LECTURES ON ALGEBRO-GEOMETRIC CHERN-WEIL
AND CHEEGER-CHERN-SIMONS THEORY FOR
VECTOR BUNDLES

SPENCER BLOCH AND HELENE ESNAULT

ABSTRACT. An algebraic theory of differential characters [16], [17]
is outlined. A Riemann-Roch theorem for regular flat bundles,
using a weak form of these classes, is described. Full details of the
proof are available in a manuscript on the web [6].

1. CONNECTIONS AND CHARACTERISTIC CLASSES

1.1. Introduction. The purpose of these two lectures will be to de-
scribe some work on the general topic of algebro-geometric Chern-Weil
and Cheeger-Chern-Simons theory for characteristic classes of vector
bundles. The trick is to cling to algebraic methods (K-theory, the
Zariski topology, algebraic differential forms,...) so the resulting the-
ory gives information about algebraic cycles, while at the same time
drawing inspiration from the beautiful calculus of differential forms and
connections lying behind the differential geometry.

We start with an algebraic variety X which will always be taken
smooth and quasi-projective over an algebraically closed field £ of char-
acteristic 0. Let E be a vector bundle on X. We suppose given an
algebraic connection on F, that is a k-linear map

(1.1.1) V:.E—= E®Qx,
satisfying the Leibniz rule
(1.1.2) V(f-e)=fV(e)+edf

for f a function and e a section of E. Note that in the C* category
a partition of unity argument can be used to give any bundle E a
connection. Algebraically, if e.g. X is projective, most bundles E will
not admit a connection and our ship would seem to have sunk before
leaving the harbor. In fact, we may dodge that bullet as follows.
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2 SPENCER BLOCH AND HELENE ESNAULT

Proposition 1.1.1. [1] There exists a class
At(E) € HY(X,rmHom(E,E) ® Q)

the vanishing of which is necessary and sufficient for E to admit a
connection.

Proof. As the difference of two connections is Ox-linear (see (1.1.1) and
(1.1.2)), connections on E form a torsor under rmHom(E, E ® Q).
For more detail, one can argue as follows. Let I C Ox«x be the ideal
of the diagonal. Recall

QO = 1/1% dr—r®1—-1®x mod I?
Write P := Oy x/I?% so we have an exact sequence
(1.1.3) 0= Q% =P —0x —0

Note P has two Ox-module structures pulling back via the two pro-
jections X x X — X. Tensor (1.1.3) with E via the left Ox-structure:

(1.1.4) 0= E®o, Ok = E®o, PS5 E—0

and view this as a sequence of Ox-modules via the right Ox-module
structure on P. The middle term F ®p, P is the vector bundle of
1-jets of sections of E. The evident splitting s(e) = e® 1 is not an Ox
splitting. In fact, it is straightforward to check that there isa 1 — 1
correspondence [11]

(1.1.5)
{Ox-linear splittings ¢ of (1.1.4)} <> {connections V : E — E ® Q% }

given by ¢t — V := s —t. The proposition follows by considering the
sequence obtained by rmHom(E, (1.1.4))

(1.1.6)
0 — rmHom(E, E® Q) — rmHom(E,E® P) — Hom(E,E) — 0

and defining conn(E) = d(Idg) € HY(X, Hom(E,E ® Q%)). H

Corollary 1.1.2. If X s affine, any vector bundle E admits a con-
nection.

Proposition 1.1.3 (Jouanolou). Let X be quasi-projective. There ex-
ists m: X — X with the following properties:

1. X is an affine variety.

2. Locally over X, X =2 X x AN for some N.
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Proof. Embed X — Y with Y projective. Blowing up Y — X, we may
assume Y — X is a Cartier divisor. Since the complement of a Cartier
divisor in an affine scheme is affine, we reduce in this way to the case
X projective. By pulling back, it suffices to do the case X = PV. Let
X' be the dual projective space, and let I C X’ x X be the incidence
correspondence. Define X := X’ x X — I. O

The crucial point is that because of condition 2,
™ CH*(X) = CH*(X),

i.e. the two varieties have the same motive. Thus, we may pull back
our bundle to X and assume F admits a connection.

In what follows we will consider two sorts of questions. First, for an
arbitrary vector bundle, we develop Chern-Weil and Cheeger-Chern-
Simons theory for an arbitrary connection on a pullback to an affine
as in proposition 1.1.3. Second, when E comes with an integrable con-
nection, we discuss Riemann-Roch theorems and results about chern
classes in the Chow group.

1.2. Differential Characters. We start with the C*> case (compare
[33]). Let M be a C*-manifold and let E be a C*-vector bundle on
M. Write

S (M, A) := C* singular chains on M with values in the abelian group A
Z(M, A) C Sg(M, A) := closed chains
(1.2.1) S (M, A) :=Hom(S.(M,Z), A)
A (M) := C*> C-valued forms on M
A(M)y:={we A(M) | dv =0 and /w €Z,NyeZ(MZ)}

v
I: A(M)— S(M,C) integration map

The group of differential characters of degree k, f-\Ik(M, C/Z), is de-
fined by the fibre product

H*(M,C/Z) ——  Hom(Z,(M,Z),C/Z)
(1.2.2) 1 . Lx—=xo00d
AR+ Sk+1(M, C) restrict Sk+1(M, C/7)

(1.2.3) H*(M,C/Z) =
{(a,w) € Hom(Z,(M,Z),C/7) x A**" | a0 d = restrict o I(w)}.
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Proposition 1.2.1. One has an exact sequence

a,w)

0 — HMM,C/Z) — H*M,C/z) “27% 4+ - ¢
Proof. Straightforward. O

Now let V be a C*-connection on E, and let N = rank(E). Let
(1.2.4) F =V?¢c Hom(E,E® A*(M))

be the curvature of V. Let P € Sym?(gly) be a polynomial which is
invariant under the adjoint action. The central point of Chern-Weil
theory is that P(F) € A%’(M) is closed and represents the character-
istic de Rham class in cohomology associated to E and P. Write D

for a diagonal matrix with diagonal entries z;,...,zy. If P(D) is the
aP

p-th elementary symmetric function (resp. P(D) =3}, 1), P(F) rep-
resents the p-th chern class ¢,(F) (resp. the component of the chern
character ch(F) in cohomological degree 2p). Cheeger-Chern-Simons
theory refines this:

Proposition 1.2.2. With notation as above, assume further that the
characteristic class defined by P is integral. Then there exist canoni-
cally defined classes ¢(P, E, V) € H* (M, C/Z) lifting P(F) € A2(M),.
These classes are functorial for pullbacks and additive for exract se-
quences.

Proof. Omitted. O

Now we return to the case X, F algebraic and V an algebraic con-
nection. Suppose for a moment F is a line bundle. Define

(1.2.5) AD'(X) = H' (X,ar, 0% “¥ QL 5 0% — ..)
AD (X) = HY (X0, 0% “E QL)

(Here O% is the Zariski sheaf of invertible functions, and AD stands
for “algebraic differential character”.)

Proposition 1.2.3. 1. Zl\)l(X) is isomorphic to the group Pic¥ (X)
of isomorphism classes of line bundles with connections on X.

2. ADY(X) is isomorphic to the group Pic®V(X) of isomorphism
classes of line bundles with integrable connections on X.

3. Let T'(X,0%)o denote the group of global closed algebraic 2-forms
w on X such that [w] € H%x(X) is the class of an algebraic divisor.
Then there 1s an exact sequence

0 — ADY(X) = AD (X) = T(X, 0% )y — 0.
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4. Assume k = C and X is projective. Then
ADY(X) = H'(X,man, C/Z277).

Proof. Let (L, V) be a line bundle with connection on X. With respect
to an open cover {U;} trivializing L, we have transition functions

aij € (U NU;, 07)
and 1-forms w; = V(1;) € I'(U;,QY). The data {a;;,w;} represent a

1
class in AD (X). The assertions of the proposition are straightforward
from this. O

The idea to define the higher AD-groups [15], [17] is to work with
the higher Milnor K-sheaves

(1.2.6) Ky = Image((o;)m = Kgﬂﬂmr(k(X)))

These sheaves are less abstract than the Quillen K-sheaves. In [30)]
they are shown to satisfy many of the same properties. In particular,
one has a Gersten resolution, and

(1.2.7) H"(X,K,) = CH"(X).

There is a dlog map

(128)  dlog: K, — Q% dlogla,....z,} = dTL Ao d:

We define

(1.2.9) AD"(X) = B (X, K, "5 0% —» 0! )
an” dlog

AD (X) =H"(X,K, = Q% — Q¥ — ... = Q¥
Write
(1.2.10) T(X, Q%) =
ker (F(X, 02 osed) — H(X, Q" — "1 .)/dlog H"(X, /cn))
= {w € T, O goa) | [w] € B (X, 2377)

is the class of an algebraic cycle}

Proposition 1.2.4. 1. There is an exact sequence

0 — AD"(X) — AD (X) — [(X,0%); — 0
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2. Let (E,V) be a rank N algebraic bundle with connection on X, and
let P be an invariant polynomial on gly as above. Then one has defined
functorial characteristic classes

¢(P,E,V) € AD"(X) — P[F] € T(X, Q2.

3. When k = C, there is a canonical map of exact sequences from
the above sequence to the classical differential character sequence from
proposition 1.2.1. This map carries the algebraic classes from 2 to the
classes defined in proposition 1.2.2.

Proof. For full details the reader is referred to [17]. Let us sketch one
of the constructions of the characteristic classes which uses a “Weil
algebra” construction due to Beilinson and Kazhdan [2]. First, we
push out the sequence (1.1.6) along the trace on the left to get an
exact sequence (defining QY ;)

(1.2.11) 0— Q — QY , — End(E) — 0

We consider the composed differential O L) QkE and build a

differential graded algebra (2% 5 subject only to the relation that i(f) =
df for f € Ox. Even the algebra structure here is tricky; % 5 is not
simply an exterior algebra on Q]XE One has as graded algebras

(1.2.12) /\ 9k x ® Sym(End(E)) = Q5

where End(FE) has graded degree 2. (To see this, think about the case
X=point, Q% = (0). The universal DGA structure in this case makes

Q% , = ext. algebra on complex in deg. [1,2] End(E) = End(E).)
One defines a Hodge filtration
(1.2.13)
FPQ% o= Image( Datb>p /\“Qﬁ(ﬁ ® Symb(End(E))> — Q% .
With respect to the Hodge filtrations, the natural map
(1.2.14) (%, Q7P) — (x5, FPQ% )

is a filtered quasi-isomorphism.
A connection V on FE is equivalent to a splitting of (1.2.11) and
hence also (1.2.14):

Ox — Qkxp — NQkp @ End(E) —
(1.2.15) I Y UV e
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The curvature V? is the obstruction to compatibility of this splitting
with the Hodge filtration.

Let N = rank(F). Invariant polynomials in Sym?(End(E)) define a
subcomplex with trivial differential

(1.2.16) S = (Sym(kFV[-2])%Y = Qk

Note S? (viewed as a complex placed in degree 2p) is generated by
invariant polynomials of degree p and maps to FPQ% p (viewed as a
complex beginning in degree p). A universal argument on BG Ly shows
that characteristic classes for E associated to invariant polynomials of
degree p can be defined in

(1.2.17) HP (X, Cone(K,[—p] & ¥ — F”Q}’E)[—ID

Finally, the splitting (1.2.15) induced by a connection carries S —
F?Q%, so we get characteristic classes

(1.2.18) &(P, B, V) € H> (X, Cone(K,[—p] & F¥Q% — F”Q})[—l])
o~ Zl\)p(X).
If V is integrable, the map on S? is zero and the classes fall in
(1.2.19) ADP(X) = H? (X, Cone(K,[—p] — F”Q})[—l]).
O

1.3. Cheeger-Chern-Simons Classes. This is all a bit abstract, but

there are much more down to earth variants on the differential character
construction which can be studied locally. Examining the complexes

(1.2.9) defining the AD groups, one sees there are vertical maps and
commutative diagrams:

0 — AD'(X) N AD'(X) 5 T(X,0%)p — 0

(1.3.1) |= |= |=

0 — F(X,Qﬁ(’cl/dlog(O;()) — I'(X, QL /dlog(O%)) — N(X,9%)0 — 0

We write H" := Q’)"(’d/dQ”X’]. For p > 1, the diagram corresponding
to (1.3.1) becomes

0 — ADP(X) — AD" (X) — T(X,93%) — 0

(132 | | |

0 — T(X,H>~ 1) — T(X, Q1 /d23P %) — (X, 0% )
d
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Note when p > 1 the vertical arrows are no longer isomorphisms. We
will write

o CETIT (X, QP AP p > 2.

For an invariant polynomial P of degree p, there are classes
(1.3.4) w(P,E,V) € HZ,(X)

deduced from the AD classes via the vertical maps in (1.3.1) and
(1.3.2).

Proposition 1.3.1. Let n = Spec (k(X)) Iy X be the generic point of
X. Then the pullback maps j* : Hoby(X) — HP.(n) are injective.

Proof. When p = 1 this amounts to the assertion that a logarithmic
1-form de is regular along a divisor D if and only if D is neither a zero
nor a pole of f. For p > 1 it follows from the Gersten style resolution

8]
(1.3.5) 0—H" — j.(Hpr(n) — ...
where H" = Q" /dQ" 1. O

Thus, as sections of a sheaf, the w(P, F, V) may be calculated locally.
Further, by the above proposition, they are determined by their value at
the generic point. One of the main results in [5] is that these classes can
be calculated locally using the connection matrix as in Chern-Simons
theory.

Proposition 1.3.2. Let U C X be non-empty and open such that
E|\U = O%N. Let A be the corresponding connection matriz of 1-forms
on U. For an invariant polynomial P of degree p > 2 define

1
TP(A):=p / P(AANF(@tA)P Ydt; F(tA) :=tdA — AN A.
Jo
then
ITP(A) = P(F(4))
and
TP(A)|y represents w(P, E|y, V) € T(U, Q%' /dQ* 2 = HZ,(U).

Proof. The first assertion is the basic result of Chern-Simons theory.
The reader is referred to theorem (4.0.1) in [5] for the proof of the
second assertion. ]
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Example 1.3.3. Suppose E is a rank 2 bundle with structure group
SLy, and V is a connection which is written on some open U via its

connection matrix
a B
v —«

after the chhoice of a basis. Then for the invariant polynomial P(M) =
tr(M?) the Chern-Simons class w(P, E, V) is represented by

2acda + Bdy + vdB — daBy € T(U,QP).
If V is flat, that is V? = 0, then
da = [v,dy = 2va,df = 2af
and thus w(P, E, V) is represented by
2ada € T(U,H?) € Hig(U).

Important question: Do there exist examples with X projective where
this class is not trivial, i.e. where ada is not an exact form in Qi(x)?

Example 1.3.4. Letn:Y — X be a finite étale morphism, and define
E = 7.0y with the natural (Gauf-Manin) connection V. Then the
class associated to P(M) = tr(M) is calculated locally as follows. We
may suppose X = Spec (R), Y = Spec (R[t]/(f(t)), where f is a monic
polynomial. Write disc(f) for the discriminant of f. Then

1
w(trace, 7,0y, V) = [idlog(disc(f))] € T'(Spec (R), Q. /dlog(O)).

This class is trivial if and only if the discriminant is a square in R.
Said another way, if we factor f =1][(t — r;), then the discriminant is
[1iz;(ri —7j) and the class is represented by dlog(T;;(ri —r;)).

Finally, we want to explain the relation between these classes and the
Griffiths group of algebraic cycles. For simplicity we will stick to the
case of codimension 2. Analogous results are available in higher codi-
mensions but the appropriate equivalence relation on cycles is defined
via a spectral sequence and the business becomes more technical.

Let X be smooth and projective over C. For an abelian group A,
write H"(A) for the Zariski sheaf associated to the presheaf U —
H"(Uan, A). Thus, the H™ above is H"(C). One has a spectral se-
quence of Leray type associated to the “continuous map” X,, — X,

(1.3.6) BP9 = HP(X, 0, HO(A)) = HPV(X,0, A)
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The analysis of this spectral sequence carried out in [8] shows that one
gets an exact sequence (Z(2) :=7Z - (2mi)*.)

(1.3.7) HY(Xan, Z(2)) 5 T(X, HYZ(2))) B H* (X v, HA(Z(2)))

Ly HY(Xon, Z(2))

Further, H?(X,a;, H*(7Z)) is identified with the group of codimension 2
algebraic cycles modulo algebraic equivalence, so Griff?(X) := ker(b)
is the Griffiths group of codimension 2 algebraic cycles homologous to
zero modulo algebraic equivalence. Write H3(X,7Z(2)) := image(a), so
we get an exact sequence

(1.3.8) 0= H3(X,7Z(2)) = D(X, H*(Z(2))) — Griff(X) — 0.

this can be interpreted as an exact sequence of (possibly infinite di-
mensional) mixed Hodge structures, where the Griffiths group is given
a trivial mixed Hodge structure (direct limit of Hodge structures of the
form @ Z(0) + torsion).

Now let (E, V) be a vector bundle of rank > 2 with a flat connection
on X. We write

w,(E,V)=w(P,E,V)

where P is the invariant polynomial associated to the p-th elementary
symmetric function. Thus ws is associated to

P(M) = 3 (~tr(M?) + tr(M))?)

Let z = co(F) be the second Chern class, which we interpret as an
element in Griff?(X) ® Q. Tensoring (1.3.8) with Q and pulling back
to the fibre over Q - 2z yields an exact sequence of finite dimensional
@-mixed Hodge structures, which we write

(1.3.9) 0— H*(X,n, Q(2) = & — Q) = 0

The Hodge structure on the left is pure of weight —1, so the sequence
splits canonically when tensored with R. That is, there exists a unique
w € FYE, ® R lifting 2.

Proposition 1.3.5. Under the inclusion £, @ R C T'(X, H*(C)), the
above element w lifting z is identified with wy(E,V). In particular,

wo(E, V) =0 < c(E) =0 in Griff(X) @ Q.
Proof. This is theorem (5.6.2) in [5]. O
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2. RiEMANN-ROCH

2.1. Introduction. In this lecture we will explain a sort of Riemann-
Roch theorem for bundles with flat connections having regular singular
points. A preprint with details of these results is on the algebraic
geometry server [6]. Such results extend to the irregular rank one case
[7], but we don’t address this subject in those notes. We just say that
then, the top Chern class of differential forms, which in our theory
plays the role of the Todd class, then depends on the connection.

A bundle with a flat connection is an example of a holonomic D-
module, and very probably the correct Riemann-Roch theorem should
be formulated in that context (possibly including also the hypothesis
of regular singular points.) One has various Riemann-Roch theorems
for D-modules ([27], [23]) but in the context of flat connections these
give little more than the Euler characteristic of the underlying coherent
sheaf. On a projective variety they depend only on the rank of the local
system. A model for a more precise theorem has been proven in the
analytic category by Bismut and Lott [3]. A Riemann-Roch theorem
with values in the AD-classes explained in the previous lecture could
be expected to yield an algebraic proof of the Bismut-Lott result. For
technical reasons, however, the algebraic result we want to explain is
currently limited to the Chern-Simons classes in Hf ¢(X).

Definition 2.1.1. Let f : X — S be a flat morphism of smooth vari-
eties. Let Y C X and T C S be normal crossings divisors, and assume
that set-theoretically f~'(T) C Y. The data {f : X —- S,Y C X,T C
S} is said to be a relative normal crossings if

(2.1.1) Qys(log(Y)) := Qx (log V) / f*Qg(log T)
is locally free of rank d = dim(X/S).

Let Z; denote the components of Y not lying in f~'(T'). One has
residue maps

(2.1.2) resy, : Q]X/S(log(Y)) — Oy,

which may be viewed as “partial trivializations” of Qﬁ(/s(log(Y)). Us-
ing ideas of T. Saito [32] one can define relative top chern classes

(2.1.3)  ca(Qx/s(log(Y)), {resy,}) € CHYX,Z,) :=
Hd(X, Kd,X — Kd’z(l) — Kd’z(Q) — .. )

Here as before K, denotes the Milnor K-sheaf, and Z( is the i-fold
intersections in Z = |J Z;.
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We continue to assume {f : X — S|Y C X,T C S} is a relative
normal crossing. Let F be a locally free sheaf on X, and let

V:E— E®Q%(og(Y))

be a flat connection with logarithmic poles along Y. As in the first
lecture, such a bundle with connection supports C'S-classes with log
poles. For the Riemann-Roch theorem we will need only the “Newton
classes”. Let P be the invariant polynomial of degree p which maps the
diagonal matrix with x; entries on the diagonal to Y  z¥. One defines

(2.1.4) Nw,(E,V)=w(P,E,V) € HZ (X (logY))
_ JU(X, Qk(logY)/dlog(j. 0% _y)) p=1
T (X, QP log V) /AP (logY)) p > 2

Assume further that f : X — S is projective. The partial trivializa-
tion built into the class (2.1.3) compensates for the log poles in (2.1.4),
so one has a well-defined product-pushforward

(2.1.5) f. (pr(E, V) - cd(Qk/S(log Y), reszi)> e HZ.(S(logT)).

We can use the classical Gauf.-Manin construction to push forward E
as follows (here again it would be much more convenient to work with
D-modules). Consider the diagram of complexes (with differentials
defined using the flat connection V)

(21.6) 0= E® QY s(logV)[-1]® Q(logT) = E @ Q% (log V')
— E®Q/g(logY) =0

The boundary map puts S-connections on the cohomology sheaves

(2.1.7) Vau : R fupr(E) = R f.(E ® Qs (logY))
= R f.pr(E) ®os Q5(log T).

these connections are again integrable, and one can try to relate their
CS-classes to the C'S-classes of F on X. (Warning: because of log
poles, the cohomology sheaves are not necessarily locally free on S.)

One further notation: write F := E—1k(E)Ox. One extends relative
de Rham cohomology and characteristic classes to such virtual bundles
with connection by additivity.

Theorem 2.1.2 (Riemann-Roch for flat bundles). With notation as above

(d = dim(X/S)) we have

wp(B foon(B), Vau) = (~1)4f. (cal@ s log(¥)), {resz, })wp (. ) ).
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Remark 2.1.3. 1. Notice this Riemann-Roch has a very simple shape.
wy(R* fupr(E), Vaum) is determined by w,(E, V). This should be con-
trasted with Riemann-Roch for coherent sheaves, where the inhomoge-
neous nature of the Todd class Td(Tx,s) results in a mizing of degress
of characteristic classes. Essentially, for flat bundles one can think one
18 taking the chern character 0fE®Q’;(/S. The homogeneous result then

results from the identity

(21.8) (=) (O jg) = Td(Txys) - Y (—1) ch(Qy)s).

i

2. When p = 1, this result fizes the isomorphism class of the local
system determinant of cohomology

(det(R* f*DR(E))v VGM)

For p > 2 the CS-classes are rather mysterious. Using non-flat con-
nections (see 4.), one can give examples where they are non-zero, but
the situation is far from being understood.

3. This Riemann-Roch theorem only gives information for virtual bun-
dles of rank 0. It would be interesting to have a “Noether’s theorem”
calculating the Nw,(R* f.pr(Ox). Suppose, e.g., S is a curve, and the
morphism [ degenerates over a divisor T C S. The class Nw, repre-
sents the determinant det of de Rham cohomology, which is a rank 1
local system on S — T. One can show (e.g. by looking at the represen-
tation on cohomology with Z-coefficients) that det? is trivial, so

(2.1.9)  det:=detRf,(C) € H'(S — T,%/22) > H(T,7.)27.).

One question would be for t € T to compute the t-component of d(det)
in Z/2Z in terms of characteristic classes supported on the singular
fibre f71(2).

4. The Riemann-Roch theorem proved in [6] is somewhat more precise
in that the curvature V?* is assumed to be basic, i.e. in End(E)® f*Q%,
rather than actually zero.

2.2. Sketch of Proof. We want to give some indication of the basic
ideas of the proof of theorem 2.1.2.

2.2.1. Step 1. Since the C'S-classes are determined at the generic point,
one reduces to the case S = Spec (F) is the spectrum of a function
field. By a Lefschetz pencil argument, one reduces further to the case
X =P}, E=®0pi(m;), m; > 0. The Nw, take values in a Q-vector
space (except for Nw;, which requires a special argument) so we can
replace S by a finite cover and assume the connection has logarithmic
poles along a divisor D = {ay,...,as} C P'(F). One shows further
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that one is free to augment D by adding points where the connection
does not have log poles. In particular, we may assume oc € D but V
does not have a pole at oo.

2.2.2. Step 2. We may assume E = OF"". In the original version of the
paper, this reduction contained a serious error, which was pointed out
to us by O. Gabber. Thus, for the sake of credibility, I will give the
argument here in full. Identify F = @O(m; - 00), and define

E=@0re @ o(mi—1)-)CE
m;=0 m; >0
Lemma 2.2.1. With notation as above, E' C E is stable under V.
proof of lemma. The assertion is invariant under an extension of F,
so we may assume D = {aj,...,a5,00} with all a, € P(F). Let

1;, 1 < j <r be the evident basis of E on A' = P —{oo}, and let z be
the standard parameter on P. An element v € I'(P, O(n)®%Qy, (log D))
F

for n > 0 can be uniquely written in the form

0 n n
ZA,,dlog(z —ay,) + Z 2'n; + ZC’j(z —ay)’dlog(z — ay),

v=1 i=0 j=1
with A,,C; € F and n; € Q. Since V(2™1;) € T(E ® Qp, (log D)),
. . L
we may write

my—m,

(221) V(1) =Y L® [ Z iz~ a) + Y Adlog(z — a,)

mp—m;

+ Z C’ff(z —ay) dlog(z — ay)
=1

If m; > my, the sums over 7 and ¢ on the right are not there. If
m; = my, the sum over / is absent. With respect to (2.2.1) we have
the following facts:

(2.2.2) CEmTm =

For m; > my,

(2.2.3) Y Aldlog(z — a,) € T(P', Q4 (log D)((my — m;) - o0)).
(2.2.4)
ZAf”dlog(z —a,) € (P, QTL%/F(log D)((my —m; — 1) - 00)).
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To check (2.2.2) we may suppose my > m;. The composition

(2.25) O(m;) = E > E@ Qi (log D) » E@ QL .(log D)
— Eloe = O(my) |0 = O(my - 00) /O((my, — 1) - 00)
maps
(2 a))™1; = CF™ ™ (2 — ap)™ (mod O((my, — 1) - 00))

By assumption, the connection has zero residue at infinity, so this is
zero. The inclusion (2.2.3) follows because

V((z—a1)™1;) =
e ™1 [ 1 e~ A
+m;(z —a1)™1; @ dlog(z — ay)

is assumed to extend across infinity. finally, (2.2.4) holds because of
the vanishing of the residue (2.2.5). In the case m; > my, the residue
map is

1, — ((z — )™ Z A?”dlog(z - a,y)> ‘
Now view (2.2.1) as defining the connection matrix B = (b}) for V

on P — {oc}. The above assertions can be summarized as follows. For
my > Mm;

o

B e T (P!, /U ((mi — my) - 00) + Qb (log D) ((my — m; 1) - o0))
and for n € Qp and my < m;,
S F(P],Qsp%(logD)((mk —m;) - oo))
bf € F(PI,QTI%/F(logD)((mk —mj—1)- oo))
nAYE €T (0L @ QL (log D)(mi —mj — 1) o) ).

It follows that whenever m; < my; we have
bk € T(P', Qp © Qo o(log D) (my, — m; — 1) - 00)).

Vanishing of ™™ and the trivial curvature condition
k jpk
dbf =" bk
J
implies

dbf = (mk — mz)nf’mrml(z — aﬂmk*midlog(z — U,]) + €
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for e € F(]P’l : Q]%]F(log(D))((mk —m; — 1)00))) It follows for my > m;

that 7™ ™ = 0 as claimed.
It follows now from (2.2.1) that V stabilizes £’ C E, proving the
lemma. O

The lemma implies reduction to the case £ = @Op1 by induction on
max{m,}.
2.2.3. Step 3. We continue to assume F = @Op with P := P}, and

connection given by

(2.2.6) V(1) =Y A1 dlog(z — a,) Zlk@;nj

kv

we define an F-linear splitting o of the natural reductlon from absolute
to relative E-valued 1-forms

(2.2.7) o:T(P, QP/F(logD)) — ['(P, Qp/k(logD));
0(1x ® (2 —a1)’dz) =1, ® (z — a1)"d(z — ay),
o(ly ® dlog(z — a,)) = 1 ® dlog(z — a,)

Now consider the diagram

(2.2.8)
I'(E) = I'(E)
+ Vi 1 Ve
[(E)® Ok — T(E®@Qb(logD)) 5 [(E®Q,(logD))
1Vpr®l 1V,

I'(E®Qpp(logD) @ Qp= T(E® Q3(log D)/Q7)
Here V; and V5 are the absolute connection maps. Define
(2.2.9) ¢ :=V, —-0Vpp; ¥=-Vyo
The diagram

I'(E) — I'(F)®Q}
(2.2.10) V””J Jvm@]

(B ® Q. (log D)) — T(E® Q) (log D)) @

represents (/=2 (—1)'(R [ (E®Qp p, Vir), GM! '(V)) in the Grothendieck
group K(F) of F-vector spaces with connection. We see from (2.2.6)
that

(2.2.11) ®(1;) = (V — oVer)(1 Zlk®n7
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Also
(2.2.12) ¥(1, ®dlog(z —a,) = —=V(1,) Adlog(z — a,) =

= < - ZA_’;le ®@dlog(z —a;) — 1 ® 77;“) Adlog(z —a,) =
kT

= — ZA?le ® (dlog(z —a;) — dlog(z — a,y)> ® dlog(a, — a,) +

kT
+ Z 1, ® dlog(z — ay,) ® 1)}
k
Define
— Ak dlog(a, — a,
(2.2.13) By = Ay dloglay - ar) e
n; + 20# Aj dlog(a, —ag) T=v
Then
(2.2.14) U(l; ® dlog(z —a,)) = Z 1; ® dlog(z — a.) A BL.

kT
The left hand side of the Riemann-Roch formula for E (in this case
there is no need to subtract off O®™*(¥)) is given by
i=2
(2.2.15) Nuwn (O (- DR f(E® Qpp, Vipyr), GMI(V)))
i=0

= Nw,(®) — Nw, (¥).

2.2.4. Step 4. We next make some observations about Nw, (¥). Define
B! (resp. B) to be the N x N matrix (resp. § x § matrix of N x N
matrices)

(2.2.16) By = (B} )i<jr<n  (resp. B = (B])i<vr<n)-

Lemma 2.2.2. Let M(B) = B"(dB)"™ --- B™*(dB)"* be some (non-
commuting) monomial in B and dB. Then

T (M(B)) = 3 Tr (M(B])).

Proof. Write as above

M(B);, = (M(B)j})i<jncn  (vesp. M(B) = (M(B)])1<vr<n)-

v

Then TraCG(M(B)) = ZT Trace(M(B):) NOW
M(B).= > BIBZ---Bi! dB;"-.-dB]

Trog—1"
T1lyeeny Trog—1
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For v # 7 we can write B] = CJdlog(a, — a,). Possibly introducing
some signs, the dlog terms can be pulled to the right. Suppose, among
{m,72,...,Tyy,—1} we have 7;,...,7;, # 7 and all the other 7, = 7.
Then that particular summand on the right multiplies

dlog(a, —ar ) A---Adlog(ar,, —a;)=0.

(Note &1 + -+ + Zq11 = 0 = dxy A ... Adxey; = 0.) Thus, one one
term on the right is non-zero, and

M(B); = M(B7),

T

proving the lemma. U

Since Nw, (¥) is a sum of terms Tr (M(B)) as in the lemma, we
conclude

1)
(2.2.17) Nuw, (¥) = Nuw,(T,),
7=1

where ¥ is the connection on F®¥ given (with notation as above) by

N
L= D 1e® (g + Y Ajdlog(ar — ag))
k=1 O#T

The connection matrix for ¥, is thus

(2.2.18) d + Z Aldlog(a, — ag)
0F£T

where ® = (1) and A? = (A%7).

2.2.5. Step 5. We now consider the right hand side of the Riemann-
Roch formula, which in our case takes the form

—Nw,(FE,V) - cl(Q}j/F(log D), resp)

Since Q}D/F(log D) has rank 1, the relative chern class can be computed
in a standard way to be the divisor of any meromorphic section w
of the bundle such that w is regular along D and resp(w) = 1. We
shall assume that 0 ¢ D. (This is easy to arrange by applying an
automorphism to P.) We take for our meromorphic section

4
(2.2.19) w::<zz_1a —5erl>dz.
T=1 T
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Clearing denominators

(2.2.20)

___fG) a z—a z—a
w_zH(z—a) Z TH 2 H( )

T=1 0FT

Writing formally F = [[_,(z — £;), we get
¢1(Qpp(log D), res) = (w) = Y (5) — (0).
2.2.6. Step 6. We shall need to compute

1)
(2.2.21) Y Nwy(E,V)|.ep, + Nwy(E, V)|.—g

and compare the answer to Nw,(®) — Nw,(¥) (cf. (2.2.11), (2.2.13),
(2.2.15), (2.2.17), (2.2.18)).

Proposition 2.2.3. Suppose given {ji1,...,j.} C{1,...,6}. Then
(w) =

Zdlog —a;,) A---Adlog(B; — a;,) — dlog(a;, ) A - - Adlog(a;,) =

dlog(z —aj,)N---Ndlog(z — aj,)

= Y dlog(a, —a;) A+ Adlog(a, — ay,).

Proof. To simplify notation we consider the case j, =k, 1 <k <.
Lemma 2.2.4.

Zdlog i —ay) A Adlog(B — ay) =

—

—Z Y~ 'dlog(F(a;)) A dlog(a; —ai) A--- Adlog(a; — aj) A---

- Ndlog(a; — a,).

proof of lemma 2.2.4. We can argue universally. Consider the rings

A=Qlz1,.-.,25t1...,t,] C B=Ax x—i—Z% =

%Q[zl,...,z,;,l,tl...,tr,X].
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Note that both A and B are polynomial rings over Q. Let L. C M be
their quotient fields, and consider the symbol

S={X—t,..., Xt} e K, (M).

We will compute the norm, N(S) € K,(L). Note the tame symbol is
given by
tame(S) = > (—1)F Mty — 1, fe — Tt — 1 ey,
k=1
Let 7 : Spec (B) — Spec (A). We have a map on divisors
T (X —t; =0) = (F(t;) =0)
with degree 1, so

tame(N(S)) = N(tame(S)) =

=3 (DMt —tiot —t e t— B P =0 =

_ tame(Z(—U’“*l{F(tk),tk Y T S S tr}).
k=1
(The last equality holds because F'(t;)/F(t;) = 1 on the divisor t; =
tr.). Since L is purely transcendental over Q, this determines N(S)
upto constant symbols, which can be ignored because we want to apply
dlog. Specializing the z; to the coefficients of our F' and the ¢; — q;
and applying dlog, we deduce the lemma. O

Lemma 2.2.5.

dlog(b) A--- Adlog(b,) =

5
=Y (=1)"'dlog(by) A dlog(by — by) A --- A dlog(by — b)) A---
k=1

- ANdlog(by — by).
proof of lemma 2.2.5. As above, we argue universally and prove the
corresponding identity for symbols. For this it suffices to compare the
images under the tame symbol. At the divisor b; — b, = 0 for j < k we
need

0= (=1)"*{bg, by — by, - bg — by, - b — Do - - b — by Mo, +

+ (=) b by — by, by — by by — by, by — by H b=t



ALGEBRAIC CHARACTERISTIC CLASSES 21

which is clear. Finally at the divisor b, = 0 we need

(D" Y by, b =b = (=10 by, b b e
where € dies under dlog. Again this is clear. 0J

Returning to the proof of proposition 2.2.3, we apply lemmas 2.2.4 and
2.2.5 (with b; = a;) to conclude

dlog(z —aj,) A--- Ndlog(z — aj,)

(W) =

= i(—l)sldlog ( H (aj, — ak)> Adlog(aj, — aj,) A -

k¢{j1,---ir}

"'/\dlog@q\— a;,) A--- Adlog(a;, — aj,)

S=T
—_—

= Y (=1)" 'dlog(a;,—ar)Adlog(as,—aj, )A- - -Adlog(ay, — a; )A- -

- Ndlog(aj, — aj,).

Finally we apply lemma 2.2.4 again to this last expression, taking b, =
a;, — ai, to get the assertion of the proposition:

s

dlog(z —aj,) A--- Ndlog(z — aj,)

(W) —
= Z dlog(aj, —ag) A--- Adlog(a;, — ag).

kZj1,eceJr

O

Proposition 2.2.6. With notation as above, the Riemann-Roch for-
mula holds for (E, V).

Proof. The computation mentioned in (2.2.21) can be done as follows.
Let p, be closed 1-forms. For J = {j; < ... <j.} C {1,...,6} define
ps = pj N A pj.. Write

(2.2.22)

1)
Nw, (OGN N " Ap, +®) = Y Py(A”,dA”,®,dD)p; + Nw,(OF", )

v=1 JC{1,...,6}
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Here A” (resp. ®) are matrices with coefficients in F' (resp. 1), and
the P; are independent of the p;. Then, using proposition 2.2.3, we get

0
(2223) = Nw,(D>_ Apy + )| =

v=1

= > Py(A%,dA",.®,dD) " dlog(aj, —ag)A- - -Adlog(aj, —ag)+
Jc{1,...,0} k¢J
r=[J|>1
+ (1 = ) Nw, (FPN, ®).

On the other hand, if we fix 7 < § and take p, = dlog(a, — a,) for
v # 1 and p, = 0 we find

(2.2.24)

4
Nuw,(Rf.(E ® Qpp(log D)) = N, (FY, @) — > Nuw, (FV, ¥,) =
T7=1

1)
==Y ) P4, dA", @, dD)dlog(aj,—a,)A- - -Adlog(a;, —a.)+
T=1JC{1,...,0}
T¢J
+ (1 = 6)Nw, (D).

The right hand sides of (2.2.23) and (2.2.24) coincide, proving the
proposition. U

This completes the sketch of the proof of Riemann-Roch for bundles
with regular connections. For more details, the reader is referred to [6].
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