AN ADDITIVE VERSION OF HIGHER CHOW GROUPS

BY SPENCER BLOCH AND HÉLÈNE ESNAULT

ABSTRACT. - The cosimplicial scheme

$$\Delta^{\bullet} = \Delta^0 \rightrightarrows \Delta^1 \rightrightarrows \ldots; \quad \Delta^n := \operatorname{Spec}\left(k[t_0, \ldots, t_n] / \left(\sum t_i - t\right)\right)$$

was used in (Bloch, S., Algebraic cycles and higher K-theory, Adv. Math. 61 (3) (1986) 267–304) to define higher Chow groups. In this note, we let t tend to 0 and replace Δ^{\bullet} by a degenerate version

$$Q^{\bullet} = Q^0 \rightrightarrows Q^1 \rightrightarrows \dots; \quad Q^n := \operatorname{Spec}\left(k[t_0, \dots, t_n] / \left(\sum t_i\right)\right)$$

to define an additive version of the higher Chow groups. For a field k, we show the Chow group of 0-cycles on Q^n in this theory is isomorphic to the group of absolute (n-1)-Kähler forms Ω_k^{n-1} .

An analogous degeneration on the level of de Rham cohomology associated to "constant modulus" degenerations of varieties in various contexts is discussed.

© 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. - Le schéma cosimplicial

$$\Delta^{\bullet} = \Delta^0 \rightrightarrows \Delta^1 \rightrightarrows \ldots; \quad \Delta^n := \operatorname{Spec}\left(k[t_0, \ldots, t_n] / \left(\sum t_i - t\right)\right)$$

a été utilisé dans (Bloch, S., Algebraic cycles and higher K-theory, Adv. Math. 61 (3) (1986) 267–304) afin de définir des groupes de Chow supérieurs. Dans cette note, nous définissons une version additive des groupes de Chow supérieurs en faisant tendre t vers 0 et en remplaçant Δ^{\bullet} par une version dégénérée

$$Q^{\bullet} = Q^0 \rightrightarrows Q^1 \rightrightarrows \dots; \quad Q^n := \operatorname{Spec}\left(k[t_0, \dots, t_n] / \left(\sum t_i\right)\right).$$

Nous montrons que sur un corps k, le groupe de Chow des 0-cycles dans cette théorie est isomorphe aux formes de Kähler absolues de degré (n-1).

Nous discutons une dégénerescence analogue en cohomologie de de Rham apparaissant dans diverses situations pour des familles à module constant.

© 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The purpose of this note is to study a common sort of limiting phenomenon which occurs in the study of motives. Here is a simple example. Let k be a field. Let $S = \mathbb{A}^1_t = \operatorname{Spec}(k[t])$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

0012-9593/03/03/© 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

and let $T = \operatorname{Spec}(k[x,t]/(x(x-t)) \hookrightarrow \mathbb{A}^2_{t,x}$. Over S[1/t] the Picard scheme $\operatorname{Pic}(\mathbb{A}^2_{x,t},T)/S$ is represented by $\mathbb{G}_{m,S[1/t]}$. On the other hand, when t=0 one gets $\operatorname{Pic}(\mathbb{A}^1_x,\{x^2=0\}) \cong \mathbb{G}_{a,k}$. In some sense, \mathbb{G}_m has "jumped" to \mathbb{G}_a .

In higher dimension, for $t \neq 0$, the homology of the group of algebraic cycles associated to the cosimplicial scheme

(1.1)
$$\Delta^{\bullet} = \Delta^{0} \rightrightarrows \Delta^{1} \rightrightarrows \dots; \quad \Delta^{n} := \operatorname{Spec}\left(k[t_{0}, \dots, t_{n}]/\left(\sum t_{i} - t\right)\right)$$

is known to give motivic cohomology [9]. What can one say about the algebraic cycle groups (1.3) of the degenerate cosimplicial complex:

$$(1.2) Q^{\bullet} = Q^{0} \rightrightarrows Q^{1} \rightrightarrows \dots; Q^{n} := \operatorname{Spec}\left(k[t_{0}, \dots, t_{n}]/\left(\sum t_{i}\right)\right)?$$

Our main result is a calculation of the Chow groups of 0-cycles on Q^{\bullet} . Let $\mathbb{Z}^n(Q^r)$ be the free abelian group on codimension n algebraic cycles on Q^r satisfying a suitable general position condition with respect to the face maps. Let $SH^n(k,r)$ be the cohomology groups of the complex

$$(1.3) \cdots \to \mathcal{Z}^n(Q^{r+1}) \to \mathcal{Z}^n(Q^r) \to \mathcal{Z}^n(Q^{r-1}) \to \cdots$$

where the boundary maps are alternating sums of pullbacks along face maps. Write Ω_k^{\bullet} for the absolute Kähler differentials.

THEOREM 1.1. -

$$SH^n(k,n) \cong \Omega_k^{n-1}.$$

Note for n = 1, this is the above \mathbb{G}_a .

We explain another example of this limiting phenomenon. We consider \mathbb{P}^{n+1} with homogeneous coordinates U_0, \ldots, U_{n+1} over a field k. Let

$$(1.4) X: f(U_0, \dots, U_{n+1}) = 0$$

be a hypersurface X defined by a homogeneous polynomial f of degree n+2 (e.g. an elliptic curve in \mathbb{P}^2).

Write $u_i = U_i/U_0$, and define a log (n+1)-form on $\mathbb{P}^{n+1} \setminus X$

(1.5)
$$\omega_f := \frac{du_1 \wedge \cdots \wedge du_{n+1}}{f(1, u_1, \dots, u_{n+1})}.$$

As well known, this form generates $\omega_{\mathbb{P}^{n+1}}(X) \cong \mathcal{O}_{\mathbb{P}^{n+1}}$.

Let $r_1,\ldots,r_{n+1}\geqslant 0$ be integers. We consider the action of \mathbb{G}_m given by the substitutions $u_i=t^{-r_i}v_i$. Let N be minimal such that $t^Nf(1,t^{-r_1}u_1,\ldots,t^{-r_{n+1}}u_{n+1})$ is integral in t. Assume $s:=N-\sum r_i>0$ and s is invertible in k. One checks easily that in the coordinates v_i one has

(1.6)
$$\omega_f = t^s \nu_f(t, v_1, \dots, v_{n+1}) + st^{s-1} dt \wedge \gamma_f(t, v_1, \dots, v_{n+1})$$

with

$$\nu_f(t, v_1, \dots, v_{n+1}) = \frac{dv_1 \wedge \dots \wedge dv_{n+1}}{t^N f(1, t^{-r_1} v_1, \dots, t^{-r_{n+1}} v_{n+1})},$$

$$\gamma_f(t, v_1, \dots, v_{n+1}) = \frac{1}{s} \sum_i (-1)^i r_i v_i \frac{dv_1 \wedge \dots \wedge \widehat{dv_i} \wedge \dots \wedge dv_{n+1}}{t^N f(1, t^{-r_1} v_1, \dots, t^{-r_{n+1}} v_{n+1})}.$$

Thus ν_f and γ_f are forms in dv_i of degrees n+1 and n respectively which are integral in t. As ω_f is an (n+1)-form on \mathbb{P}^{n+1} in the u-coordinates, it is closed, so

$$st^{s-1}dt \wedge \left(\nu_f(t, v_1, \dots, v_{n+1}) - d\gamma_f(t, v_1, \dots, v_{n+1})\right) + st^{s-1} \cdot \frac{t}{s}d\nu_f(t, v_1, \dots, v_{n+1}) = 0.$$

Dividing by t^{s-1} and restricting to t = 0 yields

(1.7)
$$\nu_f|_{t=0} = d\gamma_f|_{t=0}.$$

In other words, under the action of the 1-parameter subgroup, ν_f degenerates to the exact form $d\gamma_f$.

To see the relationship with the 0-cycles, take

$$\Delta_{n+1}$$
: $f(1, u_1, \dots, u_{n+1}) = u_1 u_2 \cdots u_{n+1} (1 - u_1 - \dots - u_{n+1}) = 0$.

Substitute $v_i = tu_i, \ 1 \leqslant i \leqslant n+1$. Then s=1, and a calculation yields

(1.8)
$$\gamma_{\Delta_{n+1}}(:=\gamma_f) = \frac{\sum_{i=1}^{n+1} (-1)^i d\log(v_1) \wedge \dots \wedge d\widehat{\log(v_i)} \wedge \dots \wedge d\log(v_{n+1})}{t - v_1 - \dots - v_{n+1}},$$

$$\nu_{\Delta_{n+1}}(:=\nu_f) = \frac{dv_1 \wedge \dots \wedge dv_{n+1}}{v_1 v_2 \dots v_{n+1} (t - v_1 - \dots - v_{n+1})}.$$

Note the limiting configuration as $t \to 0$ is (compare (1.2))

$$v_1v_2\cdots v_{n+1}(v_1+\cdots+v_{n+1})=0.$$

For convenience we write

$$(1.9) \gamma_n := \gamma_{\Delta_{n+1}}|_{t=0}.$$

We view $\nu_{\Delta_{n+1}}|_{t=1}$ (resp. γ_n) as a map

$$\mathcal{Z}_0\left(\mathbb{A}_k^{n+1}\setminus\left\{(1-u_1+\cdots+u_{n+1})u_1\cdots u_{n+1}=0\right\}\right)\to\Omega_k^{n+1}$$

(resp.

$$\mathcal{Z}_0\left(\mathbb{A}_k^{n+1}\setminus\{v_1v_2\cdots v_{n+1}(v_1+\cdots+v_{n+1})=0\}\right)\to\Omega_k^n).$$

Here \mathcal{Z}_0 denotes the free abelian group on closed points (0-cycles) and the maps are respectively

(1.10)
$$x \mapsto \operatorname{Tr}_{k(x)/k} \nu|_{\{x\}}; \qquad x \mapsto \operatorname{Tr}_{k(x)/k} \gamma|_{\{x\}}.$$

In the first case, the Nesterenko–Suslin–Totaro theorem [7,8] identifies the zero cycles modulo relations coming from curves in \mathbb{A}^{n+2} with the Milnor K-group $K_{n+1}^M(k)$. The evaluation map

(1.10) passes to the quotient, and the resulting map $K_{n+1}^M(k) \to \Omega_k^{n+1}$ is given on symbols by the $d\log$ -map

$$(1.11) \{x_1, \dots, x_{n+1}\} \mapsto d\log(x_1) \wedge \dots \wedge d\log(x_{n+1}).$$

In the second case, factoring out by the relations coming from curves on \mathbb{A}^{n+2} as in (1.3) yields the Chow group of 0-cycles $SH^{n+1}(k,n+1)$, and our main result is that evaluation on γ_n gives an isomorphism

$$(1.12) SH^{n+1}(k, n+1) \cong \Omega_k^n.$$

Sections 2–5 contain the proof of Theorem 1.1. Section 6 contains some brief remarks on specialization of forms as it relates to Aomoto's theory of configurations, to 0-cycles on hypersurfaces, and to Goncharov's theory of hyperbolic motives. Finally, Section 7 computes $SH^1(k,n)$, responding to a question of S. Lichtenbaum.

2. The additive Chow groups

In this section, we consider a field k, and a k-scheme X of finite type. We will throughout use the following notations.

Notations 2.1. – We set $Q^n = \operatorname{Spec} k[t_0, \dots, t_n] / (\sum_{i=0}^n t_i)$, together with the faces

$$\partial_j: Q^{n-1} \to Q^n; \quad \partial_j^*(t_i) = \begin{cases} t_i & i < j, \\ 0 & i = j, \\ t_{i-1} & i > j. \end{cases}$$

One also has degeneracies

$$\pi_j : Q^n \to Q^{n-1}; \quad \pi_j^*(t_i) = \begin{cases} t_i & i < j, \\ t_i + t_{i+1} & i = j, \\ t_{i+1} & i > j. \end{cases}$$

We denote by $\{0\} \in Q^n$ the vertex defined by $t_i = 0$. We write $Q_X^n = Q^n \times_{\operatorname{Spec}(k)} X$. The above face and degeneracy maps make Q_X^{\bullet} a cosimplicial scheme.

DEFINITION 2.2. – Let $\mathcal{SZ}_q(X,n)$ be the free abelian group on irreducible, dimension q subvarieties in Q_X^n with the property:

- (i) They don't meet $\{0\} \times X$.
- (ii) They meet all the faces properly, that is in dimension $\leq q$.

Thus the face maps induce restriction maps

$$\partial_i : \mathcal{SZ}_q(X, n) \to \mathcal{SZ}_{q-1}(X, n-1); \quad i = 0, \dots, n; \ \partial = \sum_{i=0}^n (-1)^i \partial_i;$$

yielding complexes $\mathcal{SZ}_{q-\bullet}(X,\bullet)$:

$$\cdots \xrightarrow{\partial} \mathcal{SZ}_{q+1}(X,n+1) \xrightarrow{\partial} \mathcal{SZ}_q(X,n) \xrightarrow{\partial} \mathcal{SZ}_{q-1}(X,n-1) \xrightarrow{\partial} \cdots$$

DEFINITION 2.3. – The additive higher Chow groups are given for $n \ge 1$ by

$$SH_q(X,n) = H_n(\mathcal{SZ}_{q-\bullet}(X,\bullet))$$

and (for X equidimensional)

$$SH^p(X, n) = SH_{\dim X-p}(X, n).$$

The groups are not defined for n = 0.

Remarks 2.4. -

- (i) The above should be compared with the higher Chow groups $CH^p(X, n)$ defined as above with Q^{\bullet} replaced by Δ^{\bullet} , where $\Delta^n := \operatorname{Spec}(k[t_0, \dots, t_n]/(\sum t_i 1))$.
- (ii) The cosimplicial scheme Q^{\bullet} admits an action of $\mathbb{G}_{m,k}$, which we define by

$$x \star (t_0, \dots, t_n) := (t_0/x, \dots, t_n/x).$$

(The reason for the inverse will be clear below.) By functoriality, we obtain a k^{\times} -action on the $SH^p(X,n)$.

(iii) Let $f: X' \to X$ be a proper map with $n = \dim X' - \dim X$. Then one has a push-forward map

$$f_*: \mathcal{SZ}^p(X', \bullet) \to \mathcal{SZ}^{p-n}(X, \bullet).$$

On homology this yields $SH^p(X',n) \to SH^{p-n}(X,n)$. We will be particularly interested in the case $X = \operatorname{Spec}(k)$, $X' = \operatorname{Spec}(k')$ with $[k':k] < \infty$. We write $\operatorname{tr}_{k'/k} \colon SH^p(k',n) \to SH^p(k,n)$ for the resulting map. This trace map is compatible with the action of k^\times from (ii) in the sense that for $x \in k^\times$ and $a' \in SH^p(k',n)$ we have $x \star \operatorname{tr}_{k'/k}(a') = \operatorname{tr}_{k'/k}(x \star a')$.

LEMMA 2.5. – The \star action of k^{\times} on $SH^n(k,n)$ extends to an action of the multiplicative monoid k by setting $0 \star x = 0$. This action comes from a k-vector space structure on $SH^n(k,n)$.

Proof. – We have to show that for a closed point $x=(u_0,\ldots,u_n)\in Q^n\setminus\bigcup_{i=0}^n\partial_i(Q^{n-1})$, and $a,b\in k$, one has $(a+b)\star x=a\star x+b\star x$. For either a or b=0, this is trivial. Thus we assume $ab\neq 0$. Let k'=k(x). Then the class in $SH^n(k,n)$ of x is the trace from k' to k of a k'-rational point $x'\in SH^n(k',n)$. Using the compatibility of \star and trace from Remarks 2.4(iii) above, we reduce to the case x k-rational.

Write (t_0-u_0,\ldots,t_n-u_n) for the ideal of x. Define $\ell(t)=-\frac{ab}{u_0}t+a+b$. Consider the curve $W\subset Q^{n+1}$ defined parametrically by

$$W = \left\{ \left(t, -t + \frac{u_0}{\ell(t)}, \frac{u_1}{\ell(t)}, \dots, \frac{u_n}{\ell(t)}\right) \right\}.$$

To check that this parametrized locus is Zariski-closed, we consider the ideal:

$$I_W = ((t_1 + t_0)\ell(t_0) - u_0, t_2\ell(t_0) - u_1, \dots, t_n\ell(t_0) - u_n).$$

If $y = (y_0, \dots, y_{n+1})$ is a geometric point in the zero locus of I_W , then since the $u_i \neq 0$ we see that $\ell(y_0) \neq 0$. Substituting $t = y_0$, we see that y lies on the parametrized locus W.

The equation $-t + \frac{u_0}{\ell(t)} = 0$ leads to a quadratic equation in t with solutions $t = \frac{u_0}{a}$, $t = \frac{u_0}{b}$. If $a + b \neq 0$ we have

$$\partial_0(W) = \left(\frac{u_0}{a+b}, \dots, \frac{u_n}{a+b}\right) = (a+b) \star (u_0, \dots, u_n),$$

$$\partial_1(W) = \left(\frac{u_0}{a}, \dots, \frac{u_n}{a}\right) + \left(\frac{u_0}{b}, \dots, \frac{u_n}{b}\right) = a \star (u_0, \dots, u_n) + b \star (u_0, \dots, u_n),$$

$$\partial_i(W) = 0, \quad i \geqslant 2,$$

so the lemma follows in this case. If a+b=0, then $\partial_0 W=0$ as well, and again the assertion is clear. \Box

3. Additive Chow groups and Milnor K-theory

We consider the map (compatible with faces) $\iota: \Delta^{\bullet} \to Q^{\bullet+1}$ defined on k-rational points by $(u_0, \ldots, u_n) \mapsto (-1, u_0, \ldots, u_n)$. It induces a map of complexes $\mathcal{Z}^p(k, \bullet) \to \mathcal{S}\mathcal{Z}^{p+1}(k, \bullet+1)$, which in turn induces a map

(3.1)
$$\iota: CH^p(k,n) \to SH^{p+1}(k,n+1).$$

By [7] and [8], one has an isomorphism

$$(3.2) K_n^M(k) \cong CH^n(k, n)$$

of the higher Chow groups of 0-cycles with Milnor K-theory. It is defined by:

$$(3.3) (u_0, \dots, u_n) \mapsto \left\{ -\frac{u_0}{u_n}, \dots, -\frac{u_{n-1}}{u_n} \right\},$$

(3.4)
$$\{b_1, \dots, b_n\} \mapsto \left(\frac{b_1}{c}, \dots, \frac{b_n}{c}, -\frac{1}{c}\right); \quad c = -1 + \sum_{i=1}^n b_i.$$

Note that if $\sum_{i=1}^{n} b_i = 1$, then the symbol $\beta := \{b_1, \dots, b_n\}$ is trivial in Milnor K-theory, and one maps β to 0.

In this way, one obtains a map

$$(3.5) \quad \left\{ x_{n-1}(k) \to SH^{n}(k,n); \right. \\ \left. \left\{ x_{1}, \dots, x_{n-1} \right\} \mapsto \left(-1, \frac{x_{1}}{-1 + \sum_{i=1}^{n-1} x_{i}}, \dots, \frac{x_{n-1}}{-1 + \sum_{i=1}^{n-1} x_{i}}, \frac{-1}{-1 + \sum_{i=1}^{n-1} x_{i}} \right).$$

4. Differential forms

In this section we construct a k-linear map $\Omega_k^{n-1} \to SH^n(k,n)$. (Here Ω_k^i are the absolute Kähler differential i-forms.)

The following lemma is closely related to calculations in [5].

LEMMA 4.1.— As a k-vector space, the differential forms Ω_k^{n-1} are isomorphic to $(k \otimes_{\mathbb{Z}} \wedge^{n-1} k^{\times})/\mathcal{R}$. The k-structure on $k \otimes_{\mathbb{Z}} \wedge^{n-1} k^{\times}$ is via multiplication on the first argument. The relations \mathcal{R} , for $n \geq 2$, are the k-subspace spanned by

$$a \otimes (a \wedge b_1 \wedge \cdots \wedge b_{n-2}) + (1-a) \otimes ((1-a) \wedge b_1 \wedge \cdots \wedge b_{n-2}),$$

for $b_i \in k^{\times}$, $a \in k$. The map $(k \otimes_{\mathbb{Z}} \wedge^{n-1} k^{\times})/\mathcal{R} \to \Omega_k^{n-1}$ is then defined by

$$(a, b_1, \ldots, b_{n-1}) \mapsto ad \log b_1 \wedge \cdots \wedge d \log b_{n-1}.$$

Proof. – Write $'\Omega^* := (k \otimes_{\mathbb{Z}} \wedge^* k^{\times})/\mathcal{R}$. This is a quotient of the graded k-algebra $k \otimes_{\mathbb{Z}} \wedge^* k^{\times}$ by the graded ideal \mathcal{R} and hence has a graded k-algebra structure, generated in degree 1. There is an evident surjection of graded algebras $'\Omega^* \to \Omega^*$, so, by the universal mapping property of the exterior algebra Ω^* , it suffices to check $'\Omega^1 \cong \Omega^1$.

Define $D: k \to (k \otimes_{\mathbb{Z}} k^{\times})/\mathcal{R}$ by $D(a) = a \otimes a$ for $a \in k^{\times}$, else D(0) = 0. To define the required inverse, it suffices to show that D is a derivation. Clearly, D(ab) = aD(b) + bD(a). Also $1 \otimes -1$ is trivial in $k \otimes k^{\times}$, so D(-a) = -D(a). Given $a, b \in k^{\times}$, write b = -ac. We have

$$D(a+b) = D(a-ac) = aD(1-c) + (1-c)D(a)$$

$$= -aD(c) + D(a) - cD(a) = D(a) + D(-ac) = D(a) + D(b).$$
(4.1)

Hence D is a derivation so the inverse map $\Omega^1 \to {}'\Omega^1$ is defined. \square

Remark 4.2. – We will frequently use the relations in the equivalent form

$$a \otimes a \wedge (\cdots) - (1+a) \otimes (1+a) \wedge (\cdots) \sim 0.$$

PROPOSITION 4.3. – One has a well-defined k-linear map

$$\phi: \Omega_k^{n-1} \to SH^n(k, n),$$

$$\alpha := ad \log b_1 \wedge \dots \wedge d \log b_{n-1} \mapsto a \star \left(-1, \frac{b_1}{\gamma}, \dots, \frac{b_{n-1}}{\gamma}, -\frac{1}{\gamma}\right),$$

where $\gamma = -1 + \sum_{i=1}^{n-1} b_i$. (Define $\alpha = 0$ when $\gamma = 0$.) The diagram

$$K_{n-1}^{M}(k) \xrightarrow{d \log} \Omega_{k}^{n-1}$$

$$\downarrow \downarrow (3.5) \qquad \phi \downarrow \qquad \qquad \downarrow$$

is commutative.

Proof. – We write $c = -1 + a + \sum_{i=2}^{n-1} b_i$. By Lemma 4.1, we have to show

$$0 = \rho := a \star \left(-1, \frac{a}{c}, \dots, \frac{b_{n-1}}{c}, -\frac{1}{c}\right) - (a+1) \star \left(-1, \frac{a+1}{c+1}, \dots, \frac{b_{n-1}}{c+1}, -\frac{1}{c+1}\right).$$

If a = 0, then one has

$$\rho = -\left(-1, \frac{1}{c}, \dots, \frac{b_{n-1}}{c}, -\frac{1}{c}\right) = -\iota\{1, b_2, \dots, b_{n-1}\} = 0.$$

Similarly, $\rho=0$ if a=-1. Assume now $a\neq 0,-1$. Set $b=-a\in k\setminus\{0,1\}$. One defines, for $n\geqslant 3$ and $(u_1,\ldots,u_{n-1})\in (\Delta^{n-2}\setminus\bigcup_{i=1}^{n-1}\Delta^{n-3})(k)$, the parametrized curve

$$\Gamma(b,u) := \left\{ \left(\frac{-1}{b} + t, \frac{1}{b-1}, -t, \frac{-u_1}{b(b-1)}, \dots, \frac{-u_{n-1}}{b(b-1)} \right) \right\} \subset Q^{n+1}$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

and for n=2

(4.2)
$$\Gamma(b) := \left\{ \left(\frac{-1}{b} + t, \frac{1}{b-1}, -t, \frac{-1}{b(b-1)} \right) \right\} \subset Q^3.$$

(See [8] for the origin of this definition.) This curve is indeed in good position, so it lies in $\mathcal{SZ}^n(Q^{n+1})$. One computes

(4.3)
$$\partial \Gamma(b, u) = (1 - b) \star \left(-1, 1 - \frac{1}{b}, \frac{u_1}{b}, \dots, \frac{u_{n-1}}{b} \right) + b \star \left(-1, \frac{b}{b-1}, \frac{-u_1}{b-1}, \dots, \frac{-u_{n-1}}{b-1} \right).$$

(Resp. in the case n=2

$$\partial\Gamma(b) = (1-b)\star\left(-1,1-\frac{1}{b},\frac{1}{b}\right) + b\star\left(-1,\frac{b}{b-1},\frac{-1}{b-1}\right).)$$

Now one has

$$\left(-1, 1 - \frac{1}{b}, \frac{u_1}{b}, \dots, \frac{u_{n-1}}{b}\right)$$

$$= \iota \left\{\frac{1 - b}{u_{n-1}}, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}}\right\}$$

$$= \iota \left[\left\{1 - b, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}}\right\} - \left\{u_{n-1}, u_1, \dots, u_{n-2}\right\}\right],$$

as the rest of the multilinear expansion contains only symbols of the shape $\{\ldots,u_{n-1},\ldots,-u_{n-1},\ldots\}$. On the other hand, since $\sum_{i=1}^{n-1}u_i=1$, one has $\{u_{n-1},u_1,\ldots,u_{n-2}\}=0$. Similarly, one has

$$\left(-1, \frac{b}{b-1}, \frac{-u_1}{b-1}, \dots, \frac{-u_{n-1}}{b-1}\right) = \iota \left\{\frac{b}{u_{n-1}}, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}}\right\}.$$

The same argument yields that this is

$$\iota \left\{ b, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}} \right\}.$$

It follows now from (4.3) that for $n \ge 3$ we have the relation in $SH^n(k, n)$

$$(4.4) \quad (1-b) \star \iota \left\{ 1 - b, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}} \right\} + b \star \iota \left\{ b, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}} \right\} = 0.$$

(The analogous relation for n = 2 is similar.)

PROPOSITION 4.4. – With notation as above, the map

$$\phi: \Omega_k^{n-1} \to SH^n(k,n)$$

is surjective. In particular, $SH^n(k,n)$ is generated by the classes of k-rational points in Q^n .

 4^{e} SÉRIE – TOME $36 - 2003 - N^{\circ} 3$

Proof. – It is easy to check that the image of ϕ coincides with the subgroup of $SH^n(k,n)$ generated by k-points. Clearly, $SH^n(k,n)$ is generated by closed points, and any closed point is the trace of a k'-rational point for some finite extension k'/k. We first reduce to the case k'/k separable. If $x \in Q_k^n$ is a closed point in good position (i.e. not lying on any face) such that k(x)/k is not separable, then a simple Bertini argument shows there exists a curve C in good position on Q^{n+1} such that $\partial C = x + y$ where y is a zero cycle supported on points with separable residue field extensions over k. Indeed, let $W \subset Q^{n+1}$ be the union of the faces. View $x \in W$. Since x is in good position, it is a smooth point of W. Bertini will say that a nonempty open set in the parameter space of n-fold intersections of hypersurfaces of large degree containing x will meet W in x plus a smooth residual scheme. Since k is necessarily infinite, there will be such an n-fold intersection defined over k. Since the residual scheme is smooth, it cannot contain inseparable points. Then $x \equiv -y$ which is supported on separable points.

We assume now k'/k finite separable, and we must show that the trace of a k'-point is equivalent to a zero cycle supported on k-points. Since the image of ϕ is precisely the subgroup generated by k-rational points, it suffices to check that the diagram

(4.5)
$$\Omega_{k'}^{n-1} \xrightarrow{\phi} SH^{n}(k', n)$$

$$\downarrow^{\operatorname{Tr}_{k'/k}} \qquad \downarrow^{\operatorname{Tr}_{k'/k}}$$

$$\Omega_{k}^{n-1} \xrightarrow{\phi} SH^{n}(k, n)$$

commutes. Because k'/k is separable, one has $\Omega_k^{n-1} \hookrightarrow \Omega_{k'}^{n-1}$, and $\Omega_{k'}^{n-1} = k' \cdot \Omega_k^{n-1}$. One reduces to showing, for $\alpha = (-1, \alpha_1, \dots, \alpha_n) \in Q^n(k)$ and $t \in k'$, that $\operatorname{Tr}(t \star \alpha) = (\operatorname{Tr}(t)) \star \alpha$ in $SH^n(k,n)$.

Let $P(V)=V^N+a_{N-1}V^{N-1}+\cdots+a_1V+a_0\in k[V]$ be the minimal polynomial of $-\frac{1}{t}$. We set $b_N=\frac{-1}{\alpha_n},\ b_i=\frac{-a_i}{\alpha_n},\ i=N-1,\ldots,2$ and $b_i=a_i,\ i=1,0$. We define the polynomial $Q(V,u)=b_NV^{N-1}u+\cdots+b_2Vu+b_1V+b_0\in k[V,u]$, which by definition fulfills $Q(V,-\alpha_nV)=P(V)$. We define the ideal

$$\mathcal{I} = (Q(V_0, u), V_1 + \alpha_1 V_0, \dots, V_{n-1} + \alpha_{n-1} V_0) \subset k[V_0, \dots, V_{n-1}, u].$$

It defines a curve $W \subset \mathbb{A}^{n+1}$. We think of \mathbb{A}^{n+1} as being Q^{n+1} with the faces $V_0=0,\ldots,V_{n-1}=0,u=0,u+\sum_{i=0}^{n-1}V_i=0$. Then this curve is in general position and defines a cycle in $\mathcal{SZ}^1(k,n+1)$.

Since $b_0 \neq 0$, and $\alpha_i \neq 0$, one has

(4.6)
$$\partial_i W = 0, \quad i = 0, 1, \dots, n-1.$$

One has

$$\partial_u W$$
 defined by $(a_1 V_0 + a_0, V_1 + \alpha_1 V_0, \dots, V_{n-1} + \alpha_{n-1} V_0)$.

To compute the last face, we observe that the ideal

$$\left(u + \sum_{i=0}^{n-1} V_i, V_1 + \alpha_1 V_0, \dots, V_{n-1} + \alpha_{n-1} V_0\right),\,$$

contains $u + \alpha_n V_0$. Consequently $\partial_{u + \sum_{i=0}^{n-1} V_i} W$ is defined by

$$(Q(V_0, -\alpha_n V_0), V_1 + \alpha_1 V_0, \dots, V_{n-1} + \alpha_{n-1} V_0),$$

with $Q(V_0, -\alpha_n V_0) = P(V_0)$. Thus one obtains

$$0 \equiv (-1)^n \partial W = \frac{a_1}{a_0} \star (-1, \alpha) - t \star (-1, \alpha).$$

Since P is the minimal polynomial of $-\frac{1}{t}$, $\frac{a_1}{a_0}$ is the trace of t. \Box

5. The main theorem

Recall (1.8) we have a logarithmic (n-1)-form γ_{n-1} on $Q^n = \operatorname{Spec}(k[v_0, \dots, v_n]/(\sum_{i=0}^n v_i))$

(5.1)
$$\gamma_{n-1} = \frac{1}{v_0} \sum_{i=1}^{n} (-1)^i d\log(v_1) \wedge \dots \wedge d\widehat{\log(v_i)} \wedge \dots \wedge d\log(v_n),$$
$$d\gamma_{n-1} = \nu_n = \frac{dv_1 \wedge \dots \wedge dv_n}{v_0 v_1 \dots v_n}.$$

Writing $v_i = V_i/V_{n+1}$, we can view γ_{n-1} as a meromorphic form on

$$\mathbb{P}^n = \operatorname{Proj}\left(k[V_0, \dots, V_{n+1}] \middle/ \left(\sum_{i=0}^n V_i\right)\right).$$

Let $A: V_0 \cdots V_n = 0$; $\infty: V_{n+1} = 0$. The fact that $d\gamma_{n-1}$ has log poles on the divisors $V_i = 0, \ 0 \le i \le n$ implies that

(5.2)
$$\gamma_{n-1} \in \Gamma(\mathbb{P}^n, \Omega_{\mathbb{P}^n}^{n-1} (\log(\mathcal{A} + \infty))(-\infty)).$$

In particular, γ_{n-1} has log poles, so we can take the residue along components of \mathcal{A} . (The configuration \mathcal{A} does not have normal crossings. The sheaf $\Omega^{n-1}_{\mathbb{P}^n}(\log(\mathcal{A}+\infty))$ is defined to be the subsheaf of $j_*\Omega^{n-1}_{\mathbb{P}^n-\mathcal{A}-\infty}$, where $j:\mathbb{P}^n\setminus(\mathcal{A}\cup\infty)\to\mathbb{P}^n$ is the open embedding, generated by forms without poles and the evident log forms with residue 1 along one hyperplane and (-1) along another one. According to [1], the global sections of this naturally defined log sheaf compute de Rham cohomology.)

In the following, we adopt the sign convention $\operatorname{Res}_{t=0} \frac{dt}{t} \wedge \omega = \omega$. This yields

$$\operatorname{Res}_{t=0} d\left(\frac{dt}{t} \wedge \omega\right) = -d\left(\operatorname{Res}_{t=0} \frac{dt}{t} \wedge \omega\right).$$

LEMMA 5.1. – We have the following residue formulae

Res_{$$v_i=0$$} $\gamma_n = (-1)^i \gamma_{n-1}; \quad 0 \le i \le n+1.$

Proof. – One can either compute directly or argue indirectly as follows:

(5.3)
$$-d\operatorname{Res}_{v_i=0} \gamma_n = \operatorname{Res}_{v_i=0} d\gamma_n = \operatorname{Res}_{v_i=0} \nu_{n+1}$$
$$= (-1)^{i+1} \nu_n = -d((-1)^i \gamma_{n-1}) \neq 0.$$

To conclude now, it suffices to show that the space of global sections (5.2) has dimension 1. To verify the dimension 1 property, let $\mathcal{A}' \subset \mathcal{A}$ be defined by $V_1 \cdots V_n = 0$. Then $\mathcal{A}' + \infty$ consists of n+1 hyperplanes in general position in \mathbb{P}^n , so

$$\Omega_{\mathbb{P}^n}^{n-1} \big(\log(\mathcal{A}' + \infty) \big) = \wedge^{n-1} \Omega_{\mathbb{P}^n}^1 \big(\log(\mathcal{A}' + \infty) \big) \cong \mathcal{O}_{\mathbb{P}^n}^{\oplus n}.$$

One looks at the evident residue

$$\Omega_{\mathbb{P}^n}^{n-1} \big(\log(\mathcal{A} + \infty) \big) (-\infty) \to \Omega_{\mathbb{P}^{n-1}}^{n-2} \big(\log(\mathcal{A} + \infty) \big) (-\infty)$$

along $V_0 = 0$. \square

Remark 5.2.— The computation of the lemma shows that γ_{n-1} is the unique (n-1)-differential form in $\Gamma(\mathbb{P}^n,\Omega^{n-1}_{\mathbb{P}^n}(\log(\mathcal{A}+\infty))(-\infty))$ with $d\gamma_{n-1}=\nu_n$. The configuration $\mathcal A$ being given, fixing ∞ fixes γ_{n-1} .

Theorem 5.3. – The assignment $x \mapsto \operatorname{Tr}_{k(x)/k}(\gamma(x))$ gives an isomorphism for $n \geqslant 1$

$$SH^n(k,n) \cong \Omega_k^{n-1}$$
.

Proof. – Let $X\subset Q_k^{n+1}$ be a curve in good position. For a zero-cycle c in good position on Q^n we write $\operatorname{Tr} \gamma_{n-1}(c)\in \Omega_k^{n-1}$ (absolute differentials) for the evident linear combination of traces from residue fields of closed points. We must show $\operatorname{Tr} \gamma_{n-1}(\partial X)=0$. Let \overline{X} denote the closure of X in \mathbb{P}^n . We consider $\gamma_{n-1}|_{\overline{X}}\in\Gamma(\overline{X},\Omega^{n-1}_{\overline{X}/\mathbb{Z}}(*D))$, where D is the pole set of $\gamma_{n-1}|_{\overline{X}}$. The form γ_{n-1} dies when restricted to ∞ . Thus $D=\bigcup_{j=0}^n D_j\subset X$, with $D_j:=\partial_j(Q^n)\cap\overline{X}$. We define the residue along D_j as follows. One has an exact sequence

$$(5.4) 0 \to \Omega_k^n \otimes \mathcal{O}_{\overline{X}} \to \Omega_{\overline{X}}^n(\log D) \to \Omega_k^{n-1} \otimes \omega_{\overline{X}}(\log D) \to 0.$$

The residue map followed by the trace

(5.5)
$$\omega_{\overline{X}}(\log D)^{\operatorname{Tr}\circ\sum\operatorname{Res}_{D_j}}k$$

yields, by the reciprocity formula, a vanishing residue map on global n-forms

$$(5.6) H^0\left(\overline{X}, \Omega^n_{\overline{X}/\mathbb{Z}}(\log D)\right) \to \Omega^{n-1}_k \bigotimes_k H^0\left(\overline{X}, \omega_{\overline{X}}(\log D)\right) \overset{0}{\to} \Omega^{n-1}_k.$$

On the other hand, the residue decomposes as

(5.7)
$$H^{0}\left(\overline{X}, \Omega_{\overline{X}/\mathbb{Z}}^{n}(\log D)\right) \xrightarrow{\sum_{j} \operatorname{Res}_{D_{j}}} \bigoplus_{j=0}^{n} \Omega_{D_{j}}^{n-1} \xrightarrow{\sum_{j} \operatorname{Tr}} \Omega_{k}^{n-1}.$$

By Lemma 5.1, $\gamma_{n-1}(D_j) = (\operatorname{Res}_{v_j=0} \gamma_n)(D_j)$. The desired vanishing follows. We now have

$$\Omega_k^{n-1} \stackrel{\phi}{\to} SH^n(k,n) \stackrel{\gamma_{n-1}}{\longrightarrow} \Omega_k^{n-1}.$$

It suffices to check the composition is multiplication by $(-1)^{n+1}$. Given $b_1, \ldots, b_{n-1} \in k$ with $c := \sum b_i - 1 \neq 0$, the composition is computed to be (use (5.1) and Proposition 4.3)

$$a \cdot d \log(b_1) \wedge \dots \wedge d \log(b_{n-1}) \mapsto -a \sum_{i=1}^{n} (-1)^i d \log\left(\frac{b_1}{ac}\right) \wedge \dots \wedge d \log\left(\frac{b_i}{ac}\right) \wedge \dots \wedge d \log\left(\frac{-1}{ac}\right).$$

Expanding the term on the right yields

$$-a\sum_{i}(-1)^{i}d\log\left(\frac{b_{1}}{c}\right)\wedge\cdots\wedge\widehat{d\log\left(\frac{b_{i}}{c}\right)}\wedge\cdots\wedge\widehat{d\log\left(\frac{-1}{c}\right)}-a\cdot d\log(a)\wedge(\ldots),$$

and it is easy to check that the terms involving $d\log(a)$ cancel. In this way, one reduces to the case a=1. Here

$$(5.8) \qquad -\sum (-1)^{i} d \log \left(\frac{b_{1}}{c}\right) \wedge \dots \wedge d \log \left(\frac{b_{i}}{c}\right) \wedge \dots \wedge d \log \left(\frac{-1}{c}\right)$$

$$= (-1)^{n+1} \frac{db_{1}}{b_{1}} \wedge \dots \wedge \frac{db_{n-1}}{b_{n-1}} + \frac{dc}{c} \wedge (\dots).$$

Again the terms involving $d \log(c)$ cancel formally, completing the proof. \Box

Challenge 5.4. – Finally, as a challenge we remark that the Kähler differentials have operations (exterior derivative, wedge product,...) which are not evident on the cycles \mathcal{SZ} . For example, one can show that the map

(5.9)
$$\nabla(x_0, \dots, x_n) = \left(x_0, -\frac{x_1 x_0}{1 - x_0}, \dots, -\frac{x_n x_0}{1 - x_0}, -\frac{x_0}{1 - x_0}\right)$$

satisfies

(5.10)
$$\gamma_n(\nabla(x)) = (-1)^n d\gamma_{n-1}(x)$$

and hence induces the exterior derivative on the 0-cycles. The map is not uniquely determined by this property, and this particular map does not preserve good position for cycles of dimension > 0. Can one find a geometric correspondence on the complex \mathcal{SZ}^{\bullet} which induces d on the 0-cycles? What about the pairings $(a,b) \mapsto a \wedge b$ or $(a,b) \mapsto a \wedge db$?

6. Specialization of forms

In this section we consider again the specialization of differential forms as in Section 1. Recall $f(U_0,\ldots,U_{n+1})$ is homogeneous of degree n+2, $u_i=U_i/U_0$, and $v_i=t^{r_i}u_i$. N is minimal such that $t^N f(1,t^{-r_1}v_1,\ldots,t^{-r_{n+1}}v_{n+1})$ is integral in t, and we assume $s=N-\sum r_i>0$. We have forms

(6.1)
$$\omega_f := \frac{d(t^{-r_1}v_1) \wedge \dots \wedge d(t^{-r_{n+1}}v_{n+1})}{f(1, t^{-r_1}v_1, \dots, t^{-r_{n+1}}v_{n+1})} = t^s \nu_f + st^{s-1}dt \wedge \gamma_f$$

and $\nu_f|_{t=0} = d\gamma_f|_{t=0}$.

We have already mentioned the case

$$f = \Delta_{n+1} = (t^{-1}v_1)\cdots(t^{-1}v_{n+1})(1-t^{-1}v_1-\cdots-t^{-1}v_{n+1}).$$

The forms $\nu_{\Delta_{n+1}}$ and $\gamma_{\Delta_{n+1}}$ are given in (1.8). As before, we write $\nu_{n+1} := \nu_{\Delta_{n+1}}|_{t=0}$; $\gamma_n := \gamma_{\Delta_{n+1}}|_{t=0}$. The differential form ν_{n+1} plays an interesting rôle in the computation of de

Rham cohomology of the complement of hyperplane configurations. Let \mathcal{A}_t be the configuration in \mathbb{P}^n of (n+1) hyperplanes in general position with affine equation $u_0u_1\cdots u_n=0$, $u_0+u_1+\cdots+u_n=t\neq 0$. Then $H^n(\mathbb{P}^n\setminus\mathcal{A}_t)=H^0(\mathbb{P}^n,\Omega^n_{\mathbb{P}^n}(\log\mathcal{A}_t))$ is a pure Tate structure generated by $\nu_{\Delta n+1}$. Now make t tend to 0 and consider the degenerate configuration \mathcal{A}_0 with affine equation $u_0u_1\cdots u_n=0$, $u_0+u_1+\cdots+u_n=0$. Exactness of $\nu_{n+1}=d\gamma_n$ in the case (1.7) follows from Aomoto's theory [1,4]. Due to the special shape of the configurations \mathcal{A}_t considered, however, more is true. We have fixed ∞ , and the differential form γ_n lies in $H^0(\mathbb{P}^{n+1},\Omega^n(\log(\mathcal{A}_0+\infty))(-\infty))$. That is, it has log poles along all components of \mathcal{A}_0 , and it vanishes as a differential form at ∞ (see Lemma 5.1). This k-vector space of differential forms is 1-dimensional. In other words, the differential form γ_n is uniquely defined by the vanishing condition at ∞ and the secondary data $d\gamma_n=\nu_{n+1}$ (see Remark 5.2). Do such primitives for more general degenerating configurations admit an interpretation identifying 0-cycles with spaces of differential forms?

Here is another example of specialization and 0-cycles. Define

(6.2)
$$f(1, u_1, u_2) = u_1^2 - u_2^3 - au_2 - b;$$
$$v_1 = t^3 u_1, \qquad v_2 = t^2 u_2.$$

One computes

(6.3)
$$\nu = \frac{dv_1 \wedge dv_2}{v_1^2 - v_2^3 - at^4v_2 - bt^6}; \qquad \gamma = \frac{2v_2 dv_1 - 3v_1 dv_2}{v_1^2 - v_2^3 - at^4v_2 - bt^6}.$$

One checks that $\operatorname{Res}(\gamma|_{t=0}) = v_2/v_1$ and

(6.4)
$$d(v_2/v_1) = -dv_2/2 = d\operatorname{Res}(\nu|_{t=0}) \quad \text{on } v_1^2 - v_2^3 = 0.$$

The assignment $x\mapsto \mathrm{Tr}_{k(x)/k}(v_2/v_1)(x)$ identifies the jacobian of the special fibre $v_1^2-v_2^3=0$ with $\mathbb{G}_a(k)=k$.

A final example of specialization, which we understand less well, though it was an inspiration for this article, concerns the hyperbolic motives of Goncharov [6]. The *matrix coefficients* of his theory (in the sense of [2]) are the objects $H^{2n-1}(\mathbb{P}^{2n-1}\setminus Q, M\setminus Q\cap M)$. Here $Q\subset \mathbb{P}^{2n-1}$ is a smooth quadric and M is a simplex (union of 2n hyperplanes in general position). The subschemes Q and M are taken in general position with respect to each other. The notation is intended to suggest a sort of abstract relative cohomology group. In de Rham cohomology, the non-trivial class in $H^{2n-1}_{DR}(\mathbb{P}^{2n-1}\setminus Q)$ is represented by

(6.5)
$$\omega = \frac{du_1 \wedge \dots \wedge du_{2n-1}}{(u_1^2 + \dots + u_{2n-1}^2 - 1)^n}.$$

Substituting $u_i = v_i t$, we get

(6.6)
$$\omega = \frac{t^{2n-1}dv_1 \wedge \dots \wedge dv_{2n-1} + t^{2n-2}dt \wedge \sum (-1)^i v_i dv_1 \wedge \dots \widehat{dv_i} \dots \wedge dv_{2n-1}}{(t^2(v_1^2 + \dots + v_{2n-1}^2) - 1)^n}.$$

We get

$$\nu|_{t=0} = \pm dv_1 \wedge \dots \wedge dv_{2n-1}$$

and

$$\gamma|_{t=0} = \frac{1}{2n-1} \sum_{i=0}^{\infty} (-1)^{i} v_{i} \, dv_{1} \wedge \cdots \widehat{dv_{i}} \cdots \wedge dv_{2n-1}.$$

Let $\Delta_M \in H_{2n-1}(\mathbb{P}^{2n-1}, M; \mathbb{Z})$ be a generator. The hyperbolic volume

$$\int_{\Delta_M} \omega$$

is the real period [6, Section 4.1] of the Hodge structure associated to $H^{2n-1}(\mathbb{P}^{2n-1}\setminus Q)$. Goncharov remarks (op. cit., Question 6.4 and Theorem 6.5) that this volume degenerates to the euclidean volume as $t\to 0$. (More precisely, from (6.7), we see that as a relative form, $dv_1\wedge\cdots\wedge dv_{2n-1}=\lim_{t\to 0}t^{1-2n}\omega$.) He asks for an interpretation of the degenerated volume in terms of some sort of motive over $k[t]/(t^2)$.

In the Goncharov picture we can view Q as fixed and degenerate M. Suppose

$$M: L_0L_1\cdots L_{2n-1}=0$$

where

$$L_i = L_i(v_1, \dots, v_{2n-1}) = L_i(u_1/t, \dots, u_{2n-1}/t).$$

Assuming the L_i are general, clearing denominators and passing to the limit $t \to 0$ yields a degenerate simplex M_0 consisting of 2n hyperplanes meeting at the point v=0. This limiting configuration leads to the Chow groups $SH^*(k,2n-1)$, but we do not see how to relate $\gamma|_{t=0}$ to cycles.

7. Cycle groups of divisors

We compute $SH^1(k,n)$ for $n \ge 1$. Let $\mathcal{O}_{Q^n,0}$ be the local ring at $(0,\ldots,0) \in Q^n$. Let

$$(7.1) I^n \subset J^n \subset \mathcal{O}_{Q^n,0}$$

be the ideals of all (resp. all but the last) face.

LEMMA 7.1. -

$$SH^1(k,n) \cong (1+I^n)^{\times}/\partial_{n+1}(1+J^{n+1})^{\times}.$$

Proof. – Let $D \subset Q^n$ be an effective divisor. Let

$$f \in k_n := k[t_0, \dots, t_n] / \left(\sum t_i\right)$$

be a defining equation for D. Then D meets faces properly in our sense if and only if $f \in \mathcal{O}_{Q^n,0}^{\times}$. Conversely, any $f \in \mathcal{O}_{Q^n,0}^{\times}$ defines a (not necessarily effective) divisor on Q^n meeting faces properly. Further

$$(7.2) (f) \cdot Q_i^{n-1} = 0 \Leftrightarrow f \in k^{\times} \cdot (1 + t_i \mathcal{O}_{Q^n, 0}).$$

By general simplicial considerations, the $SH^1(k,n)$ is given by divisors meeting all faces trivially, modulo the restriction to the last face of divisors on Q^{n+1} meeting all but the last

face trivially. Scaling the f above to remove the factor k^{\times} , this is precisely the assertion of the lemma. \square

PROPOSITION 7.2. – We have $SH^1(k,1) = k$, and $SH^1(k,n) = (0)$ for $n \ge 2$.

Proof. – The first assertion is part of Theorem 5.3. The exact sequence

$$(7.3) 0 \to I^{n+1} \to J^{n+1} \xrightarrow{\partial_{n+1}} I^n \to 0$$

yields the surjectivity $1+J^{n+1} oup 1+I^n$. We observe that when n=1, we have $I^1=(t_0)$ but $\partial_2(J^2)=(t_0^2)$. \square

Acknowledgements

The authors wish to thank A. Goncharov and S. Lichtenbaum for several very inspiring conversations, also the referee for very careful reading and helpful remarks.

REFERENCES

- [1] AOMOTO K., Un théorème du type de Matsushima–Murakami concernant l'intégrale des fonctions multiformes, *J. Math. Pures Appl.* **52** (1973) 1–11.
- [2] BEILINSON A., GONCHAROV A., SCHECHTMAN V., VARCHENKO A., Aomoto dilogarithms, mixed Hodge structures, and motivic cohomology of a pair of triangles in the plane, in: *The Grothendieck Festschrift*, Birkhäuser, 1990, pp. 131–172.
- [3] BLOCH S., Algebraic cycles and higher K-theory, Adv. Math. **61** (3) (1986) 267–304.
- [4] BRIESKORN E., Sur les groupes de tresses, in: Sém. Bourbaki 401, in: Lect. Notes in Math., Vol. 317, Springer, Berlin, 1973, pp. 21–44.
- [5] CATHELINEAU J.-L., Remarques sur les différentielles des polylogarithmes uniformes, *Ann. Inst. Fourier, Grenoble* **46** (5) (1996) 1327–1347.
- [6] GONCHAROV A., Volumes of hyperbolic manifolds and mixed Tate motives, JAMS 12 (2) (1999) 569–618.
- [7] NESTERENKO YU., SUSLIN A., Homology of the general linear group over a local ring, and Milnor's *K*-theory, *Izv. Akad. Nauk SSSR Ser. Math.* **53** (1) (1989) 121–146; translation in: *Math. USSR-Izv.* **34** (1) (1990) 121–145.
- [8] TOTARO B., Milnor K-theory is the simplest part of algebraic K-theory, K-Theory 6 (2) (1992) 177–189.
- [9] VOEVODSKY V., Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, *Int. Math. Res. Not.* **7** (7) (2002) 351–355.

(Manuscrit reçu le 12 décembre 2001 ; accepté, après révision, le 28 novembre 2002.)

Spencer BLOCH
Department of Mathematics,
University of Chicago,
Chicago, IL 60637, USA
E-mail: bloch@math.uchicago.edu

Hélène ESNAULT Universität Essen, FB6, Mathematik, 45117 Essen, Germany E-mail: esnault@uni-essen.de