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THE STEINBERG CURVE

By HÉLÈNE ESNAULT and MARC LEVINE

Abstract. Let E and E0 be elliptic curves over C . We construct non-torsion 0-cycles in the kernel
of the Albanese mapping CH0 (E � E0)deg 0 ! E � E0, which are not detectable by a certain class
of cohomology theories, including the cohomology of the analytic motivic complex involving the
dilogarithm function defined by S. Bloch. This is in contrast to the étale version of Bloch’s complex
defined by S. Lichtenbaum, which contains the Chow group.

0. Introduction. Let X be a smooth projective algebraic variety over C ,
and let Xan be the associated compact complex manifold. The equivalence of the
category of algebraic coherent sheaves on X with the category of analytic sheaves
on Xan, proved in [16], yields the isomorphism

CH1 (X) �= H1(Xan,O�Xan
),

where CH1 (X) is the group of divisors modulo linear equivalence, and OXan is
the sheaf of analytic functions. This isomorphism, together with the exponential
sequence

0 ! (2�i)Z ! OXan ! O�Xan
! 1,

yields a direct connection of CH1 (X) with the Hodge theory of Xan.
It is natural to ask if the group of codimension p cycles on X modulo rational

equivalence, CHp (X), admits a similar description for p > 1. Presumably with
this in mind, S. Bloch has introduced a complex for the analytic topology, denoted
B(2). There is a natural map

H �(Xan,B(2)) ! H�
D(X,Z(2)),

where H�
D(X,Z(2)) is the weight two Deligne cohomology, as well as a cycle

class

CH2 (X) ! H 4(Xan,B(2)),

factorizing the cycle class to Deligne cohomology H 4
D (X,Z(2)) [5]. Our purpose

in this article is to construct non-torsion cycles in CH2 (X) (X a product of two

Manuscript received July 1, 1999.
Research supported in part by the NSF and by the DFG-Forschergruppe “Arithmetik und Geometrie.”
American Journal of Mathematics 122 (2000), 783–804.

783



784 HÉLÈNE ESNAULT AND MARC LEVINE

elliptic curves) which vanish in H 4(Xan,B(2)). In fact, we construct non-torsion
cycles which vanish in H 4(Xan, Γ(2)an), where Γ(2)an is any complex of sheaves
on Xan satisfying a modest list of axioms.

The cycles we construct come from the Steinberg curve on the product E�E0

of elliptic curves. In the degenerate case of the product of nodal cubic curves
E0 � E0, the Steinberg curve is just the line x + y = 1 on C � � C � , where
C � is the nonsingular locus of E0. In general, we have the Tate parametrizations
C ��C � ! E�E0, and the Steinberg curve is the image of fx+y = 1g � C ��C �

in E � E0. It turns out that, using the definition of CH0 (E0 � E0) given by [8],
K2(C ) is a summand of CH0 (E0 � E0)0, with the Steinberg curve parametrizing
the classical Steinberg relation. However, the fact that the Steinberg curve is
nonalgebraic unless E = E0 = E0 implies that the analog of the Steinberg relation
is not satisfied in CH0 (E� E0), unless E = E0 = E0. Since one can use the cover
C ��C � ! E�E0 to compute cohomology in the analytic topology, the analog of
the Steinberg relation is satisfied in H 4(Ean�E0an, Γ(2)an), where Γ(2)an is as above.

Our results are in contrast with various results on cohomology theories defined
via the étale topology, or using coefficients mod n. For instance, Lichtenbaum [9]
has defined an étale version of weight two motivic cohomology, which receives
the codimension two Chow groups injectively. Also, Raskind and Spieß [14] have
shown that, for smooth elliptic curves E, E0 defined over a p-adic field k, there is
a surjective map of K2(k)=n onto the mod n Albanese kernel in CH0 (E � E0)=n
for n prime to p.

We recall some well-known facts on the Tate parametrization of elliptic curves
in x1. In x2 we introduce the Steinberg curve, and show that it parametrizes the
Steinberg relation in CH0 (E0 � E0). We then consider CH0 (E � E0), with at
least one of E, E0 smooth, and show that the 0-cycle in the Albanese kernel
corresponding to a point u of the Steinberg curve is non-torsion in CH0 (E� E0)
(outside of countably many points u). In x3, we list our axioms for the complex
Γ(2)an, and show that the “Steinberg relation” holds in H 4(Ean � E0an, Γ(2)an). In
x4, we consider the problem of constructing a non-torsion cycle which vanishes
in both H 4(Xan,B(2)) and in the absolute Hodge cohomology H2(X, Ω2

X=Q ). We
give such an example for X = E � E0, E 6= E0, but we are not able to handle the
smooth case.

1. Tate curves and line bundles. For a scheme X over C , we let Xan denote
the set of C -points with the classical topology. We let OXan denote the sheaf of
holomorphic functions on Xan.

We begin by describing a construction of the universal analytic Tate curve
over C . We first form the analytic manifold Ĉ� as the quotient of the disjoint
union t1i=�1Ui, with each Ui = C 2 , by the equivalence relation

(x, y) 2 Ui n fY = 0g �
�

1
y

, xy2
�
2 Ui+1 n fX = 0g.
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The function �̃(x, y) = xy is globally defined on Ĉ�. Letting D � C be the disk
fjzj < 1g, we define C� = �̃�1(D), so �̃ restricts to the analytic map �: C� ! D.
We let 0̃: D ! C� be the section z 7! (z, 1) 2 U0.

Let D� � D be the punctured disk z 6= 0. Since the map (x, y) 7! ( 1
y , xy2) is

an automorphism of (C �)2, the open submanifold ��1(D�) of C� is isomorphic
to (C �)2, and the restriction of the map � is just the map (x, y) 7! xy. Thus, the
projection p2: (C �)2 ! C � gives an isomorphism of the fiber C�t := ��1(t) with
C � , for t 2 D�.

The fiber ��1(0), on the other hand, is an infinite union of projective lines.
Indeed, define the map fi: C P1 ! C�0 by sending (a : 1) 2 C P1 n1 to (0, a) 2 Ui,
and 1 = (1 : 0) to (0, 0) 2 Ui+1, and let Ci = fi(C P1). Then ��1(0) = [1i=�1Ci,
with 1 2 Ci joined with 0 2 Ci+1. Note in particular that the value 0̃(0) of the
zero section avoids the singularities of ��1(0).

Define the automorphism � of C� over D by sending (x, y) 2 Ui to (x, y) 2
Ui�1. This gives the action of Z on C�, with n acting by �n. It is easy to see that
this action is free and proper, so the quotient space E := C�=Z exists as a bundle
�: E ! D. The section 0̃: D ! C� induces the section 0: D ! E .

Take t 2 D�. Identifying C�t with C � as above, we see that � restricts to
the automorphism z 7! tz. Thus, the fiber Et := ��1(t) for t 2 D� is the Tate
elliptic curve C �=tZ, with identity 0(t). On C�0 , however, � is the union of the
“identity” isomorphisms Ci ! Ci�1. Thus �(1 2 Ci) = 0 2 Ci, so the restriction
of C�0 ! E0 to C0 identifies E0 with the nodal curve C P1=0 � 1. We let � 2 E0

denote the singular point. Then 0̃(0) 2 E0 n �.
The map (t, w) 2 D�C � 7! ( t

w , w) 2 U0 gives an isomorphism  : D�C � !
U0 n fY = 0g over D. The composition

D� C � ! U0 n fY = 0g � C�
q
! E

defines the map p: D� C � ! E over D, with image E n f�g.
Take u 2 C � . We have the local system on E

Lu := C� � C =(z,�) � (�(z), u�) ! E ,

and the associated holomorphic line bundle Lan
u on E .

Let Et be the algebraic elliptic curve associated to the analytic variety Et, let
Lu(t) and Lan

u (t) denote the restriction of Lu and Lan
u to Et, and let Lalg

u (t) be the
algebraic line bundle on Et corresponding to Lan

u (t) via [16]. The restriction of
p to t � C � defines the map pt: C � ! Et an. For t 6= 0, pt is a covering space
of Et an. The map p0: C � ! E0 an is the analytic map associated to the algebraic
open immersion

P1 n f0,1g
j
! P1 ! P1=0 � 1 = E0.
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If E is an elliptic curve over C , then Ean
�= C =Λ, where Λ � C is a lattice

spanned by 1 and some � in the upper half plane. Taking t = e2�i� gives the
isomorphism Ean

�= Et, so each elliptic curve over C occurs as an Et for some
(in fact for infinitely many) t 2 D�.

Sending u 2 C � to the isomorphism class of Lalg
u (t) defines a homomorphism

p̃t: C � ! Pic (Et). We denote the identity 0(t) 2 Et simply by 0 if t is given.

LEMMA 1.1. For all t 2 D, c1(Lalg
u (t)) = (pt(u))� (0).

Proof. We first handle the case t 6= 0. Let q: C ! E := Et be the map
q(z) = pt(e2�iz), let � 2 C be an element with e2�i� = t, and let Λ � C be the
lattice generated by 1 and � . The map q identifies E with C =Λ, and Lu(t) with
the local system defined by the homomorphism �: Λ ! C � , �(a + b� ) = ub.

There is a unique cocycle � in Z1(Λ, H0(C ,O�C an
)) with �(1) = 1, �(� ) =

e�2�iz; let L be the corresponding holomorphic line bundle on E. Computing
ctop

1 (L) 2 H2(E,Z) by using the exponential sequence, we find that deg (L) = 1.
By Riemann-Roch, we have H0(E, L) = C ; let Θ(z) be the corresponding global
holomorphic function on C , i.e.,

Θ(z + 1) = Θ(z), Θ(z + � ) = e�2�izΘ(z),

and the divisor of Θ on E is (x), with L �= OE(x).
Take v, w 2 C with u = e2�iv and q(w) = x. Let f (z) = Θ(z+w�v)

Θ(z+w) . Then

f (z + 1) = f (z), f (z + � ) = uf (z),

and Div( f ) = (p(u))� (0). Thus, multiplication by f defines an isomorphism

�f : OEan ((p(u))� (0)) ! Lan
u .

The proof for E0 = P1=0 � 1 is essentially the same, where we replace
Θ(z+w�v)

Θ(z+w) with the rational function X�u
X�1 .

Thus, the image of p̃t in Pic (Et) is Pic0 (E). After identifying the smooth
locus of E0

t of Et with Pic0 (Et) by sending x 2 E0
t to the class of the invertible

sheaf OEt ((x)� (0)), we have p̃t = pt.

2. The Albanese kernel and the Steinberg relation. Let X be a smooth
projective variety. We let CH0 (X) denote the group of zero cycles on X, mod-
ulo rational equivalence, F1 CH0 (X) the subgroup of cycles of degree zero, and
F2 CH0 (X) the kernel of the Albanese map �X: F1 CH0 (X) ! Alb (X). The
choice of a point 0 2 X gives a splitting to the inclusion F1 CH0 (X) ! CH0 (X).

Let E, E0 be smooth elliptic curves. As Alb (E � E0) = E � E0, the inclusion
F2 CH0 (E � E0) ! F1 CH0 (E � E0) is split by sending (x, y) � (0, 0) to (x, y) �
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(x, 0) � (0, y) + (0, 0). Thus F2 CH0 (E � E0) is generated by zero-cycles of the
form (x, y) � (x, 0) � (0, y) + (0, 0). Choosing an isomorphism E �= Et, E0 �= Et0 ,
we have the covering spaces p: C � ! Ean, p0: C � ! E0an, and the map

p � p0: C � 
 C � ! F2 CH0 (E � E0)(2.1)

u 
 v 7! p(u) � p0(v) :=

(p(u), p0(v)) � (p(u), 0)� (0, p0(v)) + (0, 0).

By the theorem of the cube [11], the map p � p0 is a well-defined group homo-
morphism, and thus is surjective.

In case one or both of E, E0 is the singular curve E0, we will need to use the
theory of zero-cycles mod rational equivalence defined in [8]. If X is a reduced,
quasi-projective variety over a field k with singular locus Xsing, the group CH0 (X)
(denoted CH0 (X, Xsing) in [8]) is defined as the quotient of the free abelian group
on the regular closed points of X, modulo the subgroup generated by zero-cycles
of the form Div f , where f is a rational function on a dimension one closed
subscheme D of X such that:

(1) No irreducible component of D is contained in Xsing.
(2) In a neighborhood of each point of D \ Xsing, the subscheme D is a

complete intersection.
(3) f is in the subgroup O�D,D\Xsing

of k(D)�.
It follows in particular from these conditions that Divf is a sum of regular points
of X.

For X a reduced curve, sending a regular closed point x 2 X to the invertible
sheaf OX(x) extends to give an isomorphism CH0 (X) �= Pic (X).

We extend the definition of Fi CH0 to E � E0 with either E = E0, E0 = E0

or E = E0 = E0, by defining F1 CH0 (E � E0) as the subgroup of CH0 (E � E0)
generated by the differences [x]�[y], and F2 CH0 (E�E0) the subgroup generated
by expressions [(x, y)]� [(x, 0)]� [(0, y)] + [(0, 0)], where x is a smooth point of
E and y a smooth point of E0. The surjection p � p0: C � 
 C � ! F2 CH0 (E�E0)
is then defined by the same formula as (2.1).

PROPOSITION 2.1. (The Steinberg relation) Take E = E0 = E0. Then

(1) There is an isomorphism CH0 (E0�E0) �= Z�(C ��C �)�K2(C ), sending
F2 CH0 (E0 � E0) onto the summand K2(C ).

(2) p(u) � p(1� u) = 0 in CH0 (E0 � E0) for all u 2 C n f0, 1g.

Proof. Let X be a quasi-projective surface over a field k. By [7], there is an
isomorphism �: H2(X,K2) ! CH0 (X). The product O�X 
 O�X ! K2 gives the
cup product

H1(X,O�X)
 H1(X,O�X) [
! H2(X,K2).
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In addition, let D, D0 be Cartier divisors which intersect properly on X, and
suppose that supp D \ supp D0 \ Xsing = ;. Then

�(OX(D) [ OX(D0)) = [D � D0],(2.2)

where � is the intersection product and [�] denotes the class in CH0.
Since Lalg

u = OE0(p(u)� 0), (2.2) implies

p(u) � p(1� u) = �(p�1Lalg
u [ p�2Lalg

1�u),

so to prove (2), it suffices to show that p�1Lalg
u [ p�2Lalg

1�u = 0 in H2(E0 � E0,K2).
Write X for E0�E0. Let K̄2 be the image ofK2 in the constant sheaf K2(C (X)).

By Gersten’s conjecture [13, x7, Theorem 5.11], the surjection �: K2 ! K̄2 is an
isomorphism at each regular point of X, hence � induces an isomorphism on H2.

Let q: P1 ! E0 be the normalization, giving the normalization q� q: P1 �
P1 ! X. Let i: � ! E0 be the inclusion of the singular point. We have the exact
sequence of sheaves on E0

q�K1
�
! i�K1(C ) ! 0(2.3)

and the exact sequence of sheaves on X:

(q� q)�K2
�
! (i� q)�K2 � (q� i)�K2 ! (i� i)�K2(C ) ! 0,(2.4)

with augmentations �1: K1 ! (2.3), �2: K̄2 ! (2.4). The various cup products
in K-theory give the map of complexes

p�1(2.3)
 p�2(2.3) ! (2.4),(2.5)

compatible with the cup product

p�1K1 
 p�2K1 ! K̄2.(2.6)

The augmentation �1: K1 ! ker� is an isomorphism. The augmentation
�2: K̄2 ! ker� is an injection, and the cokernel is supported on � � �. Indeed,
by [6, Lemma 1.15 and Corollary 1.16], there is an isomorphism of sheaves on
X n f� � �g,

I=I2 
 (q� q)�Ω1
(q�q)�1(Xsing)=Xsing

�= ker�=K̄2,

where I is the ideal sheaf of Xsing. Since (q � q)�1(Xsing) ! Xsing is étale
away from � � �, the relative differentials vanish, verifying our claim. Thus,
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�2: K̄2 ! ker� induces an isomorphism on H2, and the complexes (2.3) and
(2.4) give rise to maps

�2: K2(C ) ! H2(X, ker�) = H2(X, K̄2) = H2(X,K2)

�1: C � = K1(C ) ! H1(E0,K1).

The compatibility of (2.5) with (2.6) yields the commutativity of the diagram

C � 
 C �
[

- K2(C )

H1(E0,K1)
 H1(E0,K1)

�1
�1

?

p�1[p�2
- H2(X,K2)

�2

?

Since Lalg
v = �1(v) for each v 2 C � , we have

p�1Lalg
u [ p�2Lalg

1�u = �2(fu, 1� ug) = 0.

completing the proof of (2). Similarly, since

p�1Lalg
u [ p�2Lalg

v = �2(fu, vg),

we see that F2 CH0 (X) is the image of K2(C ) in H2(X,K2).
For (1), we have the isomorphisms

H2(P1 � P1 ,K2) �= Z, H1(P1,K2) �= C � ,

the generator of H2(P1�P1 ,K2) being the class of a point in CH0 (P1�P1), and the
map C � ! H1(P1,K2) being induced by the Gysin map C � = H0( Spec C ,K1) !
H1(P1 ,K2) for the inclusion of a point (this follows from the projective bundle
formula for K-cohomology). Using Gersten’s conjecture loc. cit. and the Gersten
resolution of K2 [13, x7, Proposition 5.8], we have

Rj(q� q)�K2 = 0 = Rj(i� q)�K2; j > 0

and

Hj(P1 ,K2) = 0; j > 1.

Fix a smooth point y of E0. The inclusion y � y ! X induces the map
Z ! CH0 (X). The inclusions E0 � y ! X, y� E0 ! X induce the map

C � � C � = F1 CH0 (E0)� F1 CH0 (E0) ! CH0 (X);
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one checks that these maps correspond to the terms H2(P1�P1,K2) and H1(P1,K2)�
H1(P1 ,K2) in the spectral sequence arising from the resolution (2.4) of ker�.
Thus, this spectral sequence gives the exact sequence

H1(X, ker�)

! H1(P1 � P1 ,K2) ! Z � C � � C � � K2(C )

! H2(X,K2) ! 0.

To complete the proof of (1), we need only show that  is surjective.
Let x = q�1(y), giving the inclusions i1: P1 � x ! P1 � P1 , i2: x � P1 !

P1 � P1 . By the projective bundle formula, H1(P1 � P1 ,K2) is isomorphic to
C � � C � , with each C � given as the image under Gysin of the maps

ij�: C � = H0(P1 ,K1) ! H1(P1 � P1 ,K2); j = 1, 2.

We can factor say i1� as the composition

C � = H0( Spec C ,K1)
ix��! H1(P1 ,K2)

p�2�! H1(P1 � P1 ,K2).

Since y is a smooth point of E0, we have

H1
y (E0,K2) �= H1

x (P1 ,K2) �= H0(x,K1),

so we have the Gysin map H0( Spec C ,K1)
iy�
�! H1(E0,K2) with q� � iy� = ix�.

Also, the map

(q� q)� � p�2: K2E0 ! K2P1�P1

factors through ker�. Thus, we see that the factor i1�(C �) of H1(P1 � P1 ,K2) is
in the image of . The factor i2�(C �) is handled similarly.

In contrast to Proposition 2.1, the Steinberg relation is not satisfied in CH0 (E�
E0) if at least one of E, E0 is smooth. To show this, we first require the following
lemma:

LEMMA 2.2. Let s: C nf0, 1g ! E�E0 be the analytic map s(u) = (p(u), p0(1�
u)). Then s(C n f0, 1g) is not contained in any algebraic curve on E�E0, except in
case E = E0 = E0.

Proof. We first consider the case in which both E and E0 are smooth elliptic
curves, E = Et, E0 = Et0 , where t and t0 are in C � and jtj < 1, jt0j < 1. We have
the maps

p: C � ! E, p0: C � ! E0,

which are group homomorphisms with ker p = tZ, ker p0 = t0Z.
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Suppose that s(C �) is contained in an algebraic curve D � E � E0. For each
x 2 E, (x�E0)\D is a finite set, hence, for each u 2 C n f0, 1g, the set of points
of C � � C � of the form (tnu, 1 � tnu) has finite image in E � E0. Thus, for each
u, there are integers n, m and p, depending on u, such that n 6= m and

1� tmu = t0p(1� tnu).(2.7)

Since there are uncountably many u, there is a single choice of n, m and p for
which (2.7) holds for uncountably many u. But then

(t0ptn � tm)u = t0p � 1.(2.8)

If t0ptn� tm = 0, then jt0j = 1, contradicting the condition jt0j < 1. If t0ptn� tm 6= 0,
then we can solve (2.8) for u, so (2.7) only holds for this single u, a contradiction.

If say E0 = E0, then p0: C � ! E0 is injective, and we have the infinite set of
points p0(1� tnu) in the image of s, all lying over the single point p(u).

THEOREM 2.3. Let E = Et, E0 = Et0 , with at least one of E, E0 nonsingular.
Then, for all u outside a countable subset of C n f0, 1g, p(u) � p0(1 � u) is not a
torsion element in F2 CH0 (E � E0).

Proof. We first give the proof in case E and E0 are both nonsingular. For a
quasi-projective C -scheme X, we let SnX denote the nth symmetric power of X.
For X smooth, we have the map

�n: SnX(C ) � SnX(C ) ! CH0 (X)0
@ nX

i=1

xi,
nX

j=1

yj

1
A 7!

2
4 nX

i=1

xi �
nX

j=1

yj

3
5 .

For each integer n � 1, we have the morphism

�n: E � E0 ! S2n(E � E0)� S2n(E � E0)

(x, y) 7! (n(x, y) + n(0, 0), n(x, 0) + n(0, y)),

By [15, Theorem 1], (�2n��n)�1(0) is a countable union of Zariski closed subsets
of E � E0.

On the other hand, since pg(E � E0) = 1, the Albanese kernel F2 CH0 (E �
E0) is “infinite dimensional” [10]; in particular, F2 CH0 (E � E0)Q 6= 0. Since
F2 CH0 (E � E0) is generated by cycles of the form p(u) � p(v), it follows that
(�2n ��n)�1(0) is a countable union of proper closed subsets of E�E0. If D is a
proper Zariski closed subset of E � E0, then, by Lemma 2.2, s�1(D) is a proper
closed analytic subset of C n f0, 1g, hence s�1(D) is countable. Thus, the set of
u 2 C n f0, 1g such that p(u) � p0(1� u) is torsion is countable, which completes
the proof in case both E and E0 are nonsingular.
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If say E0 = E0, we use essentially the same proof. We let X be the open
subscheme E� (E0 n f�g) of E� E0. We have the map �n: SnX(C ) � SnX(C ) !
CH0 (E�E0) defined as above. By [8, Theorem 4.3], (�2n��n)�1(0) is a countable
union of closed subsets Di of X. By [17], we have the similar infinite dimension-
ality result for CH0 (E � E0) as in the smooth case, from which it follows that
each Di is a proper closed subset of X. Thus, the closure of each Di in E�E0 is
a proper algebraic subset of E � E0. The same argument as in the smooth case
finishes the proof.

3. Indetectability. The zero-cycle p(u) � p(1� u) is indetectable by coho-
mology theories based on the sheaf O�Ean�E0an

. We first consider the following
abstract situation.

The exponential sequence

0 ! Z(1) �
! C

exp
�! C � ! 1

defines a projective resolution of the group C � , so the complex

C �(1) �
id
�! C 
 C �

represents the derived tensor product C � 
L C � . Let Γ0(2) be the complex:

Z[C n f0, 1g] � C �(1) ! C 
 C �

(u, 2�in
 z) 7! log(1� u)
 u + 2�in
 z,

with C 
 C � in degree two (we make some choice of log(1 � u) for each u 2
C n f0, 1g).

Let X = E � E0, and let Γ(2)an be a complex of sheaves on Xan with the
following properties:

(3.1)

(1) There is a group homomorphism cl: CH0 (X) ! H 4(Xan, Γ(2)an).

(2) There is a map �: O�Xan

L O�Xan

[� 2] ! Γ(2)an in the derived category
of sheaves D(ShXan ).

(3) The composition

C � 
L C �[� 2] ! O�Xan

L O�Xan

[� 2] ! Γ(2)an

extends to a map Γ0(2) ! Γ(2)an in D(ShXan ).

(4) The composition

Pic (X)
 Pic (X) �= H1(Xan,O�Xan
)
 H1(Xan,O�Xan

)
[
! H 2(Xan,O�Xan


L O�Xan
)

�
! H 4(Xan, Γ(2)an)
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agrees with the composition

Pic (X)
 Pic (X) [
! CH0 (X) cl

! H 4(Xan, Γ(2)an).

Remark 3.1. To justify the axioms above, at least in case X is smooth, we
note the following: Let Y be a scheme smooth and of finite type over a field k.
There is a complex of sheaves ΓY(q) on YZar whose hypercohomolgy computes
the motivic cohomology of Y ,

Hp(Y ,Z(q)) = H p(YZar, ΓX(q)).

The complexes ΓY(q) have products ΓY(q)
L ΓY(q0) ! ΓY(q + q0) in the derived
category, and the assignment Y 7! ΓY(q) extends to a functor from smooth C -
schemes of finite type to the derived category of sheaves on the big Zariski site
of smooth schemes of finite type over C . ΓY(0) = ZYZar and ΓY(1) = O�Y [� 1] in
the derived category. For details, see e.g. [19].

Suppose we have complexes of sheaves on Yan, ΓY(q)an, for q = 1, 2, functo-
rial in Y , with natural products ΓY(1)an 


L ΓY(1)an ! ΓY(2)an, and with ΓY(1) =
O�Yan

. Suppose in addition we have maps in the derived category of sheaves on
the big Zariski site of smooth quasi-projective C -schemes

�q: Γ(�)(q) ! R��Γ(�)(q)an; q = 1, 2,

where � is the change of topology morphism, such that the � are compatible with
the products. Finally, suppose that �1 is the canonical map adjoint to the inclusions
��O�Y ! O�Yan

. Then Γ(2)an := ΓX(2)an satisfies the axioms above. Indeed, since
K2(C ) = H2( Spec C ,Z(2)) = H2(ΓSpec C (2)) (see [12], [18]) the product map

C � 
L C �[� 2] ! ΓSpec C (2)

extends to a map Γ0(2) ! ΓSpec C (2). Composing this with the map p�X: ΓSpec C (2)
! ΓX(2) given by the structure morphism, and then with �2(X), verifies axiom
(3). The remaining axioms follow from the isomorphisms

H2(X,Z(1)) �= CH1 (X) �= Pic (X), H4(X,Z(2)) �= CH2 (X),

compatible with the various products.

THEOREM 3.2. Let E = Et and E0 = Et0 , and let Γ(2)an be a complex of sheaves
on Ean � E0an satisfying the conditions (3.1). Then cl (p(u) � p(1 � u)) = 0 for all
u 2 C n f0, 1g.

Proof. We give the proof in case both E and E0 are nonsingular; the singular
case is similar, but easier, and is left to the reader.
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Since

p(u) � p(1� u) = [p�1c1(Lalg
u )] \ [p�2c1(Lalg

1�u)],

it follows from (3.1)(4) that we need to show that �([Lan
u ] [ [Lan

1�u]) = 0. The
class [Lan

u ] 2 H1(Ean,O�Ean
) is the image of [Lu] 2 H1(Ean, C �) under the map

of sheaves C � ! O�Ean
, and similarly for L1�u and Lan

1�u. Thus, by (3.1)(3), it
suffices to see that p�1[Lu] [ p�2[L1�u] 2 H 2(Ean � E0an, C � 
L C �) vanishes in
H 4(Ean � E0an, Γ0(2)).

The Z-covers p: C � ! E = Et, p0: C � ! E0 = Et0 give natural maps

�: H�(Z, H0(C � , C �)) ! H�(Ean, C �),

�: H�(Z, H0(C � , C �)) ! H�(E0an, C �).

Similarly, the Z2-cover p� p0: C � � C � ! E � E0 gives the natural map

: H �(Z2 , H0(C � � C � , Γ0(2))) ! H �(Ean � E0an, Γ0(2)).

Letting �: C � 
L C �[ � 2] ! Γ0(2) denote the natural map, the maps above are
compatible with the respective cup products:

� � (�(a) [ �(b)) =  � �(a [ b).

Each v 2 C � gives the corresponding homomorphism v: Z ! C � , v(n) =
vn. Since [Lu] 2 H1(Ean, C �) is �(u: Z ! C �) and [L1�u] 2 H1(E0an, C �) is
�(1�u: Z ! C �), it suffices to show that �(p�1u[p�2(1�u)) = 0 in H 4(Z2 , Γ0(2)),
where p�1u, p�2(1� u): Z2 ! C � are the respective homomorphisms (a, b) 7! ua,
and (a, b) 7! (1� u)b.

We have the spectral sequence

Ep,q
2 = Hp(Z2 , Hq(Γ0(2))) =) H p+q(Z2, Γ0(2)).

Since Z2 has cohomological dimension two, and since Hq(Γ0(2)) = 0 for q 6=
1, 2, it follows that the natural map H 4(Z2 , Γ0(2)) ! H2(Z2 , H2(Γ0(2))) is an
isomorphism. Since H2(Γ0(2)) = K2(C ), we need to show that the image of
p�1u [ p�2(1� u) in H2(Z2 , K2(C )) is zero.

By definition of the cup product in group cohomology, we have

[p�1u [ p�2(1� u)]((a, b), (c, d)) = p�1u(a, b) 
 p�2(1� u)(c� a, d � b)

= ua 
 (1� u)d�b,

which clearly vanishes in K2(C ).
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As an immediate consequence of Theorem 3.2, we have:

COROLLARY 3.3. Let E, E0 and Γ(2)an be as in Theorem 3.2. Then the compo-
sition

C � 
 C �
p�p0
�! CH0 (E � E0) cl

! H 4(Ean � E0an, Γ(2)an)

factors through the surjection C � 
 C � ! K2(C ).

Example 3.4. In [3], S. Bloch defines a quotient complex B(2)X of the analytic

complex O�Xan
(1) �
id

�! OXan 
O�Xan
fulfilling Hi(B(2)) = 0 for i 6= 1, 2,

H1(B(2)) = Im
�
r: K3,ind(C ) ! C =Z(2)

�
=: ∆�(1),

where r is the regulator map, and H2(B(2)) = K2,an. He shows in the same article
that r(K3,ind(C )) = r(K3,ind(Q̄ )), thus ∆�(1) is a countable subgroup of C =Z(2),
and also that B(2) maps to the complex Z(2) ! OXan ! Ω1

Xan
which computes

the Deligne cohomology H�
D(X, 2) when X is projective smooth over C . In fact,

the cycle map CH2 (X) ! H4
D(X, 2) is shown to factor through H 4(Xan,B(2))

[5]. Bloch asked in [4] whether the cycle map CH2 (X) ! H 4(Xan,B(2)) could
possibly be injective. The computations of this article show that it is not. Indeed,
the complex B(2)X is defined as

B(2)X := O�Xan
(1) �
id

�! OXan 
O�Xan
=�(Z[C n f0, 1g]),

where �: Z[C nf0, 1g] ! C 
C � is the map defined on generators a 2 C nf0, 1g
by

�(a) = log (1� a)
 a�
�
2�i
 exp

�
�1
2�i

Z a

0
log (1� t)

dt
t

��
.

Let us take Γ(2)an = B(2). We now verify the conditions 3.1. The complex

O�Xan
(1) �
id

�! OXan 
 O�Xan
represents O�Xan


L O�Xan
, so the evident surjection of

complexes gives us a map O�Xan

LO�Xan

! B(2)X . Also, the complexes B(2)X are
clearly contravariantly functorial in X, so to verify (3), it suffices to extend the
map C � 
L C � ! B(2)Spec C to a map Γ0(2) ! B(2)Spec C . We have the evident
surjection

(C �(1) ! C 
 C �) ! B(2)Spec C ,

which we extend to the map Γ0(2) ! B(2)Spec C by using the map �̃: Z[C n
f0, 1g] ! C �(1) defined on generators by

�̃(a) = 2�i
 exp
�
�1
2�i

Z a

0
log (1� t)

dt
t

�
.
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The condition (1) is given by [5]. Indeed, one computes the Leray spectral
sequence associated to �: Xan ! XZar and the first term entering H 4(B(2)) is

E2,2 = H2
Zar(R

2��B(2)) = H2(K2,Z),

where K2,Z := Ker
�
��K2,an

d log^d log
- H2(C =Z(2))

�
. Then the cycle map cl is

induced by K2 ! K2,Z on XZar, which is obviously compatible with the product
in Pic. Thus we have (4).

Hence we can apply Theorem 2.3 to yield a 0-cycle p(u)�p(1�u) on E�E0,
where both E and E0 are smooth elliptic curves, which is non-torsion in the Chow
group CH0 (E � E0), but which dies in H 4(B(2)) by Theorem 3.2.

In [9], S. Lichtenbaum constructs an étale version Γ(2) of S. Bloch’s analytic
complex B(2), the cohomology of which contains CH2 (X). This contrasts with
the examples discussed above.

Over a p-adic field, W. Raskind and M. Spieß [14] show that the Albanese
kernel modulo n of a product of two Tate elliptic curves is dominated by K2(k)=n.
This result is not immediately comparable to ours, but is obviously related.

Remark 3.5. Since, K2(Q̄ ) = 0, it follows from Corollary 3.3 that cl (p(u) �
p(v)) = 0 in H 4(Ean � E0an, Γ(2)an) for all u, v 2 Q̄ � , and all Γ(2)an satisfying the
conditions (3.1), in particular for Γ(2)an = B(2). It would be interesting to know
if p(u) � p(v) 2 F2 CH0 (E � E0) is non-torsion for some u, v 2 Q̄ � .

4. The relative situation. In this section, we study the cycles constructed
in Section 2 on X = E � E0, where as there, E is smooth, and E0 is a nodal
curve. We extend the definition of Bloch’s complex B(2) to this case by using
a relative complex B̄(2), and use Theorem 3.2 to show that the cycles p(u) �
p(1� u) die in H 4(Xan, B̄(2)). Using some results from transcendence theory, we
are able to construct examples of non-torsion cycles on X which not only die in
H 4(Xan, B̄(2)), but vanish as well in the absolute Hodge cohomology H2(X, Ω2

X=Q ).

Let � = 1� q: E � P1 ! X be the normalization. We define

K̄2 = Ker
�
��K2

jE�0�jE�1
�! K2jE

�
(4.1)

LEMMA 4.1. One has

CH0 (X) = H2(X, K̄2),

and the Chow group CH0 (X) fits into an exact sequence

0 ! H1(E,K2)

! CH0 (X) ��

�! CH0 (E � P1) = Pic(E)
 Pic(P1) ! 0.
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Moreover, the map  is defined by



0
@ X

x2E(1)

x
 �x

1
A =

X
x2E(1)

(x, p0(�x))� (x, 0).

Proof. As in the proof of Proposition 2.1, the map ��: K2 ! K̄2 is surjective,
and the kernel is supported in codimension 1. Thus �� induces an isomorphism
on H2.

On the other hand,

H1(E � P1,K2) = H1(E,K2)� H0(E,K1) [ c1(O(1)).

The term H1(E,K2) maps to 0 2 H1(E,K2) via the difference of the restrictions
to E� 0 and E�1, while c1(O(1)) restricts to 0 to either E� 0 or E�1. This
shows the long exact sequence associated to the short one defining K̄2 yields the
exact sequence in the statement of the lemma.

Finally, the value (x 
 �x) of the map is given by the boundary morphism
C � ! H1(X,O�X) induced by the normalization sequence

0 ! O�X ! q�O
�
P1

j0�j1
�! C � ! 0

on the right argument �x. The formula for  thus follows from Lemma 1.1.

Let Nm: H1(E,K2) ! C � be the norm map, defined by

Nm

0
@ X

x2E(1)

x
 �x

1
A :=

Y
x2E(1)

�x.(4.2)

We set

V(E) = KerNm.(4.3)

One has:

LEMMA 4.2. F2 CH0 (X) =  (V(E)) .

Proof. By the definition given in x2, F2 CH0 (X) is generated by the expres-
sions [(x, y)] � [(x, 0)] � [(0, y)] + [(0, 0)], with x 2 E(C ) and y 2 E0(C ) n f�g.
By the formula for  given in Lemma 4.1, this expression is (x 
 y � 0 
 y),
after identifying y 2 C � with p0(y) 2 E0(C ). Clearly V(E) is generated by the
elements of H1(E,K2) of the form x
 y� 0
 y, whence the lemma.
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Next, we want to map CH0 (X) to a relative version of S. Bloch’s analytic
motivic cohomology. So we define

B̄(2) := Ker
�
��B(2)

jE�0�jE�1
�! B(2)jE

�
.(4.4)

In particular, B̄(2) is an extension of

K̄2,an = Ker
�
��K2,an

jE�0�jE�1
�! K2,anjE

�
,

placed in degree 2, by ∆�(1), placed in degree 1. In other words, B(2) is the
pull-back of B̄(2) via the map ��: K2,an ! K̄2,an, and in particular, B̄(2) receives
the complex Γ0(2) as explained in Example 3.

Considering again the Leray spectral sequence attached to the identity�: Xan !
Xzar, we see that

K̄2,Z := Ker
�
��K̄2,an !H2(C =Z(2))

�
(4.5)

receives K̄2 and that the first map of the spectral sequence is then

H2(X, K̄2,Z) ! H 4(Xan, B̄(2)).(4.6)

In conclusion, we have shown:

LEMMA 4.3. One has a cycle map

 X: CH0 (X) ! H 4(Xan, B̄(2))

compatible with the cycle map

 E�P1 : CH0 (E � P1) ! H 4((E � P1)an,B(2))

on the normalization. Moreover,  X fulfills the conditions described in (3.1).

Proof. We just have to verify the condition (4) of (3.1). From the normaliza-
tion sequence

0 ! O�X ! ��O
�
E�P1

jE�0�jE�1
�! O�E ! 0,

one has a natural map

O�Xan

O�Xan

! K̄2,an

which obviously fulfills (3.1)(4).
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Now we can apply Theorem 3.2 to conclude:

THEOREM 4.4. The 0-cycles defined by the Steinberg curve on E�E0 die in the
analytic motivic cohomology H 4(Xan, B̄(2)).

Let K be a subfield of C . We next consider for any algebraic variety Z defined
over K, the cycle map with values in the absolute Hodge cohomology

Hm(Z,K2)
d log^d log
�! Hm(Z, Ω2

Z=Q )(4.7)

induced by the absolute d log map

O�Z
d log
�! Ω1

Z=Q .(4.8)

This cycle map is obviously compatible with the map , and with extension of
scalars.

Let E ! Spec K be an elliptic curve over a subfield K of C . We have the
exact sheaf sequence

0 ! OE 
Ω1
K=Q ! Ω1

E=Q ! Ω1
E=K ! 0,

which induces a two-term filtration F�Ω2
E=Q of Ω2

E=Q with F2Ω2
E=Q = OE
Ω2

K=Q .
This gives us the natural maps

1: H�(E,OE)
Ω1
K=Q ! H�(E, Ω1

E=Q )

2: H�(E,OE)
Ω2
K=Q ! H�(E, Ω2

E=Q ).

We have the norm map Nm: H1(E,K2) ! H0(K,K1) = K� as in (4.2), but
over K; we let V(E) � H1(E,K2) be the kernel of Nm (see (4.3)).

LEMMA 4.5. Let K be an algebraically closed subfield of C , E ! Spec K an
elliptic curve over K. Then the cycle map with values in absolute Hodge cohomology
maps V(X) to the subgroup 2[H1(E,OE)
Ω2

E=Q ] of H1(E, Ω2
E=Q ).

Proof. The kernel of the composition

Pic (E) = H1(E,K1)
d log
�! H1(E, Ω1

E=Q ) ! H1(E, Ω1
E=K) �= K

is the composition

Pic (E)
deg
�! Z � K,

hence the d log map sends Pic0 (E) to the subgroup 1[H1(E,OE) 
 Ω1
K=Q ] of

H1(E, Ω1
E=Q ).
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Take � 2 Pic0 (E), u 2 H0(E,K1) = K�, and let � = � [ u 2 H1(E,K2). Then

d log (�) = d log (� ) [ d log (u).

Since d log: K� ! Ω1
K=Q is just the absolute d log map, we see that d log (�)

lands in the image of the cup product map

h
H1(E,OE)
Ω1

K=Q

i

Ω1

K=Q ! H1(E, Ω2
E=Q ),

which is 2(H1(E,OE)
Ω2
K=Q ).

Since K is algebraically closed, the cup product Pic (E) 
 K� ! H1(E,K2)
is surjective, from which one sees that the cup product maps Pic0 (E)
 K� onto
V(E). Combining this with the computation above completes the proof.

From the surjectivity of the cup product Pic0 (E) 
 K� ! V(E) for K al-
gebraically closed, we see that the injection H1(E,K2) ! CH0 (X) sends V(E)
isomorphically onto F2 CH0 (X).

Let K be a subfield of C . We say that an element � of CH0 (X) is defined over
K if there is an K-scheme X0, an element �0 of CH0 (X0) and an isomorphism
�: X0

C ! X such that � = ��(�0
C ). From Lemma 4.5 and the compatibility of

d log with extension of scalars, we have:

LEMMA 4.6. Take K = C , and let � be an element of F2 CH0 (X) = V(E). If � is
defined over a field of transcendence degree one over Q , then � vanishes under the
cycle map to absolute Hodge cohomology.

COROLLARY 4.7. If E is an elliptic curve with complex multiplication, then there
are non-torsion cycles � 2 F2 CH0 (X) dying in the analytic motivic cohomology
as well as in absolute Hodge cohomology.

Proof. By the remark above, we may replace F2 CH0 (X) with V(E). Let Ē
be a model for E, with equation y2 = 4x3 � ax � b defined over a number field
K � C . Let ! = dx

y be the standard global one-form on Ē.
Choosing an isomorphism ĒC

�= EC defines the period lattice L! � C for !.
Choose a basis for L! of the form fΩ, �Ωg, and let t = e2�i� . Let

P: C ! C P1

be the Weierstraß P-function for the lattice L!.
The map �Ω�1: C ! C gives rise to the isomorphism of Riemann surfaces
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�an: Ēan
C ! Ean

t making the diagram

C
�Ω�1

- C

C �

exp
?

Ēan
C

(P ,P 0)

?

�an

- Ean
t

p
?

commute, i.e.,

p(u) = �an

�
P

� Ω
2�i

log u
�

,P 0
� Ω

2�i
log u

��
.

We let

�: ĒC ! Et

be the corresponding isomorphism of algebraic elliptic curves over C .
By [1, théorème 1], P( Ω

2�i log u) has transcendence degree 1 over Q̄ for all
u 2 N , u � 2. (We thank Y. André for giving us this reference). Fix a u � 2, let
K be the algebraic closure of the field Q (P( Ω

2�i log u)), and let x 2 Ē(K) be the
point (P( Ω

2�i log u),P 0( Ω
2�i log u)). Then x is a generic point of Ē over Q̄ .

We take

� := p(u) � p(1� u).

By construction, � = �(�K �K C ), where �K 2 H1(Ē,K2) is the element [(x) �
(0)] [ [1 � u]. Here [(x) � (0)] denotes the class in Pic (E) = H1(Ē,K1), and
[1 � u] denotes the class in H0(Ē,K1) = K�. Since K has transcendence degree
one over Q̄ , the class of � in the absolute Hodge cohomology of E vanishes, by
Lemma 4.6. By Theorem 4.4, � dies in the analytic motivic cohomology of E as
well. It remains to show that � is a non-torsion element of H1(EK ,K2).

We give an analytic proof of this using the regulator map with values in
Deligne-Beilinson cohomology.

Let Y be a smooth projective surface over C , and let NS (Y) denote the
Néron-Severi group of divisors modulo homological equivalence. Then Hodge
theory implies that

NS (Y) = f(z,') 2 (H2(Yan,Z(1)) � F1H2(Yan, C )), z 
 C = 'g,
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and that

NS (Y) \ F2H2
DR(Y) = ;.

We note that the map Pic (Y) 
 C � ! H3
D(Y ,Z(2)) induced by the cup product

in Deligne cohomology factors through NS (Y) 
 C � , and that the induced map
�: NS (Y)
 C � ! H3

D(Y ,Z(2)) is injective. Indeed,

H3
D(Y ,Z(2)) = H2(Yan, C =Z(2))=F2.

Now take Y = E � E, and let U � E be the complement of a nonempty
finite set Σ of points of E. Let [E � 0] be the class of E � 0 in NS (Y), and let
: C � ! NS (Y)
 C � be the map (v) = [E � 0]
 v. Let

�U: NS (Y)
 C � ! H3
D(E � U,Z(2))

be the composition of � with the restriction map H3
D(Y ,Z(2)) ! H3

D(E�U,Z(2)).
We claim that the sequence

C �

! NS (Y)
 C �

�U�! H3
D(E � U,Z(2))

is exact. Indeed, we have the localization sequence

�s2ΣH1
D(E � s,Z(1)) �s�s�! H3

D(Y ,Z(2)) ! H3
D(E � U,Z(2)) !,

the isomorphism H1
D(E � s,Z(1)) �= C � and the identity

�s(v) = (v), v 2 C � ,

which proves our claim.
In particular, let [Ξ] = [∆ � f0g � E] 
 v, where ∆ is the diagonal, v is an

element of C � which is not a root of unity, and [∆ � f0g � E] is the class in
NS (Y). Since [∆� f0g � E] is not torsion in NS (Y)=[E� f0g], we see that [Ξ]
has non-torsion image [ΞC (E) ] in

H3
D(E �C C (E),Z(2)) := lim

!
;6=U�E

H3
D(E � U,Z(2)),

where the limit is over nonempty Zariski open subsets U of E.
Let Ξ be the image of (∆�0�E)
v in H1(Y ,K2). Then [Ξ] is the image of

Ξ under the regulator map H1(Y ,K2) ! H3
D(Y ,Z(2)). Similarly, letting ΞC (E) be

the pull-back of Ξ to E�C C (E), [ΞC (E) ] is the image of ΞC (E) under the regulator
map H1(E �C C (E),K2) ! H3

D(E �C C (E),Z(2)). Thus, ΞC (E) is a non-torsion
element of H1(E �C C (E),K2) for each non-torsion element v 2 C � .



THE STEINBERG CURVE 803

Let ∆̄ be the diagonal in Ē � Ē, let �̄ be the image of (∆̄� 0� Ē)
 (1� u)
in H1(E,K2), and let �̄Q̄ (E) be the image of �̄ in H1(Ē �Q̄ Q̄ (Ē),K2). Clearly,
after choosing a complex embedding Q̄ � C , ΞC (E) (for v = 1� u) is the image
of �̄Q̄ (E) under the extension of scalars Q̄ (Ē) ! C (Ē) �= C (E), hence �̄Q̄ (E) is a
non-torsion element of H1(Ē �Q̄ Q̄ (Ē),K2).

Since x is a geometric generic point of Ē over Q̄ , there is an embed-
ding �: Q̄ (E) ! C such that x: Spec C ! Ē is the composition Spec C !
Spec Q̄ (E) ! Ē. Thus, � is the image of �̄ under ( id�x)�: H1(Ē �Q̄ Ē,K2) !
H1(E,K2), and hence � is the image of �̄Q̄ (E) under the map id���: H1(Ē �Q̄

Q̄ (Ē),K2) ! H1(E,K2) induced by the extension of scalars �.
Since the kernel of id��� is torsion, it follows that � is a non-torsion element

of H1(E,K2), as desired.

Remark 4.8. Going back to X = E�E0, where both elliptic curves are smooth,
we are lacking the transcendence theorem which would force the existence of a
cycle 0 6= � = p(u) � p(1 � u) 2 F2 CH0 (X) dying both in H 4(X,B(2)) and in
absolute Hodge cohomology.
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804 HÉLÈNE ESNAULT AND MARC LEVINE

[12] Yu. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a local ring, and Milnor’s
K-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 121–146.

[13] D. Quillen, Higher algebraic K-theory, I, Algebraic K-theory, I: Higher K-Theories (Proc. Conf., Battelle
Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin,
1973, pp. 85–147.

[14] W. Raskind and M. Spieß, Milnor K-groups and zero-cycles on products of curves over p-adic fields,
Compositio Math. 121 (2000), 1–33.

[15] A. A. Roitman, Γ-equivalence of zero-dimensional cycles, Mat. Sb. 86 (1971), 557–570.
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