the diagonal ⊂ Pn × U, i.e., ∆ is the
graph of the alteration π restricted to P × U. Since rest(∆) = 0, ∆ yields a class

[∆] ∈ H2n
M (P × U, I(Y × U), Z(n)).(1.10)

We show:

THEOREM 1.1. Let X ⊂ Pn be a hypersurface of degree d ≤ n over a field
k. Then there is an alteration π: (P, Y) → (Pn, X) and a divisor A ⊂ P which
cuts all the strata of Y in codimension ≥ 1 and such that the image of [∆] in
H2n

M ((P \ A) × U, I((Y \ A) × U), Q(n)) is zero.

The main idea behind this geometric statement relies on the following. By a
counting argument, Roitman [21] shows that, for a hypersurface X ⊂ Pn of
degree d ≤ n, the correspondence

{(x, �) ∈ X × Grass(1, n) | � ⊂ X or � ∩ X = {x} for some x ∈ X}(1.11)

dominates X. It follows that the map Z ∼= CH1(Pn) → CH0(X) has cokernel
killed by multiplication by d = deg X, where CH0(X) is Fulton’s homological
Chow group ([16]). This implies CH0(X) ⊗ Q = Q.

We replace Roitman’s correspondence by

P := {(y, �) ∈ P × Grass(1, n) | π(y) ∈ �,(1.12)

and either � ⊂ X or � ∩ X = {x} for some x ∈ X}.

We show that P dominates P, and then use the technique of blowing up strata of
Y introduced in [3] to find the rational equivalence relation which holds on the
complement of some good divisor A. Finally, we show:

THEOREM 1.2. Let X ⊂ Pn be a projective variety over a field k, and let U =
Pn \ X. Suppose there is an alteration π: (P, Y) → (Pn, X) and a divisor A ⊂ P

which cuts all strata of Y in codimension ≥ 1, such that the image of [∆] in
H2n

M ((P \ A) × U, I((Y \ A) × U), Q(n)) is zero.
(1) If the characteristic of the ground field k is 0, then grF

0 Hi(X) = 0 for all
i ≥ 1.
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(2) If k = Fq is a finite field, then the eigenvalues of the geometric Frobenius Fi

acting on the compactly supported �-adic cohomology Hi
c(U, Q�) are all divisible

by q as algebraic integers.
(3) If k is a perfect field of characteristic p, then the slopes of the Frobenius

operator acting on the rigid cohomology Hi
c(U/K) are all ≥ 1.

To conclude, we remark that this article solves the natural question posed in
the introduction of [15], but only in the case κ = 1. Thinking of the discussion
developed in [4], (5.2) for κ ≥ 2 in the smooth case, it is not entirely clear what
the substitute would be for 1.1. One may also try to generalize these results for
κ = 1, replacing the hypersurface X with a more general singular Fano variety.
A singular Fano variety X over a field is a gometrically connected, projective,
Cohen-Macaulay variety such that the reflexive hull of ωN

Xreg
is invertible and

ample for some N ∈ Z \ N. Examples are hypersurfaces of degree d ≤ n. The
question is then whether a Fano variety fulfills Theorem 1.1. If yes, as in [13],
this would show that a singular Fano variety over a finite field has a rational point.

Acknowledgments. We thank Pierre Berthelot, Pierre Deligne, V. Srinivas and
in particular Daqing Wan for interesting discussions on topics related to this work.
We would also like to thank the referee for a careful reading of the manuscript
and a number of helpful suggestions.

2. The proof of Theorem 1.1. This section is devoted to the proof of
Theorem 1.1. We fix a base-field k and write Pn for Pn

k . We want to show that a
certain class [∆] in motivic cohomology with modulus is trivial. Suppose for a
moment we know this vanishing for k an infinite field. If k is a finite field, there
exist Galois extensions k�/k with Galois group Z� for any prime �. In particular,
k� is infinite, so [∆k�] = 0 by hypothesis. Since the motivic cohomology with
modulus over k� is a direct limit over motivic cohomology with modulus over
finite subfields k′ ⊂ k�, and since motivic cohomology with modulus admits a
norm, we conclude [∆] is killed by some power of �. Since this is true for two
different �, and the union of Galois translates of A in good position with respect to
Y is still in good position, the theorem follows. Thus, we may assume k is infinite.
In particular, we will use without comment various general position arguments.

Fix X ⊂ Pn a hypersurface of degree d ≤ n. We want to define a closed
subvariety Z inside the Grassmann of lines Grass(1, n) consisting of lines “max-
imally tangent” to X. We have the incidence correspondence U := {(z, �) | z ∈
� ∈ Grass(1, n)}. Define

V := U ×Grass(1,n) U = {(y, �, z) | y, z ∈ �}.(2.1)

The P1-bundle pr2: V → U , (y, �, z) �→ (z, �) has a section (x, �) �→ (x, �, x).
Locally on U we may identify V ∼= P1 ×U with homogeneous coordinates s, t in

such a way that the section is given by t = 0. The section OPn
X→ OPn(d) pulls
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back to a section of p∗O(d)Pn under the projection p: V → Pn, (y, �, z) �→ y,
and the section X restricts to an equation F(s, t) = F0sd + F1sd−tt + · · · + Fdtd,
where the Fi are (local) functions on U . Note F0 is a local defining equation of
U ×Pn X ⊂ U . We are interested in the closed sets defined locally by F0 = · · · =
Fd−1 = 0 ( resp. F0 = · · · = Fd = 0). Denote by

Z′
X ⊂ Z′ ⊂ Grass(1, n)(2.2)

the projection on the Grassmannian of these sets. Intuitively, the open set Z0 :=
Z′ \ Z′

X consists of lines d-fold tangent to X at a point. Define Z ⊂ Z′ to be the
closure of Z0, and let ZX := Z′

X ∩ Z.

PROPOSITION 2.1. The projection

p2: Z ×Grass(1,n) U → Pn

is surjective. Intuitively, a general point on Pn has a line through it maximally
tangent to X.

Proof. It suffices to consider geometric points. Let y ∈ Pn\X be a geometric
point. There is a linear transformation of Pn such that the equation of X is
xd

0 + xd−1
0 f1(x1, . . . , xn) + · · · + fd(x1, . . . , xn), with fi ∈ k[x1, . . . , xn] homogeneous

of degree i, and such that y has homogeneous coordinates (1: 0: · · · : 0). Thus a
line passing through y has parametrization (s: tu1: · · · : tun) ∈ Pn, for (s: t) ∈ P1

and (u1: · · · : un) ∈ Pn−1. The intersection of this line with X has equation
sd + sd−1tf1(u1, . . . , un) + · · · + tdfd(u1, . . . , un) and its intersection with X will be
d-tangent if and only if this equation has the shape (s+tu)d with (u: u1: · · · : un) ∈
Pn. This is equivalent to the d homogeneous equations fi =

(d
i

)
ui, i = 1, . . . , d in

(u: u1: · · · un) ∈ Pn. Since d ≤ n there exists a homogeneous solution.

EXAMPLE 2.2. Let (T0: T1: T2) be homogeneous coordinates on P2, and let
X: T0T1 = 0, so d = n = 2. Clearly in this case Z is simply the variety of lines
through (0: 0: 1), and ZX ⊂ Z is the two points corresponding to the components
of X.

It follows from Proposition 2.1 that dim Z ≥ n − 1. Let Z ⊂ Z be a general
linear section of dimension n − 1, and write Q := Z ×Grass(1,n) U . Recall that
an alteration π: (P, Y) → (Pn, X) of (Pn, X) is a projective, generically finite
morphism π: P → Pn, with P smooth, such that Y := π−1(X) is a strict normal
crossing divisor.
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LEMMA 2.3. There exists a commutative diagram of schemes

P

π

��

Pf��

g
��

q

���
��

��
��

Pn Q
p̄

��
r̄

�� Z

satisfying the following conditions:
(1) Q and Z are as above, and p̄ and r̄ are the natural maps. In particular, p̄ is

a P1-bundle and r̄ is surjective.
(2) P is irreducible and normal.
(3) f : P → P is projective, generically finite and surjective.
(4) q: P → Z is surjective.
(5) There exists a normal crossings divisor Y ⊂ P such that π: (P, Y) → (Pn, X)

is an alteration.
(6) There exists a divisor A ⊂ P such that A meets all the strata of Y properly,

and such that P \ f−1(A) → P \ A is finite.
Given a surjection of projective k-schemes Q′ � Q, the map g can be taken to
factor P → Q′ → Q.

Proof. Since k is infinite and Z ⊂ Z is a general linear space section,
the map r̄ in 1) is surjective. Let π be an alteration. Then there will be an
irreducible component of P×Pn Q dominating both Q and P. Taking P to be the
normalization of this component gives (2), (3), and (4). (To see the final assertion,
one can replace Q′ by a plane section and assume Q′ → Q has finite degree.
Then substitute P ×Pn Q′ in the above.) Condition (5) comes from the work of
de Jong [5].

To prove (6), we use the following result ([3], Theorem 2.1.2):

THEOREM 2.4. Let Y ⊂ P be a normal crossings divisor in a smooth variety.
Let f : W → P be a finite type morphism, and assume that W \ f−1(Y) ⊂ W is
dense. Given p: P′ → P the blowup of a face (stratum) of Y, let Y ′ = p∗(Y)red

be the reduced pullback, and let f ′: W ′ → P′ be the strict transform of f . Then
(P′, Y ′, f ′) satisfy the same hypotheses as (P, Y , f ). There exists a composition of
such blowups, (PN , YN) → · · · → (P, Y) such that the strict transform morphism
fN : WN → PN meets the faces of YN properly, i.e. for Z ⊂ PN a face of codimension
r, f−1

N (Z) ⊂ WN has codimension ≥ r.

Replacing the alteration P → Pn with a composition PN → · · · → P → Pn

and changing notation, we may assume f : P → P meets faces properly. Since f
has finite degree, this amounts to saying that the fibre of f over the generic point
of any face is finite. The existence of a divisor A as in (6) is now clear.
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LEMMA 2.5. Let p: Q → B be a smooth projective morphism of k-schemes, with
geometrically connected fibers of dimension one. Let s0, s∞: B → Q be sections,
take t̃ ∈ H0(Q,OQ(s∞(B) − s0(B))) and suppose that the rational function t on Q
determined by t̃ satisfies

div(t) = s0(B) − s∞(B).

Let B̄ ⊂ B be the closed subscheme of B defined by the equation s0 = s∞. Then the
restriction t̄ of t to p−1(B̄) is a unit, and there is a unit ū on B̄ with t̄ = p∗(ū).

Proof. The hypotheses imply p∗O×
Q = O×

B and this continues to hold after
pullback. Smoothness of p implies that si(B) ⊂ Q are Cartier divisors. We view
t̃ as an isomorphism t̃: O(s∞(B)) ∼= O(s0(B)). By definition, the Cartier divi-
sors agree over B̄, so there is a tautological identification τ : O(s0(B))p−1(B̄)

∼=
O(s∞(B))p−1(B̄). The composition

t̃ ◦ τ ∈ Γ
(

p−1(B̄), Aut
(O(s0(B))

))
= Γ

(
p−1(B̄),O×

p−1(B̄)

) ∼= Γ(B̄,O×
B̄ )

yields the desired unit ū.

Recall Z ⊂ Z is a general linear section, where Z is a space of lines in Pn

which are maximally tangent to our given hypersurface X. We have removed
from Z any possible irreducible components consisting entirely of lines on X, so
the subset ZX ⊂ Z of lines on X is nowhere dense. We define ZX = Z ∩ ZX and
Z0 = Z \ ZX . By generality, Z0 ⊂ Z is dense. Define Q0 = p̄−1Z0 (resp. P0 =
q−1(Z0)). The P1-bundle Q0 → Z0 has a set-theoretic section s̄0∞ associating to
a line � the unique point in � ∩ X.

Consider the diagram

P
q

��
g

����
��

��
��

�� p
�� P ×Z Qs0��

p2

��
Z Q.

p̄
��

(2.3)

Here the section s0 corresponds to the map g. Similarly, the set-theoretic section
s̄0∞ gives rise to a set-theoretic section s0∞: P0 → P0 ×Z Q. By making a further
blow-up of faces of Y , enlarging A and changing notation (cf. the last part of
lemma 2.3), we may assume that the closure P̃ of s0∞(P0) in P ×Z Q is finite
over P \ A, hence finite over P \ f−1(A). Replacing P with P̃ and changing
notation, we may assume s0∞ gives rise to another section s∞: P → P ×Z Q.



DECOMPOSITION 201

The picture is now

Y� ���
P P

f
��

s0 ��

s∞
�� P ×Z Q.p��

A
��
��

(2.4)

Let P ⊂ P be the closed subscheme where s0 = s∞. Then

(P0 ∩ f−1(Y))red ⊂ P .(2.5)

Indeed, we can check this down on Pn, i.e., we can ignore the alteration π. Points
in P0 map to pairs consisting of a line � maximally tangent to X but not lying on
X, together with a point y ∈ �. The fibre p−1(�, y) = {(�, y, z) | z ∈ �}. The sections
s0 and s∞ are given respectively by s0(�, y) = (�, y, y) and s∞(�, y) = (�, y, � ∩ X).
Since Y = π−1(X), we get the desire inclusion (2.5) after alteration.

LEMMA 2.6. Possibly enlarging the divisor A (preserving the hypothesis that A
meets faces of Y properly), there exists a rational function t on P ×Z Q such that

(div t) ∩ ( f ◦ p)−1(P \ A) = (s0 − s∞) ∩ ( f ◦ p)−1(P \ A),(2.6)

and such that further, t|(( f ◦ p)−1(Y))red ∩ (P0 ×Z Q) ≡ 1.

Proof. By assumption, the map P \ f−1(A) → P \A is finite. There are thus
a finite set of points of P lying over generic points of faces of Y .

Let L = p∗(O(s∞− s0)). As Rip∗(O(s∞− s0)) = 0 for i > 0, L is an invertible
sheaf on P; adding divisors to A meeting faces properly, we can assume that L
is trivial on P \ f−1A. A generating section of L thus gives a generating section
t̃ of O(s∞− s0) over P ×Z Q\ ( fp)−1(A). We let t be the corresponding rational
function on P ×Z Q.

Clearly t satisfies (2.6). The fact that t can be taken to be ≡ 1 on the indicated
divisor follows from (2.5) and Lemma 2.5. Indeed, the Lemma shows that the
restriction of t comes from a unit on f−1Y ∩ P0. Enlarging A, this unit lifts to a
unit on P \ f−1A. Normalizing t, we can assume this unit is 1.

Proof of Theorem 1.1. We use Lemma 2.6 to construct an effective cycle
D ∈ Zn((P \ A) × U, 1) with

Supp(D) ∩ (Y \ A) × U × S1 = ∅,
(2.7)

∂(D) = N · ∆ ∈ Zn((P \ A) × U, 0)

for some integer N �= 0. This suffices to prove the theorem.
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To construct D, we have the closed embedding i: P ×Z Q → P × Pn. Let

P ×Z Q# = i−1((P \ f−1(A)) × U),(2.8)

and let

Γ# ⊂ P ×Z Q# × P1(2.9)

be the closure of the graph of t. Let

Γ := i∗Γ# ⊂ (P \ f−1(A)) × U × P1(2.10)

be the image of Γ#, and let

Γ ⊂ (P \ f−1(A)) × U × S1; S1 = Spec k[t0, t1]/(t0 + t1 − 1)(2.11)

be the pull-back of Γ via (t0, t1) �→ ( − t0: t1). We let Γ∗ ⊂ P × Pn × P1 be the
closure of Γ.

By Lemma 2.6, we have

Γ∗ ∩ ( f−1(Y \ A) × Pn × P1) ⊂ ( f−1(Y \ A) × X × P1)

∪( f−1(Y \ A) × Pn × {1}).(2.12)

Thus

Γ∗ ∩ ( f−1(Y \ A) × U × S1) = ∅.(2.13)

Also we have

∂(Γ) = ( f × id)∗(∆) ∈ Zn((P \ f−1(A)) × U, 0).(2.14)

Thus, setting

D := ( f × id)∗(Γ) ∈ Zn((P \ A) × U, 1),(2.15)

we have

rest(D) = 0, ∂(D) = ( f × id)∗ ◦ ( f × id)∗(∆) = N · ∆,(2.16)

where N = deg ( f ) �= 0. This completes the proof.

3. The proof of Theorem 1.2. This section is devoted to the proof of
Theorem 1.2.

In what follows, we write simply Ha(X, b) to denote either geometric étale
cohomology, viz. X/Fq, Ha(X, b) := Ha

ét(X ×Fq Fq, Q�(b)) for (�, char(Fq)) = 1),
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or de Rham cohomology Ha
DR(X) for X over a field of characteristic 0 (with the

Hodge filtration shifted by b), or rigid cohomology with the Frobenius action
multiplied by p−b for X over a perfect field of characteristic p. On de Rham
cohomology we denote by F the Hodge filtration [6].

LEMMA 3.1. Let P be smooth and let A ⊂ P be a divisor meeting faces of
Y properly, where Y ⊂ P is a normal crossing divisor. Let s: Ha

A(P, Y; 0) →
Ha(P, Y; 0) be the canonical map. Then

(1) In the de Rham case, Image(s) ⊂ F1Ha(P, Y; 0).
(2) In the étale case, the eigenvalues of Frobenius Fq on Image(s) are all

divisible by q.
(3) In the rigid case, the slopes of Fa on Image(s) are all ≥ 1.

Proof. We have a diagram

Ha−1(Y , 0) �� Ha(P, Y; 0) �� Ha(P, 0)

Ha−1
A (Y , 0) ��

s

��

Ha
A(P, Y; 0) ��

s

��

Ha
A(P, 0).

s

��(3.1)

The assertion for the middle vertical arrow reduces to the comparable assertions
for the left and right hand vertical arrows. (In the de Rham case, one must use
the fact that grF is an exact functor.) Then the spectral sequences

Es,t
1 = Ht

A·Y (s) (Y (s), 0) ⇒ Hs+t
A (Y , 0)(3.2)

Es,t
1 = Ht(Y (s), 0) ⇒ Hs+t(Y , 0)

reduce the problem to the case where the relative divisor Y is smooth. Thus it
suffices to consider the right-hand vertical arrow.

Suppose for a while we work with étale cohomology. We mimic Berthelot’s
method as in [13], Lemma 2.1. Let · · · ⊂ Aj ⊂ Aj−1 · · · ⊂ A0 = A be a finite
stratification by closed subsets such that Ai−1 \ Ai is smooth. The localization
sequence

· · · → Hb
Aj

(P, Q�) → Hb
Aj−1

(P, Q�) → Ha
(Aj−1\Aj)

(P \ Aj, Q�) → · · ·(3.3)

commutes with the Frobenius action. Therefore we may assume that both A and P

are smooth, but no longer projective. We consider an affine covering P = ∪N
i=0Ui.

The spectral sequence

Eab
2 = Ha( · · · → Hb

A(Ua−1, Q�) → Hb
A(Ua, Q�)(3.4)

→ Hb
A(Ua+1, Q�

) → · · ·) =⇒ Ha+b
A (P, Q�)
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allows us to reduce to the case where P is smooth affine, A ⊂ P is smooth, where
r = codim(A) ≥ 1. By purity, we have a functorial Gysin isomorphism

Ha−2r(A, Q�)
Gysin→ Ha

A(P, Q�(r))(3.5)

By functoriality, this commutes with Frobenius, and we know that the eigenvalues
of Frobenius acting on the left term are algebraic integers (use duality with H∗

c and
e.g. Corollary 5.5.3(iii) in [8]). But this is equivalent to saying that the Frobenius
eigenvalues on Ha

A(P, Q�) are all divisible by qr, finishing the proof when k = Fq.
The same sort of argument in the de Rham case reduces us to showing

Image(Hb
DR(A) → Hb+2r

DR (P)) ⊂ FrHb+2r
DR (P)(3.6)

when A is a smooth codimension r subvariety of the smooth affine P; we may
even assume that A is a transverse intersection of r smooth divisors on P. By
induction on r, we may assume that A has codimension 1. We take a smooth
compactification P ⊂ P′ such that A has a smooth compactification A ⊂ A′ ⊂ P

and the divisor A′ ∪W, W = (P′ \P) is a normal crossing divisor. Then the Gysin
map is the connecting homomorphism of the residue sequence

0 → Ω•
P′( log (W)) → Ω•

P′( log (W + A′)) → Ω•−1
A′ ( log (W ∩ A′)) → 0.(3.7)

Since one has the exact subsequence

0 → Ω≥(p+1)
P′ ( log (W)) → Ω≥(p+1)

P′ ( log (W + A′))(3.8)

→ Ω≥p
A′ ( log (W ∩ A′)) → 0,

one sees that FpHb
DR(A) cobounds to Fp+1Hb+2

DR (P). This finishes the proof when
k has charateristic 0.

Finally, when k is perfect of characteristic p, we use a similar argument,
replacing étale cohomology by rigid cohomology. This finishes the proof of the
lemma.

Proof of Theorem 1.2. P will be a smooth, projective variety of dimension
n, Y ⊂ P is a normal crossings divisor, and U := P \ Y . Consider the diagonal
(1.10). Using the cycle class map from motivic cohomology (cf. section 4), we
view the diagonal as being a class in our theory

[∆] ∈ H2n((P, Y) × U, n) ∼=
⊕

a+b=2n

Hb(U, n) ⊗ Ha(P, Y; 0)(3.9)

∼=
2n⊕

a=0

Hom(Ha(P, Y; 0), Ha(P, Y; 0)).
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(The isomorphism on the right uses the existence of a good theory of compactly
supported cohomology in our cohomology. Of course, the homomorphism on the
right is the identity.) By the hypotheses of Theorem 1.2, [∆] dies in H2n((P \
A, Y \ Y ∩ A) × U, n), which means that the map s below is onto:

Ha
A(P, Y; 0)

s� Ha(P, Y; 0) → Ha(P \ A, Y \ Y ∩ A; 0).(3.10)

Also, since P → Pn is an alteration, the pullback map Ha(Pn, X; 0) → Ha(P, Y; 0)
is injective. The assertions of the theorem are now consequences of Lemma 3.1
above.

4. Cycle maps. Let H∗
? be one of the cohomology theories used above: étale

cohomology with relevant twists and Galois action [8], de Rham cohomology with
Hodge filtration [6] or rigid cohomology with Frobenius action [1]. We explain
how to define cycle maps

cln: H2n
M (T , I(A), Z(n)) → H2n

? (T , A),(4.1)

natural with respect to smooth pull-back and projective push-forward, where
H2n

? (T , A) denotes the theory on T with compact supports relative to A; if T̄ is
a compactification of T , we have the usual compactly supported cohomology
H∗

?,c(T) := H∗
? (T̄ , T̄ \ T), which is canonically defined independent of the choice

of T̄ .
For T smooth over k and W a closed subset, we have the cohomology with

supports H∗
?,W(T). We have as well the relatively compact version H∗

?,W(T , A) and
the natural commutative diagram

H∗
?,W(T , A) ��

��

H∗
? (T , A)

��
H∗

?,W(T) �� H∗
? (T).

(4.2)

If W ∩ A = ∅, the map

H∗
?,W(T , A) → H∗

?,W(T)(4.3)

is an isomorphism. H∗
? satisfies the homotopy property: the map

p∗: H∗
? (T , A) → H∗

? (T × A1, A × A1)(4.4)

is an isomorphism.
Let R be the coefficient ring H0

? (k). We have the group of codimension n
cycles Zn(T) = Zn(T , 0). For W ⊂ T a closed subset, we let Zn

W(T) ⊂ Zn(T) be
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the subgroup of cycles with support on W. If codimTW ≥ n, we have the purity
isomorphism

clnW : Zn
W(T) ⊗ R → H2n

?,W(T),(4.5)

which is natural with respect to maps f : (T ′, W ′) → (T , W), f−1(W) ⊂ W ′, with
codimT′W ′ ≥ n. Taking the limit over W and forgetting supports defines the map

cln: Zn(T) → H2n
? (T)(4.6)

with cln( f ∗Z)= f ∗cln(Z) for Z∈Zn(T), and f : T ′ → T with codimT′ f−1(Supp(Z))
≥ n. The maps cln are also natural with respect to projective push-forward and
products.

Now let A be a closed subset of some smooth T , and let W be a closed subset
of T with codimTW ≥ n and W ∩ A = ∅. Via the isomorphisms (4.3), (4.5), we
have the isomorphism

clnW : Zn
W(T) ⊗ R → H2n

?,W(T , A).(4.7)

Taking the limit of such W and forgetting supports gives us the natural map

clnA(0): Zn(T , I(A), 0) → H2n
? (T , A).(4.8)

Similarly, we have the natural map

clnA(1): Zn(T , I(A), 1) → H2n
? (T × S1, A × S1).(4.9)

This yields the commutative diagram

Zn(T , I(A), 1)
clnA(1)

��

δ∗1 −δ∗0
��

H2n
? (T × S1, A × S1)

δ∗1 −δ∗0
��

Zn(T , I(A), 0)
clnA(0)

�� H2n
? (T , A).

(4.10)

By the homotopy property (4.4), the right-hand vertical arrow is zero, so clnA(0)
descends to the desired map

clnA: H2n
M (T , I(A), Z(n)) → H2n

? (T , A).(4.11)

The naturality of clnA with respect to flat pull-back, projective push-forward and
products follows from that of the cycle-classes with support.
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