
CONGRUENCES FOR THE NUMBER OF RATIONAL
POINTS, HODGE TYPE AND MOTIVIC
CONJECTURES FOR FANO VARIETIES

SPENCER BLOCH AND HÉLÈNE ESNAULT

Abstract. A Fano variety is a smooth, geometrically connected
variety over a field, for which the dualizing sheaf is anti-ample.
For example the projective space, more generally flag varieties are
Fano varieties, as well as hypersurfaces of degree d ≤ n in Pn. We
discuss the existence and number of rational points over a finite
field, the Hodge type over the complex numbers, and the motivic
conjectures which are controlling those invariants. We present a
geometric version of it.

1. Congruence for the number of rational points for a
variety over a finite field

Let X be a smooth projective variety over a field k. If k = Fq is
finite, it will be rarely the case that X has a rational point. Yet, if the
variety is very negative in the sense of differential geometry, then X
will have some, or even many rational points. The simplest example is
the projective space Pn. Since one description of the k-rational points
|Pn(k)| is the quotient of the punctured vector space kn+1 \ {0} by the
diagonal action of the homotheties k×, one sees that

|Pn(Fq)| =
qn+1 − 1

q − 1
= 1 + q + . . .+ qn.(1.1)

One way to measure |X(Fq)| for a smooth projective variety X ⊂ Pn
is to consider the congruence

|X(Fq)| ≡ |Pn(Fq)| mod qκ,(1.2)

or equivalently

|U(Fq)| ≡ 0 mod qκ,(1.3)

where U = Pn\X, for some natural number κ. Of course if κ = 0, then
(1.2) says nothing, but if there is a κ ≥ 1 which satisfies (1.2), then
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first of all, X has a rational point, and secondly the larger κ, the more
rational points. One codes |U(Fqs)| for all finite extensions Fq ⊂ Fqs in
the zeta function defined by its logarithmic derivative

ζ ′(U, t)

ζ(U, t)
=

∑
s≥1

|U(Fqs)|ts−1.(1.4)

Thus the existence of a κ ∈ N\{0} as in (1.3) for all finite extensions of
Fq is equivalent to ζ(U, t), as a power expansion in t, be in Z[[qκt]]. On
the other hand, the fundamental theorem of Dwork [12] asserts that
ζ(U, t) is a rational function over the rational numbers

ζ(U, t) ∈ Q(t).(1.5)

One concludes that writing

ζ(U, t) =

∏a
i=1(1− αit)∏b
j=1(1− βjt)

,(1.6)

the reciprocal roots αi and poles βj of the ζ(U, t) are divisible by qκ as
algebraic integers, i.e. in Z̄ ⊂ Q̄. On the other hand, the Grothendieck-
Lefschetz fixed point trace formula [19] asserts

ζ(U, t) =

2 dim(U)∏
i=0

det(1− Fit)(−1)
i+1

(1.7)

where Fi is the arithmetic Frobenius acting on the compactly sup-
ported `-adic cohomology H i

c(Ū ,Q`), which is isomorphic to the prim-
itive cohomology H i−1

prim(X̄,Q`) = H i−1(X̄,Q`)/H
i−1(P̄n,Q`) of X for

(i − 1) ≤ 2 dim(X), and = H i(P̄n,Q`) for i ≥ 2dim(X). By the Weil
conjectures proven by Deligne [9], the eigenvalues of Fi in any complex

embedding Q` ⊂ C have absolute values q
(i−1)

2 . Thus in (1.7) there
can’t be any cancellation between odd and even i’s. Our condition
(1.3) translates then exactly into the condition that the eigenvalues of
Fi be all divisible by qκ as algebraic integers.

On the other hand, the cohomology Hm(X̄,Q`) carries a coniveau fil-
tration . . . ⊂ NaHm(X̄,Q`) ⊂ Na−1Hm(X̄,Q`) ⊂ . . ., where Na is the
subgroup of classes which die after restriction outside of a codimension
a subscheme. One checks by a dévissage as in [17], Lemma 2.1, that
the eigenvalues of the Frobenius acting on NaHm(X̄,Q`) are divisible
by qa as algebraic integers. Thus if NκHm

prim(X̄,Q`) = Hm
prim(X̄,Q`),

the congruence (1.3) holds. The Tate conjecture predicts the converse:
if the eigenvalues of Frobenius acting on Hm

prim(X̄,Q`) are all divisible
as algebraic integers by qκ, then the primitive cohomology should be
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supported in codimension κ, that is in concrete terms, there should
exist a codimension κ subscheme Z ⊂ X such that the restriction map

Hm
prim(X̄,Q`)→ Hm(X \ Z,Q`)/H

m(P̄n,Q`)(1.8)

dies.

2. Hodge type

The Hodge type of a projective variety X ⊂ Pn over a field k of
characteristic 0 is defined to be the largest natural number κ such that
the Hodge filtration . . . ⊂ F aHm

DR,prim(X) ⊂ F a−1Hm
DR,prim(X) ⊂ . . .

fulfills

F κHm
DR,prim(X) = Hm

DR,prim(X)(2.1)

for all m. (One would define similarly the Hodge type of Hm
DR,prim(X)

for a given degree m). If X is projective smooth, then Hodge type = κ
means

Hq(X,Ωp
X) =

{
0 for q 6= p < κ

k for q = p < κ.

If

NκHm
DR,prim(X) = Hm

DR,prim(X),(2.2)

with the same definition of the coniveau filtration for de Rham co-
homology as for `-adic cohomology, then one easily computes via the
Gysin sequence that the Hodge type of the primitive cohomology is
≥ κ. The Hodge conjecture predicts the converse: if the Hodge type is
κ, then the primitive cohomology is supported in codimension κ.

3. Hodge cohomology and slopes

In this section, X is still assumed to be a smooth projective variety
over a finite field Fq, where q = pd for a prime number p. We are
interested in conditions which force the reciprocal zeros αi and poles
βj of the zeta function (1.6) to be divisible by qκ as algebraic integers.

Write W (Fq) for the ring of Witt vectors over Fq. It is a complete
discrete valuation ring with residue field Fq. For example, W (Fp) = Zp,
the p-adic integers. Let K be the quotient field of W (Fq). Frobenius on
Fq induces automorphisms σ of W (Fq) and K satisfying σd = identity.
The crystalline cohomology [3] H∗crys(X/W (Fq))⊗K is a finite dimen-
sional K-vector space with an endomorphism f (Frobenius) satisfying

(3.1) f(wx) = σ(w)f(x); w ∈ K, x ∈ H∗.
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In particular, fd is K-linear, and the basic theorem [3] is that

(3.2) ζ(X/Fq, T ) = det(1− fdT |H∗)−1,
where of course the determinant of the right is taken in the graded
sense, i.e. characteristic polynomials coming from Hodd appear in the
numerator of ζ.

In order to estimate divisibility for the eigenvalues, we can calculate
crystalline cohomology using the de Rham-Witt complex [20]. This is
a complex of pro-sheaves for the Zariski topology on X

(3.3) W•Ω
∗ := {W•O

d−→ W•Ω
1 d−→ W•Ω

1 → · · · d−→ W•Ω
dimX}.

In other words, each W•Ω
i is a projective system of Zariski sheaves on

X

(3.4) . . .� WnΩi � Wn−1Ω
i � . . .� W1Ω

i := Ωi
X

where Ωi
X is the sheaf of Kähler i-forms on X. Each WnΩi has a

finite filtration with graded pieces coherent, so the cohomology groups
Hj(X,WnΩi) have finite length. For i = 0, WnO is the sheaf of Witt
vectors of length n over the structure sheaf OX .

It is not true in general that the Hj(X,W•Ω
i) := lim←−nH

j(X,WnΩi)

are finitely generated W (Fq)-modules (even for i = 0, [31]). However,

the groups Hj(X,W•Ω
i)
/

(torsion) are finitely generated. In particu-

lar, the Hj(X,W•Ω
i)⊗K are finite K-vector spaces. The differentials

in (3.3) come from differentials WnΩi d−→ WnΩi+1, and we define

(3.5) H∗(X,W•Ω∗) := lim←−
n

H∗(X,WnΩ∗).

The de Rham-Witt complex plays the role of a sort of de Rham com-
plex calculating crystalline cohomology. Namely, there is a canonical,
functorial isomorphism

(3.6) H∗crys(X/W (Fq)) ∼= H∗(X,W•Ω∗).
Crucial for our purposes is that the frobenius f has a nice description
on the de Rham-Witt cohomology. Namely, one has endomorphisms

(3.7) f (i), v(i) : W•Ω
i → W•Ω

i

which satisfy f (i)v(i) = v(i)f (i) = p. The endomorphism v(i) is topo-
logically nilpotent in the sense of the inverse system (3.4). One has
d ◦ f (i) = pf (i+1) ◦ d, so in particular the pif (i) on W•Ω

i induce a map
of complexes on W•Ω

∗. The resulting map on H∗(X,W•Ω∗) coincides
with the Frobenius f on crystalline cohomology under the isomorphism
(3.6).



FANO VARIETIES 5

As a consequence of these facts, one deduces that the spectral se-
quence

(3.8) Eab
1 = Hb(X,W•Ω

a)⊗K ⇒ Ha+b(X,W•Ω
∗)⊗K

degenerates at E1 ([4]), and that the eigenvalues of the K-linear en-
domorphism qaf (a)d : H∗(X,W•Ω

a)→ H∗(X,W•Ω
a) coincide with the

eigenvalues αi and βj appearing in ζ(X/Fq, T ) which are divisible by
qa but not by qa+1. (This is because qav(a)df (a)d = qapd = qa+1, and
v(a) is topologically nilpotent.)

Of course, there is a lot of mathematics here, and it is not possible to
give the details in a survey such as this. Note, however, that there are
two deep global results, (3.2) and (3.6). The rest involves the definition
and local structure of W•Ω

∗.
As a corollary of the above, we deduce

Corollary 3.1. Let κ ≥ 1 be a given integer. Then all the reciprocal
zeroes and poles αi and βj of ζ(X/Fq, T ) are divisible by qκ if and only
if H∗(X,W•Ω

a)⊗K = (0) for a < κ.

We would like a criterion in terms of the Hodge groups Hb(X,Ωa
X)

which will insure the de Rham-Witt groups vanish as in corollary 3.1.
The following is deduced from a purely local calculation using the struc-
ture of the sheaves WnΩi. We use the notation “Hodge type” as in
section 2, even though the ground field is finite.

Proposition 3.2. With notation as above, if X has Hodge type κ ≥ 1,
then H∗(X,W•Ω

a) = (0) for a < κ. In particular, all the reciprocal
zeroes and poles of ζ(X/Fq, T ) are divisible by qκ.

Proof. We will use some results about the structure of W•Ω
∗ from [21].

The first point is that f (i), v(i), p are injective on pro-objects. Topolog-
ical nilpotence for v(i) means

(3.9) v(i)nWΩi ⊂ ker(W•Ω
i → WnΩi)

[21], (2.2.1). Further, by op. cit. (2.5.2), there is an exact sequence

(3.10) 0→ W•Ω
i−1/f (i−1) dv(i−1)

−−−−→ W•Ω
i/v(i) → Ωi

X → 0.

(For i = 0 this says W/v(0) ∼= OX .) By induction on i we see that
H∗(X,W•Ω

i/v(i)) = (0) for i < k, so

(3.11) v(i)n : H∗(X,WΩi) ∼= H∗(X,WΩi) =

lim←−H
∗(X,WnΩi) ⊂

∏
n

H∗(X,WnΩi).

By (3.9), we deduce that H∗(X,W•Ω
i) = (0) for i < k. �
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Remarks 3.3. i) Proposition 3.2 is a special case of a more gen-
eral theorem asserting that the Newton polygon of the F -crystal
Hm(X/W )/(torsion) lies above the Hodge polygon defined by
slope i with multiplicity dim Hm−i(X,Ωi

X) (see [25], [27]). We
have seen that only the local properties of W•Ω

∗ are relevant
for Proposition 3.2.

ii) It is of course very easy to compute the Hodge cohomology
Hj(X,Ωi) for smooth complete intersections X ⊂ Pn defined by
r equations of degrees d1 ≥ d2 ≥ . . . ≥ dr. It is κ = [n−d2−...−dr

d1
].

Here [z] is the integral part of the rational number z. In other
words, Proposition 3.2 is an easy proof of the theorem of Ax
and Katz ([23]) asserting (1.2) or equivalently (1.3) in this case.

4. From Fq to C and vice-versa.

Let us think now that our smooth variety over a finite field is com-
ing via reduction modulo p from a variety defined in characteritic 0,
over a ring of finite type over the integers. Then, via the compari-
son between `-adic and de Rham cohomologies, the coniveau in which
(primitive) de Rham cohomology is carried is the same as the coniveau
in which (primitive) `-adic is carried. In conclusion, one sees that the
coincidence of the κ stemming from the ζ function with the κ from the
Hodge type is a test both for the Tate and the Hodge conjectures.

We have two tests at disposal. First smooth complete intersections.
Let X ⊂ Pn be a smooth complete intersection defined by r equations
of degree d1 ≥ d2 . . . ≥ dr. We define κ = [n−d2−...−dr

d1
] as in Remark

3.3. Then, as already mentioned, the theorem of Ax and Katz [23]
asserts (1.3) while Deligne’s theorem [8] asserts (2.1). Moreover, this
bound is sharp both on the ζ and on the Hodge sides.

The smooth complete intersections just discussed with κ ≥ 1 are
special Fano varieties. We consider now our second example: Fano
varieties which are abstractly defined. In characteristic 0, Kodaira
vanishing applied to the ample invertible sheaf ω−1 yields Hq(X,OX) =
0 for all q > 0. Thus the Hodge theoritic κ is at least 1. Over a finite
field, [17], Corollary 1.3 asserts that |X(Fq)| ≡ 1 mod q. Thus the κ of
the ζ function is at least 1 as well. This is our second test. However,
we observe that the test is not complete. It might well be that the
Hodge type of X is ≥ 2. Yet the proof given in [17] does not give a
better the congruence for the number of rational points over a finite
field, unless we know the Chow groups of X. This is the subject of the
next section.
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5. Motivic conjectures

The Beilinson-Bloch conjectures ([5], [1], [2]) predict that the Chow
groups of a smooth projective variety defined over the complex numbers
should be controlled by its Hodge theory. More precisely, it predicts
that if the Hodge type of the primitive cohomology of a smooth complex
projective variety X of dimension d is κ, that is (2.1) holds true, then
one has

CHi(X)⊗Q = H2(d−i)(Xan,Q) for 0 ≤ i ≤ (κ− 1).(5.1)

Applying the splitting of the diagonal as initiated in [5], Appendix to
Lecture 1, and then refined as in [22], [29], [15], one sees that (5.1) is
equivalent to saying that there is a nontrivial natural number N , there
are dimension i and codimension i cycles αi and βi ⊂ X, a codimension
κ cycle Z ⊂ X, a codimension d cycle Γ ⊂ X × Z with

N∆ ≡ α0 ×X + α1 × β1 + . . .+ ακ−1 × βκ−1 + Γ(5.2)

where ≡ means the equivalence in CHd(X×X), and ∆ is the diagonal.
It is easily seen that such a decomposition (5.2) of the diagonal, up to
torsion, implies (2.2). Over the complex numbers, it implies a fortiori
(2.1) while over a finite field, it implies (1.3), by showing again that the
eigenvalues of the Frobenius are divisible by qκ as algebraic numbers.

In other words, the Beilinson-Bloch conjectures on the Chow groups
imply here the Hodge conjecture. Thus we expect that our Fano vari-
eties with Hodge type κ will fulfill (5.1) and (1.3) as well.

Let us look at our two classes of examples. The smooth complete
intersections as in section 3 with κ ≥ 1 fulfill CH0(X) = Z by a
theorem of Roitman [30]. However, we do not know in general whether
CHi(X)⊗Q = Q for i < κ. We have very few simple examples where
the bound is achieved ([32], [28]), and the general results we have yield
bad bounds ( [16]). We observe nevertheless that Roitman’s theorem
(loc. cit.) yields a whole class of examples for which the Beilinson-
Bloch conjecture is true and sharp. Let Y ⊂ Pκ−1 × Pn be a smooth
complete intersection of bidegree (1, d). Then one easily computes that

Hq(Y,Ωp) = 0 for q 6= p, p ≤ (κ− 1)(5.3)

and Hq(Y,Ωp) 6= 0 for some p ≥ κ, p 6= q

if and only if κd ≤ n.

Let us write y1f1 + . . . + yκfκ for the equation of Y , where yi are the
homogeneous coordinates in Pκ−1 and fi are homogeneous polynomi-
als of degree d. Then Y is smooth if and only if the codimension κ
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subvariety X ⊂ Pn defined by f1 = . . . = fκ = 0 is smooth. More-
over, Y is the blow-up of X in Pn. Consequently, one has CHi(Y ) =
CHi−κ+1(X)⊕CHn+κ−2−i(Pn). Thus CHi(Y )⊗Q = Q for i ≤ (κ− 2)
and CH0(X) = Z implies CHκ−1(Y )⊗Q = Q⊕Q.

Roitman’s theorem is a special case of a deeper theorem for ab-
stractly defined Fano varieties, due to Campana, and Kollár-Miyaoka-
Mori ([24]). It is stemming from geometry. If X is a Fano vari-
ety, then it is rationally connected, that is any two closed points are
linked by a chain of rational curves. This implies CH0(X) = Z, but
is stronger than this. For example, in characteristic 0, surfaces with
Hm(X,OX) = 0,m = 1, 2, but with nonnegative Kodaira dimension
≤ 1 have CH0(X) = Z ([6]), and certainly they are not rationally
connected. As recalled in the abstract, Fano means that ω∨X is ample.
Thus this strong negativity condition on the top differential forms im-
plies rational connectivity. On the other hand, strong negativity on
the 1-forms implies rationality: by the fundamental theorem of Mori
([26]), (Ω1

X)∨ ample is equivalent to X being isomorphic to the pro-
jective space. Thus in this case CH0(X) = . . . = CHd(X) = Z and
κ = (d+ 1).

In consequence, it is tempting to think that the condition (5.1) might
result from a strong negativity condition on d, (d− 1), . . . , (d− κ+ 1)
differential forms. We have at disposal Demailly’s positivity notion
[11]. A vector bundle E on a smooth projective complex variety is s-
positive if its hermitian curvature form, seen on TX ⊗E, is positive on
all tensors of length ≤ s. Demailly’s vanishing theorem says that if E
is s positive, then Hq(X,ωX ⊗E) = 0 for q ≥ d− s+ 1. In particular,
let us assume that

(Ωn−p)∨ is (n− p)− positive for 0 ≤ p ≤ (κ− 1).(5.4)

Then Hq(X,Ωp
X) = 0 for q > p, 0 ≤ p ≤ (κ − 1). But by Hodge du-

ality, this implies Hq(X,Ωp
X) = 0 for q < p, 0 ≤ p ≤ (κ − 1) as well.

Thus under the assumption (5.4), the Beilinson-Bloch conjectures pre-
dict (5.1). One may hope that this geometric formulation yields more
information, as we discussed for p = 0 and p = (d − 1) above. It is
further to be remarked that, while applied to smooth complete inter-
sections, Demailly’s positivity is stronger than what would be needed
to prove exactly (5.1), which is coming from the Hodge type. It is then
likely that a positivity notion, a bit weaker than Demailly’s one, will
force Demailly’s vanishing, and would be such that while applied to
smooth complete intersections, it would yield, via the Beilinson-Bloch
conjectures, exactly the right predicted statement on Chow groups.
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6. Singular projective varieties

In this section, X ⊂ Pn is still projective, but no longer necessarily
smooth.

Let us assume first that X is defined over a finite field Fq. We
still have that the divisibility of the eigenvalues of Frobenius acting on
H i
c(Ū ,Q`) implies the divisibility of the reciprocal roots and poles of

the ζ function via (1.6) and (1.7). But the converse is not a priori clear.
The problem is that the absolute values of the eigenvalues of Fi are no
longer determined by i, there might be some cancellation in (1.7).

Next we think of H i
c(Ū ,Q`) as being no longer a semisimple Galois

representation, and we consider its associated graded semisimple Galois
representation. We apply the mechanism explained in the smooth case
to predict that the Hodge type of X in characteric 0 should be the same
as the κ such that qκ divides the eigenvalues of the Frobenius acting
on H i

c(Ū ,Q`). Now we have only one class of examples: projective
varieties X defined by r equations of degrees d1 ≥ d2 ≥ . . . ≥ dr. We
don’t require smoothness, not even that the dimension of X be (n−r).
If n−d2−...−dr

d1
≥ 0 we define κ as in (2). Then the theorem of Ax and

Katz ([23]) asserts that (1.3) is true, while [10], [13], [14] show that
the Hodge type of X is κ. Those bounds are sharp. In particular, we
see that the coincidence of the κ coming from the ζ function and the
one coming from Hodge theory in this mixed case predicts that the
eigenvalues of Frobenius will be divisible by qκ, which we don’t know
so far.

In the same range of ideas, if we require now that X be a (non-
smooth) complete intersection, by [33] one has higher divisibility of
the reciprocal poles of ζ (suitably normalized), while by [18] one has a
better Hodge type for all the primitive cohomology beyond the middle
dimension. Here one would also expect that the better divisibility is not
only for the reciprocal poles of the ζ function, but also for the eigenval-
ues of Frobenius acting on the corresponding cohomology H i

c(Ū ,Q`) for
all i modulo 2 corresponding to the poles. But in addition, in light of
the Hodge type computation, one would expect the better divisibility
beyond the middle dimension.

The Beilinson-Bloch conjectures are not formulated for projective
nonsmooth varieties. It is tempting to think that motivic cohomology
in some good sense will control both the Hodge type and the congru-
ence (in particular the existence) of rational points over a finite field.
However, in absence of a clear view of what would correspond to the
easy implication in the smooth case (trivial Chow groups implies con-
gruence for points and nontrivial Hodge type), it is hard to forsee a
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good formulation of what would be the Beilinson-Bloch conjectures in
the projective singular case.
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algébrique d’Orsay, Juillet 1992, Astérisque 218 (1993), 203-226.
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