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AN ADDITIVE VERSION OF HIGHER CHOW GROUPS

By SPENCERBLOCH AND HELENE ESNAULT

ABSTRACT. — The cosimplicial scheme

A*=A"= AT AT ::Spec(k[to,...,tn]/(zm—t))

was used in (Bloch, S., Algebraic cycles and highetheory, Adv. Math. 61 (3) (1986) 267—-304) to define
higher Chow groups. In this note, we letend to 0 and replacA® by a degenerate version

Q':QO:;ng"'; Qn::Spec(k‘[to,...,tn]/(zti))

to define an additive version of the higher Chow groups. For a figlde show the Chow group ofcycles
on @™ in this theory is isomorphic to the group of absol(te— 1)-Ké&hler formsQZ’l.

An analogous degeneration on the level of de Rham cohomology associated to “constant modulus”
degenerations of varieties in various contexts is discussed.
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RESUME. — Le schéma cosimplicial

L AT = Spec(k’[to,...,tn]/(Zti —t))

a été utilisé dans (Bloch, S., Algebraic cycles and highietheory, Adv. Math. 61 (3) (1986) 267-304)
afin de définir des groupes de Chow supérieurs. Dans cette note, nous définissons une version additive des
groupes de Chow supérieurs en faisant temdeers 0 et en remplagarit® par une version dégénérée

A*=A"—= Al

L

—
—

Q':QO:;Ql 3 QM= Spec(k[to,...,tn]/(zti))~

Nous montrons que sur un corpsle groupe de Chow des 0-cycles dans cette théorie est isomorphe aux
formes de Kéhler absolues de degné—1).

Nous discutons une dégénerescence analogue en cohomologie de de Rham apparaissant dans diverse:
situations pour des familles a module constant.
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1. Introduction

The purpose of this note is to study a common sort of limiting phenomenon which occurs
in the study of motives. Here is a simple example. kdie a field. LetS = A} = Spec(k|[t])
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464 S. BLOCH AND H. ESNAULT

and letT = Spec(k[x,t]/(x(x —t)) — A7 ,. OverS[1/t] the Picard schemBic(A2 ,,T)/S is
represented b, s(1 ;. On the other hand, when= 0 one getPic(AL, {22 =0}) 2 G, k. In
some sensdy,,, has “jumped” taG,,.

In higher dimension, fot # 0, the homology of the group of algebraic cycles associated to the

cosimplicial scheme

(1.2) A=A AT AT Spec(k[to,...,tn]/(zm—t))

is known to give motivic cohomology [9]. What can one say about the algebraic cycle groups
(1.3) of the degenerate cosimplicial complex:

(1.2) C=Q"=Q'= .. Q= Spec(k[to,...,tn]/(Zti))?

Our main result is a calculation of the Chow group$afycles on@*. Let Z™(Q") be the free
abelian group on codimensionalgebraic cycles od)” satisfying a suitable general position
condition with respect to the face maps. 191" (k, r) be the cohomology groups of the complex

(13) "'—>Zn(Qr+l) _>2n(Qr) _}Zn(Qrfl) N
where the boundary maps are alternating sums of pullbacks along face mapsQ¥iitethe
absolute Kahler differentials.
THEOREM 1.1.—
SH™(k,n)=Qp~ .

Note forn = 1, this is the abové&s,,.
We explain another example of this limiting phenomenon. We congitler with homoge-
neous coordinatdsy, ..., U, over a fieldk. Let

(1.4) X: f(Up,...,Ups1)=0
be a hypersurfac&” defined by a homogeneous polynomjabf degreen + 2 (e.g. an elliptic
curve inP?).

Write u; = U; /Uy, and define a logn + 1)-form onP"+1\ X

duy A+ Ndug4
1.5 wyf = .
( ) ! f(laulv"'7u7l+1)

As well known, this form generateg+1(X) = Opn+t1.

Letry,...,m,+1 > 0 be integers. We consider the action®f, given by the substitutions
u; = t~"v;. Let N be minimal such that™ f(1,t " uy,...,t "™ +lu, 1) is integral int.
Assumes := N — > r; >0 ands is invertible ink. One checks easily that in the coordinates
one has

(1.6) wp =t (01, Upp1) + SETEAEA Y (01, V1)
with
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AN ADDITIVE VERSION OF HIGHER CHOW GROUPS 465

dv1 VARERIVAN danrl
1,t7 "y, ..., t—”l+1vn+1) ’

vi(t,v1,. .., Ung1) = N

1 . dvi A+ ANdvoi A+ A dvpst
S M YO IR CH

Thusv; and~; are forms indv; of degrees: + 1 andn respectively which are integral in
Aswy is an(n + 1)-form onP"*! in the u-coordinates, it is closed, so

t
st 7t A (l/f(t,vl, ey Ung1) — dyg(t, v, .. .,vn+1)) +st57L. —dvy(t,v1,...,0n41) =0.
. Pl
Dividing by t*~! and restricting ta = 0 yields
1.7) Vili=0 = dvyli=o-
In other words, under the action of tHeparameter subgroup;; degenerates to the exact

formdv;.
To see the relationship with thecycles, take

Apgr: f(Loug,. o Upgr) =urtg - Upgr (I —uy — - — Upg1) =0.

Substitutey; =tu;, 1 <i<n+ 1. Thens=1, and a calculation yields

—

SN (—1)idlog(v) A -+ - Adlog(vi) A+ - Adlog(vni1)

’7A71+1(:: ’7.70) = ’
t—v; — " —Upt1
(L.8)
dvoy A+ A dvnsn
I/An+1(~— Vf) - V1V .fUnJrl(t— v — _'UnJrl) .

Note the limiting configuration as— 0 is (compare (1.2))
V1V 'anrl(vl + -+ anrl) =0.

For convenience we write

(19) Tn = VAn+1|t:0'

We viewva, ,|t=1 (resp.y,) as a map

b1
Zo(APT\{(@ = w4+ upp)ur g1 =0}) — QP
(resp.
Zy (AZJrl \ {vive - vpp1(v1 + -+ vpp1) = O}) — Q7).
Here Z, denotes the free abelian group on closed poinsycles) and the maps are respectively
(1.10) z= Trpay vy @ Tree) V(e

In the first case, the Nesterenko—Suslin—Totaro theorem [7,8] identifies the zero cycles modulo
relations coming from curves iA™2 with the Milnor K-groupK 2 , (k). The evaluation map
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466 S. BLOCH AND H. ESNAULT

(1.10) passes to the quotient, and the resulting #igp, (k) — QZ“ is given on symbols by
thedlog-map

(1.12) {z1,...,Tpngp1}— dlog(x1) A+ Adlog(Tpt1)-

In the second case, factoring out by the relations coming from curvég v as in (1.3) yields
the Chow group o6-cyclesSH™ ! (k,n + 1), and our main result is that evaluation gngives
an isomorphism

(1.12) SH™ ™ (k,n+41)=Qp.

Sections 2-5 contain the proof of Theorem 1.1. Section 6 contains some brief remarks
on specialization of forms as it relates to Aomoto’s theory of configurations;dgcles on
hypersurfaces, and to Goncharov’s theory of hyperbolic motives. Finally, Section 7 computes
SH'(k,n), responding to a question of S. Lichtenbaum.

2. Theadditive Chow groups

In this section, we consider a fiekd and ak-schemeX of finite type.
We will throughout use the following notations.

Notations 2.1. — We se)™ = Speckl[to, ..., t,] /(31 t:), together with the faces

ti 1 <7,
0;:Q" = Q" B(t) =10 i=j,
tic1 1>,
One also has degeneracies
ti 1< 7,
7TjZQn—>Qn71; W;(ti)z ti+ticr =17,
tit1 1> 7.

We denote by{0} € Q™ the vertex defined by; = 0. We writeQ"y = Q™ X gpec(k) X - The above
face and degeneracy maps mdk® a cosimplicial scheme.

DEFINITION 2.2.—LetSZ,(X,n) be the free abelian group on irreducible, dimensjon
subvarieties irQ% with the property:

(i) They don'tmeet{0} x X.

(i) They meet all the faces properly, that is in dimensiog.

Thus the face maps induce restriction maps

0;:SZ,(X,n)—>SZ,1(X,n—-1);

@
Il
“o
3
@
I
|
=
S

yielding complexessZ,_,(X, e):
28z (Xn+1) 282X ) 282, (X n—-1)2 .
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AN ADDITIVE VERSION OF HIGHER CHOW GROUPS 467

DEFINITION 2.3.— The additive higher Chow groups are givenrfge 1 by
SHy(X,n)=H,(SZ,_4(X,e))
and (for X equidimensional)
SHP(X,n) = SHaim x—p(X, n).

The groups are not defined far= 0.

Remarks2.4. —
(i) The above should be compared with the higher Chow gralfi$ (X ,n) defined as
above with@* replaced byA®, whereA™ := Spec(k[to, ..., tn]/ (O t; — 1)).
(i) The cosimplicial schemé&*® admits an action ofs,,, ;, which we define by

T (to, . ytn):=(to/x,... tn/x).

(The reason for the inverse will be clear below.) By functoriality, we obtdirf aaction
ontheSH?(X,n).

(iii) Let f: X’ — X be aproper map with = dim X’ —dim X. Then one has a push-forward
map

fo:SZP(X', 0) — SZP (X, e).

On homology this yieldsSH?(X’,n) — SH?™"(X,n). We will be particularly in-
terested in the cas& = Spec(k), X’ = Spec(k') with [k’ : k] < co. We write
try 1 : SHP(K',n) — SHP(k,n) for the resulting map. This trace map is compatible
with the action oft* from (ii) in the sense that for € k* anda’ € SH?(k',n) we
havex *trk//k(a') = trk//k(x * a’).

LEMMA 2.5.-Thex action ofk* on SH"(k,n) extends to an action of the multiplicative
monoidk by settingd x x = 0. This action comes from lxvector space structure ot " (k, n).

Proof. —We have to show that for a closed paint (uo, . .., u,) € @™\ Ui, 8;(Q" 1), and
a,be k, one haga +b) xx = a*x + bxx. For eithera or b = 0, this is trivial. Thus we assume
ab#0. Letk’ = k(z). Then the class i8H" (k,n) of x is the trace fronk’ to k of a k’-rational
pointz’ € SH"(k’,n). Using the compatibility ok and trace from Remarks 2.4(iii) above, we
reduce to the case k-rational.

Write (to — uo, - . ., t, — uy,) for the ideal ofz. Definel(t) = —Z—§t+ a+b. Consider the curve

W c Q" defined parametrically by

w={ (torr g )

To check that this parametrized locus is Zariski-closed, we consider the ideal:
Iw = ((tl + to)é(to) — UO,tgé(to) — Uy, .. .,tnf(to) — un)

If y=(yo,...,ynt1) IS @ geometric point in the zero locus Af;, then since the,; # 0 we see
that/(yo) # 0. Substitutingt = yo, we see thay lies on the parametrized loclE.

The equation-t + gf—;’) = 0 leads to a quadratic equationfinwith solutionst = =, ¢ = 4.
If a +b+#0we have
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468 S. BLOCH AND H. ESNAULT

U Unp,
(W) = (afb,...,ﬁb) = (a+b)* (ug,...,un),
u Up, (% Unp
oL(W)= (;07_,_,;) + (?O"“’?> =ax (ug,...,un) +b* (ug,...,u,),

so the lemma follows in this case.df+ b = 0, thendy W = 0 as well, and again the assertion is
clear. O

3. Additive Chow groupsand Milnor K-theory
We consider the map (compatible with faces)\* — Q**' defined onk-rational points by
(ug, - -, un) — (=1,up,...,u,). Itinduces a map of complexe®’ (k, o) — SZP+1(k, e + 1),
which in turn induces a map
(3.1) v: CHP(k,n) — SHP ™ (k,n + 1).
By [7] and [8], one has an isomorphism

(3.2) KM (k)= CH"(k,n)

of the higher Chow groups @éf-cycles with Milnor K -theory. It is defined by:

(3.3) (uo,...,un)H{—@,...,—u"1},
Up, Up,
by by 1) -
(3.4) {bl,...,bn}|—>(z,...,?,—z>, c:—1+;bi.

Note that if Y7 ; b; = 1, then the symbob := {b1,...,b,} is trivial in Milnor K -theory, and
one mapss to 0.
In this way, one obtains a map

KLy (k) — SH™ (k,n);

n— -1
(35 A{x1,...,xp_1}+— (—1 1 .. Lol )
_1+Zz 1 xl _1+Zz 1 %i _1+Zz 1 Li

4. Differential forms

In this section we construct klinear mapQ} ' — SH"(k,n). (HereQ; are the absolute
Kahler differentiak-forms.)
The following lemma is closely related to calculations in [5].

LEMMA 4.1.— As a k-vector space, the differential foer}j‘l are isomorphic to
(k ®z A"1k>X)/R. Thek-structure onk ®z; A"~ k> is via multiplication on the first argu-
ment. The relation®, for n > 2, are thek-subspace spanned by

@ (@Abi A Abpa)+(1—a)@ ((1—a) Aby A+ Aby_2),
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AN ADDITIVE VERSION OF HIGHER CHOW GROUPS 469

for b; € k>, a € k. The mapk @z A" ~1k*)/R — Q! is then defined by
(a,biy...,bp—1)— adlogby A--- Adlogb,_1.

Proof. —Write 'Q* := (k ®z A*k*)/R. This is a quotient of the gradédalgebrak @z A*k*
by the graded ideak and hence has a gradéehlgebra structure, generated in degre&here
is an evident surjection of graded algebt@$s — Q*, so, by the universal mapping property of
the exterior algebr&*, it suffices to check! =~ Q1.

DefineD:k — (k ®z k*)/R by D(a) = a® a for a € k*, else D(0) = 0. To define the
required inverse, it suffices to show thatis a derivation. ClearlyD(ab) = aD(b) + bD(a).
Alsol® —1listrivialin k® k*, soD(—a) = —D(a). Givena,b € k*, write b = —ac. We have

D(a+b)=D(a—ac)=aD(l —c)+ (1 —c¢)D(a)
(4.1) =—aD(c)+ D(a) — cD(a) = D(a) + D(—ac) = D(a) + D(b).
HenceD is a derivation so the inverse m&g — Q! is defined. O

Remark4.2. — We will frequently use the relations in the equivalent form
a®@aN(--)—(1+a)®@(1+a)A(--)~0.

PROPOSITION 4.3. — One has a well-definektlinear map
¢: Q)" — SH™(k,n),

b b 1
a::adlogbl/\---/\dlogbn_ln—>a*(—1,—1,..., 1,——),
8l 8l 2l

wherey = —1 + >.""" b;. (Definea = 0 wheny = 0.) The diagram

dlog n—
K3 (k) ——— ot

oo ‘|

SH™(k,n) SH"(k,n)

is commutative.
Proof. ~We writec = —1 4 a+ Y7~ b;. By Lemma 4.1, we have to show

a bp—1 1 a+1 bp—1 1
0=p:= —-1,—,... — ) = 1 -1 — .
p a*( el e c) (a+ )*< Te+17 e+ 1 c—|—1)

If @ =0, then one has

1 bn_ 1
p——(—l,—,..., Cl,—z>——L{1,b2,...,bn1}—0.

Similarly, p = 0 if a = —1. Assume now: # 0, —1. Setb = —a € k \ {0,1}. One defines, for
n>3and(u,... u, 1) € (A"2\ UrZ A"3)(k), the parametrized curve

a __1 1 B —U1 —Unp—1 n+1
F(bau)—{< b +t,b_17 tvb(b_1)77b(b—1)>}CQ :
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470 S. BLOCH AND H. ESNAULT

and forn =2
(4.2) r'(b) :z{(%l—i—t,bil,—t, b(b_—11)>} cQ’.

(See [8] for the origin of this definition.) This curve is indeed in good position, so it lies in
SZ™(Q™*1). One computes

AT (b, u) = (1 — b) x <_1,1_l w unl)

b’?’.'.7 b
(4.3) N (R PO e e T
' 1 b—1 =1 )

(Resp. in the case =2

OT(b) = (1—b) <_1,1_ %%) . (-1,% b_—1>)

Now one has

1 ug Up_1
—-1,1—=,—, ...
( ) b’ b ) ) b )
1-b U1 Unp—2
=1 — ey
Up—1 ’ Up—1 ’ ’ Up—1

2! Un—2
=1t 1_ba_ sty T —§Un—-1,U1,...,Un—-2 )
Un—1 Un—1

as the rest of the multilinear expansion contains only symbols of the shapgi,,—1,...,
—Up—1,-...}. On the other hand, sincgﬁz_l1 u; = 1, one has{u,—1,u1,...,up—2} = 0.
Similarly, one has

1 b —U —Un-—1 b U Up—2
— =1 — ey — .
7b—l’b—l7 ’ b—1 un_l’ un_l’ ’ Unp—1

The same argument yields that this is

L{b,— e ,...,—uﬂz}.
Up—1 Un—1
It follows now from (4.3) that fom > 3 we have the relation iI§H" (k,n)

(4.4) (1—b)*4{1—b,— “ ,...,—“"‘2}+b*b{b,— “ ,...,_“”—2}20.

Un—1 Un—1 Un—1 Un—1

(The analogous relation for= 2 is similar.) O

PROPOSITION 4.4. —With notation as above, the map
¢: Q1 — SH™(k,n)
is surjective. In particularSH™ (k, n) is generated by the classestofational points inQ".
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AN ADDITIVE VERSION OF HIGHER CHOW GROUPS 471

Proof. —It is easy to check that the image ¢fcoincides with the subgroup &fH" (k,n)
generated by:-points. Clearly,SH" (k,n) is generated by closed points, and any closed point
is the trace of &’-rational point for some finite extensidei/k. We first reduce to the case
k'/k separable. Ifc € Q7 is a closed point in good position (i.e. not lying on any face) such
that k(x)/k is not separable, then a simple Bertini argument shows there exists alrve
good position orQ" ! such thabC = x + y wherey is a zero cycle supported on points with
separable residue field extensions aveindeed, lef?” ¢ Q™" be the union of the faces. View
x € W. Sincex is in good position, it is a smooth point 6. Bertini will say that a non-
empty open set in the parameter space-d6ld intersections of hypersurfaces of large degree
containingz will meet W in x plus a smooth residual scheme. Sirices necessarily infinite,
there will be such am-fold intersection defined ovér. Since the residual scheme is smooth, it
cannot contain inseparable points. Thes —y which is supported on separable points.

We assume now’/k finite separable, and we must show that the trace &f-point is
equivalent to a zero cycle supported/opoints. Since the image @f is precisely the subgroup
generated by-rational points, it suffices to check that the diagram

et 2 SH™ (I n)
(45) lTrk//k \LTrk//k

=t — o SH™(k,n)

commutes. Becaus€ /k is separable, one had®; ' — Q' and Q! = &' Q7. One
reduces to showing, fat = (-1, a1,...,a,) € Q" (k) andt € K/, thatTr(t o) = (Tr(t)) *
in SH™ (k,n).

Let P(V) = VN +any 1 VN1 + ...+ a1V + ag € k[V] be the minimal polynomial of
—+ We setby = =%, b= 2%, i=N —1,...,2 and b; = a;, i = 1,0. We define the
polynomialQ(V,u) = by VN "tu+- -+ by Vu+ bV +bg € k[V,u], which by definition fulfills
Q(V,—a, V) = P(V). We define the ideal

Z=(Q(Vo,u),Vi+a1Vo,..., Vo1 +an_1Vo) Ck[Vo,..., Voo, ul.

It defines a curveélV c A"+l We think of A"*! as beingQ"*! with the facesl, = 0,
oy Vo1 =0,u=0,u+ Z?;&Vi = 0. Then this curve is in general position and defines a
cycle inSZ (k,n+1).

Sincebg # 0, anda; # 0, one has

(4.6) OW =0, i=0,1,...,n—1.

One has
0, W defined by(a1V0 +ag, Vi +a1Vo,..., Vo1 + an—1V0).

To compute the last face, we observe that the ideal

n—1
<u+ Y ViVitaiVo,.., Vi +anlvo>,
=0
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472 S. BLOCH AND H. ESNAULT

containsu + o, Vg. Consequentlx?)qu n-1y, W is defined by

i=0 '
(Q(V()? _Oén‘/o), Vl + al%v AR anl + Oénflv()%

with Q(Vp, —an Vo) = P(Vh). Thus one obtains

0=(—1)"9W = % x(=1,a) —tx(—1,a).
0

SinceP is the minimal polynomial of-1, % is the trace of. O

t? ag

5. The main theorem

Recall (1.8) we have a logarithmig — 1)-form~,,_1 on@Q" = Spec(k[vo, . . ., vn] /(X1 i)

n

1 . —

V1= — Z(—l)ldlog(vl) A« Adlog(vi) A -+ Adlog(vy),
(5.1) Yo
dvi A --- ANdoy,

VoV1 ** * Up

d’7n—1 =VUp=

Writing v; = V;/V,,4+1, we can viewy,,_; as a meromorphic form on

P" = Proj <k[V0, o Vn+1]/ (zn: V))

Let A: Vp---V, =0; oo: V41 = 0. The fact thatd~y,_; has log poles on the divisors
Vi =0, 0 <i< nimplies that

(5.2) Yn—1 € T'(P", Q. (log(A + 00) ) (—00)).

In particular,v,_; has log poles, so we can take the residue along componerds @Fhe
configurationA does not have normal crossings. The si&f (log(A + o)) is defined to be
the subsheaf of Qp. ', , wherej:P™ \ (AU oo) — P" is the open embedding, generated
by forms without poles and the evident log forms with residualong one hyperplane and
(—1) along another one. According to [1], the global sections of this naturally defined log sheaf
compute de Rham cohomology.)

In the following, we adopt the sign conventi®®s;—q % A w = w. This yields

dt dt
Resi—gd (7 A w) =—d (Rest_o - A w) .

LEMMA 5.1. - We have the following residue formulae
Resvi:O’Yn:(_l)i'yn—l; 0<e<n+1.

Proof. —One can either compute directly or argue indirectly as follows:

—dResy,—0 7n = Resy, =0 dvn = Resy, =0 Vnt1
(5.3) =(=1)"v, = =d((=1)"yn-1) #0.
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AN ADDITIVE VERSION OF HIGHER CHOW GROUPS 473

To conclude now, it suffices to show that the space of global sections (5.2) has dimenBion
verify the dimensiorl property, letd’ C A be defined by ---V,, = 0. ThenA’ + co consists
of n + 1 hyperplanes in general position[i#¥, so

Q' (log(A' 4 00)) = A" 1O (log(A' + 00)) =2 OF.
One looks at the evident residue
QF " (log(A + 00) ) (—o0) — Q3% (log (A + 00) ) (—o0)

alongVp=0. O

Remark5.2. — The computation of the lemma shows that ; is the unique (n — 1)-
differential form inT'(P", Qg * (log(A + 00))(—00)) with dv,,—1 = v,,. The configuration4
being given, fixing>o fixesy,,_1.

THEOREM 5.3. — The assignment — Tr(,)/(v(z)) gives an isomorphism for > 1
SH™(k,n)=Qp "

Proof. —Let X C QZ“ be a curve in good position. For a zero-cyela good position orQ)™
we write Try,,_1(c) € QZ” (absolute differentials) for the evident linear combination of traces
from residue fields of closed points. We must stibiw;,, _;(0X) = 0. Let X denote the closure
of X in P™. We considety, 1|+ € I'( X, Q"y_/lz(*D)), whereD is the pole set of,,_1|+. The

form ~,,—1 dies when restricted teo. Thus D = J;_, D; C X, with D; := 9;(Q") N X. We
define the residue alonB; as follows. One has an exact sequence

(5.4) 0—Qp ® Ox — Q% (log D) — Q' @ w(log D) — 0.
The residue map followed by the trace

TroZRcsDj

(5.5) w(log D)
yields, by the reciprocity formula, a vanishing residue map on glakarms

(5.6) HO(X,Q% ,(log D)) — 7 Q) H (X, wx(log D)) = .
k

On the other hand, the residue decomposes as

Z]‘ ResD]. Z

égn 1 Qn 1

J=0

(5.7) (X QZ(/Z(logD))

By Lemma 5.1y, 1(D;) = (Res,, =0 7x)(D;). The desired vanishing follows.
We now have
Q1 L SH" (k) T

It suffices to check the composition is multiplication py1)"*!. Givenby,...,b, 1 € k with
=>"b; — 1 # 0, the composition is computed to be (use (5.1) and Proposition 4.3)
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474 S. BLOCH AND H. ESNAULT
a-dlog(by) A--- ANdlog(bp—1) —

b -1
—az dlog( )/\-~'/\dlog<—>/\-~-/\d10g<—>.
ac ac

Expanding the term on the right yields

—ay (-1 d10g< ) /\~-~/\d1<g<\%> /\~--/\dlog<_71) —a-dlog(a)A(...),

and it is easy to check that the terms involvisilpg(a) cancel. In this way, one reduces to the
casen = 1. Here

—Z dlog( )/\---/\dlog(ﬁ>/\---/\dlog<_—1)
c c

db1 dbn_l dc
=(=1)"T = A A —A(.).
(=" AN D

(5.8)

Again the terms involving log(c) cancel formally, completing the proof.c

Challenge5.4. — Finally, as a challenge we remark that the Kahler differentials have
operations (exterior derivative, wedge product) which are not evident on the cyclé&sZ.
For example, one can show that the map

_ _ T1lo _ InXo Lo
(59) V(IO,...,I'n)—(l'Q, 1—(1707.“’ 1—(170’ 1—(170)
satisfies
(5.10) W (V(2)) = (=1)"dyn-1(2)

and hence induces the exterior derivative onGkeycles. The map is not uniquely determined

by this property, and this particular map does not preserve good position for cycles of dimension
> 0. Can one find a geometric correspondence on the con#Ex which inducesd on the
0-cycles? What about the pairings, b) — a A b or (a,b) — a A db?

6. Specialization of forms

In this section we consider again the specialization of differential forms as in Section 1. Recall
f(Uy,...,Usys1) is homogeneous of degreet+ 2, u; = U; /Uy, andv; =t u;. N is minimal
suchthat™ f(1,t"vy,...,t "+1v,, 1) is integral int, and we assume= N — >_r; > 0. We
have forms

d(t_Tl Ul) JARERIAN d(t‘”“vnﬂ)
f(lvtirlvla (RRE tirn+1vn+1)

(6.1) W= =tvp + st dE Ay

ande|t:0 = d7.f|t:0.
We have already mentioned the case

f = AnJrl = (tilvl) cee (tilanrl) (1 — t71’01 — = tilanrl).

The formsva,., andya, ., are given in (1.8). As before, we write, := va, ., |i—o;
Yn = YA, |t=0. The differential formv,, , plays an interesting role in the computation of de

4€ SERIE— TOME 36 — 2003 -N° 3



AN ADDITIVE VERSION OF HIGHER CHOW GROUPS 475

Rham cohomology of the complement of hyperplane configurations4d)be the configuration
in P* of (n + 1) hyperplanes in general position with affine equatiegu, ---u, =0,
up +uy + -+ u, =t #0. ThenH" (P \ A;) = H°(P", Q2. (log A;)) is a pure Tate structure
generated bya, 1. Now maket tend to 0 and consider the degenerate configuratlgn
with affine equationiguy - - - up, =0, up + u1 + - - - + u,, = 0. Exactness of,, 1 = d, in the
case (1.7) follows from Aomoto’s theory [1,4]. Due to the special shape of the configurations
A; considered, however, more is true. We have fixedand the differential formy,, lies in
HO (P Q" (log(Ap + 00))(—0)). That s, it has log poles along all componentsif and it
vanishes as a differential form ab (see Lemma 5.1). Thik-vector space of differential forms
is 1-dimensional. In other words, the differential fory is uniquely defined by the vanishing
condition atoo and the secondary datdy, = v, 1 (see Remark 5.2). Do such primitives
for more general degenerating configurations admit an interpretation identifyiggles with
spaces of differential forms?

Here is another example of specialization @nclcles. Define

f(l,U,l,UQ):u% —ug — aug — b;

(6.2)
V1 = t3u1, Vg = tQ’UQ.
One computes
(6 3) dvy N dvs 2v9 dvy — 3v1dvs
. v= ; = .
v} —v3 — attvg — btb i v} —v3 — attvg — btb

One checks thaes(v|t=o) = v2/v1 and
(6.4) d(va/v1) = —dvy /2 = dRes(v]i—g) onvi —v3 =0.

The assignment — Try (., (v2/v1)(2) identifies the jacobian of the special fibrg— v3 =0
with G, (k) = k.

A final example of specialization, which we understand less well, though it was an inspiration
for this article, concerns the hyperbolic motives of Goncharov [6]. Magix coefficientsf his
theory (in the sense of [2]) are the objedf$"~1(P*"~1\ Q,M \ Q N M). HereQ C P?"~!
is a smooth quadric and/ is a simplex (union oRn hyperplanes in general position). The
subscheme§ and M are taken in general position with respect to each other. The notation is
intended to suggest a sort of abstract relative cohomology group. In de Rham cohomology, the
non-trivial class il 7, ' (P2"~1\ Q) is represented by

dug N -+ N dug,—1

6.5 = .
¢ R R R VT

Substitutingu; = v;t, we get

t2n_1d’01 VARERIAN d’Uanl + tzn_th A Z(—l)ividvl AR J’le SERIAY d’Uanl

e8) w= 0T+ B, ) -1

We get
V|t:0 =+dvi N+ Advg,—1
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and

1
2n—1
Let Ay € Ho,1(P?"~1, M;7Z) be a generator. The hyperbolic volume

(6.7) / w

Anr

V=0 = Z(—l)ividvl/\"'Cz;i"'/\dvmﬂ-

is the real period [6, Section 4.1] of the Hodge structure associated t—*(P2"~1 \ Q).
Goncharov remarks (op. cit., Question 6.4 and Theorem 6.5) that this volume degenerates to
the euclidean volume as— 0. (More precisely, from (6.7), we see that as a relative form,
dvi A -+ A dvg,—1 = limy_o t'~2"w.) He asks for an interpretation of the degenerated volume
in terms of some sort of motive ovéft]/(t?).

In the Goncharov picture we can vigwas fixed and degeneraté. Suppose

M: L0L1-~-L2n,1:()

where

Li = Li(vl, .. .,’L)anl) = Li(ul/t, .. .,Ugnfl/t).

Assuming theL; are general, clearing denominators and passing to the #imit0 yields a
degenerate simpleX/, consisting of2n hyperplanes meeting at the point= 0. This limiting
configuration leads to the Chow groufi§ *(k, 2n — 1), but we do not see how to relaté;—
to cycles.

7. Cyclegroupsof divisors

We computeSH ' (k,n) for n > 1.
Let Og~ o be the local ring a0, ...,0) € Q™. Let

(7.1) I"C J" C Ogn o
be the ideals of all (resp. all but the last) face.
LEMMA 7.1.—
SH(kyn) = (1+17)" /0 (1+ J"H) .
Proof. —Let D C Q™ be an effective divisor. Let

feky = k[to,...,tn]/(zti)

be a defining equation fdp. ThenD meets faces properly in our sense if and only & Ogn,o.

Conversely, anyf € (9270 defines a (not necessarily effective) divisor @ft meeting faces
properly. Further

(7.2) (£)-Qr'=0 & fek* (1+t0gn0).
By general simplicial considerations, tif#7" (k,n) is given by divisors meeting all faces
trivially, modulo the restriction to the last face of divisors %' meeting all but the last
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face trivially. Scaling thef above to remove the fact@r*, this is precisely the assertion of the
lemma. O

PROPOSITION 7.2. -We haveSH' (k,1) = k, and SH' (k,n) = (0) for n > 2.

Proof. —The first assertion is part of Theorem 5.3. The exact sequence

(7.3) 0 ol gt O m g

yields the surjectivityl + J"*! — 1 + I". We observe that whem= 1, we havel! = (¢,) but
(7% = (8). ©
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