
LECTURES ON ALGEBRO-GEOMETRIC CHERN-WEILAND CHEEGER-CHERN-SIMONS THEORY FORVECTOR BUNDLESSPENCER BLOCH AND H�EL�ENE ESNAULTAbstrat. An algebrai theory of di�erential haraters [16℄, [17℄is outlined. A Riemann-Roh theorem for regular at bundles,using a weak form of these lasses, is desribed. Full details of theproof are available in a manusript on the web [6℄.1. Connetions and Charateristi Classes1.1. Introdution. The purpose of these two letures will be to de-sribe some work on the general topi of algebro-geometri Chern-Weiland Cheeger-Chern-Simons theory for harateristi lasses of vetorbundles. The trik is to ling to algebrai methods (K-theory, theZariski topology, algebrai di�erential forms,...) so the resulting the-ory gives information about algebrai yles, while at the same timedrawing inspiration from the beautiful alulus of di�erential forms andonnetions lying behind the di�erential geometry.We start with an algebrai variety X whih will always be takensmooth and quasi-projetive over an algebraially losed �eld k of har-ateristi 0. Let E be a vetor bundle on X. We suppose given analgebrai onnetion on E, that is a k-linear mapr : E ! E 
 
1X=k(1.1.1)satisfying the Leibniz ruler(f � e) = fr(e) + e
 df(1.1.2)for f a funtion and e a setion of E. Note that in the C1 ategorya partition of unity argument an be used to give any bundle E aonnetion. Algebraially, if e.g. X is projetive, most bundles E willnot admit a onnetion and our ship would seem to have sunk beforeleaving the harbor. In fat, we may dodge that bullet as follows.Date: June 3, 1999.1991 Mathematis Subjet Classi�ation. Primary .1



2 SPENCER BLOCH AND H�EL�ENE ESNAULTProposition 1.1.1. [1℄ There exists a lassAt(E) 2 H1(X; rmHom(E;E)
 
1X)the vanishing of whih is neessary and suÆient for E to admit aonnetion.Proof. As the di�erene of two onnetions isOX -linear (see (1.1.1) and(1.1.2)), onnetions on E form a torsor under rmHom(E;E 
 
1X).For more detail, one an argue as follows. Let I � OX�X be the idealof the diagonal. Reall
1X �= I=I2; dx 7! x
 1� 1
 x mod I2Write P := OX�X=I2, so we have an exat sequene0! 
1X ! P ! OX ! 0(1.1.3)Note P has two OX -module strutures pulling bak via the two pro-jetions X �X ! X. Tensor (1.1.3) with E via the left OX-struture:0! E 
OX 
1X ! E 
OX P s ! E ! 0(1.1.4)and view this as a sequene of OX-modules via the right OX-modulestruture on P . The middle term E 
OX P is the vetor bundle of1-jets of setions of E. The evident splitting s(e) = e
 1 is not an OXsplitting. In fat, it is straightforward to hek that there is a 1 � 1orrespondene [11℄fOX-linear splittings t of (1.1.4)g $ fonnetions r : E ! E 
 
1Xg(1.1.5)given by t 7! r := s � t. The proposition follows by onsidering thesequene obtained by rmHom(E; (1.1.4))0! rmHom(E;E 
 
1X)! rmHom(E;E 
 P )! Hom(E;E)! 0(1.1.6)and de�ning onn(E) = �(IdE) 2 H1(X;Hom(E;E 
 
1X)).Corollary 1.1.2. If X is aÆne, any vetor bundle E admits a on-netion.Proposition 1.1.3 (Jouanolou). Let X be quasi-projetive. There ex-ists � : ~X ! X with the following properties:1. ~X is an aÆne variety.2. Loally over X, ~X �= X � A N for some N .



ALGEBRAIC CHARACTERISTIC CLASSES 3Proof. Embed X ,! Y with Y projetive. Blowing up Y �X, we mayassume Y �X is a Cartier divisor. Sine the omplement of a Cartierdivisor in an aÆne sheme is aÆne, we redue in this way to the aseX projetive. By pulling bak, it suÆes to do the ase X = PN . LetX 0 be the dual projetive spae, and let I � X 0 �X be the inideneorrespondene. De�ne ~X := X 0 �X � I.The ruial point is that beause of ondition 2,�� : CH�(X) �= CH�( ~X);i.e. the two varieties have the same motive. Thus, we may pull bakour bundle to ~X and assume E admits a onnetion.In what follows we will onsider two sorts of questions. First, for anarbitrary vetor bundle, we develop Chern-Weil and Cheeger-Chern-Simons theory for an arbitrary onnetion on a pullbak to an aÆneas in proposition 1.1.3. Seond, when E omes with an integrable on-netion, we disuss Riemann-Roh theorems and results about hernlasses in the Chow group.1.2. Di�erential Charaters. We start with the C1 ase (ompare[33℄). Let M be a C1-manifold and let E be a C1-vetor bundle onM . WriteS�(M;A) := C1 singular hains on M with values in the abelian group AZk(M;A) � Sk(M;A) := losed hainsS�(M;A) := Hom(S�(M;Z); A)(1.2.1) A�(M) := C1 C -valued forms on MA�(M)0 := f! 2 A�(M) j d! = 0 and Z ! 2 Z; 8 2 Z�(M;Z)gI : A�(M)! S �(M; C ) integration mapThe group of di�erential haraters of degree k, bHk(M; C =Z), is de-�ned by the �bre produtbHk(M; C =Z) ! Hom(Zk(M;Z); C =Z)# # � 7! � Æ �Ak+1 ! Sk+1(M; C ) restrit! Sk+1(M; C =Z)(1.2.2)i.e.(1.2.3) bHk(M; C =Z) =f(a; !) 2 Hom(Zk(M;Z); C =Z) �Ak+1 j a Æ � = restrit Æ I(!)g:



4 SPENCER BLOCH AND H�EL�ENE ESNAULTProposition 1.2.1. One has an exat sequene0 �! Hk(M; C =Z) �! bHk(M; C =Z) (a;!)7!!�����! Ak+10 �! 0Proof. Straightforward.Now let r be a C1-onnetion on E, and let N = rank(E). LetF = r2 2 Hom(E;E 
A2(M))(1.2.4)be the urvature of r. Let P 2 Symp(gl�N) be a polynomial whih isinvariant under the adjoint ation. The entral point of Chern-Weiltheory is that P (F ) 2 A2p(M) is losed and represents the harater-isti de Rham lass in ohomology assoiated to E and P . Write Dfor a diagonal matrix with diagonal entries x1; : : : ; xN . If P (D) is thep-th elementary symmetri funtion (resp. P (D) =Pi xpip! ), P (F ) rep-resents the p-th hern lass p(E) (resp. the omponent of the hernharater h(E) in ohomologial degree 2p). Cheeger-Chern-Simonstheory re�nes this:Proposition 1.2.2. With notation as above, assume further that theharateristi lass de�ned by P is integral. Then there exist anoni-ally de�ned lasses ̂(P;E;r) 2 bH2p�1(M; C =Z) lifting P (F ) 2 A2p(M)0.These lasses are funtorial for pullbaks and additive for exat se-quenes.Proof. Omitted.Now we return to the ase X;E algebrai and r an algebrai on-netion. Suppose for a moment E is a line bundle. De�neAD1(X) := H 1(Xzar;O�X d log! 
1X d! 
2X ! : : : )(1.2.5) dAD1(X) := H 1(Xzar;O�X d log! 
1X)(Here O�X is the Zariski sheaf of invertible funtions, and AD standsfor \algebrai di�erential harater".)Proposition 1.2.3. 1. dAD1(X) is isomorphi to the group Pir(X)of isomorphism lasses of line bundles with onnetions on X.2. AD1(X) is isomorphi to the group Pi0;r(X) of isomorphismlasses of line bundles with integrable onnetions on X.3. Let �(X;
2X)0 denote the group of global losed algebrai 2-forms! on X suh that [!℄ 2 H2DR(X) is the lass of an algebrai divisor.Then there is an exat sequene0! AD1(X)!dAD1(X)! �(X;
2X)0 ! 0:



ALGEBRAIC CHARACTERISTIC CLASSES 54. Assume k = C and X is projetive. ThenAD1(X) �= H1(Xrman; C =Z2�i):Proof. Let (L;r) be a line bundle with onnetion on X. With respetto an open over fUig trivializing L, we have transition funtionsaij 2 �(Ui \ Uj;O�)and 1-forms !i = r(1i) 2 �(Ui;
1X). The data faij; !ig represent alass indAD1(X). The assertions of the proposition are straightforwardfrom this.The idea to de�ne the higher AD-groups [15℄, [17℄ is to work withthe higher Milnor K-sheavesKn := Image�(O�X)
n ! KMilnorn (k(X))�(1.2.6)These sheaves are less abstrat than the Quillen K-sheaves. In [30℄they are shown to satisfy many of the same properties. In partiular,one has a Gersten resolution, andHn(X;Kn) �= CHn(X):(1.2.7)There is a d log mapd log : Kn ! 
nX ; d logfx1; : : : ; xng = dx1x1 ^ � � � ^ dxnxn :(1.2.8)We de�ne ADn(X) := H n(X;Kn d log! 
nX ! 
n+1 ! : : : )(1.2.9) dADn(X) := H n(X;Kn d log! 
nX ! 
n+1X ! : : :! 
2n�1X )Write(1.2.10) �(X;
2nX )0 =ker ��(X;
2nX;losed)! H n(X;
n ! 
n+1 ! : : : ).d logHn(X;Kn)�= n! 2 �(X;
2nX;losed) ��� [!℄ 2 H 2n(X;
�nX )is the lass of an algebrai yleoProposition 1.2.4. 1. There is an exat sequene0! ADn(X)!dADn(X)! �(X;
2nX )0 ! 0



6 SPENCER BLOCH AND H�EL�ENE ESNAULT2. Let (E;r) be a rank N algebrai bundle with onnetion on X, andlet P be an invariant polynomial on glN as above. Then one has de�nedfuntorial harateristi lasseŝ(P;E;r) 2dADn(X) 7! P [F ℄ 2 �(X;
2nX )0:3. When k = C , there is a anonial map of exat sequenes fromthe above sequene to the lassial di�erential harater sequene fromproposition 1.2.1. This map arries the algebrai lasses from 2 to thelasses de�ned in proposition 1.2.2.Proof. For full details the reader is referred to [17℄. Let us sketh oneof the onstrutions of the harateristi lasses whih uses a \Weilalgebra" onstrution due to Beilinson and Kazhdan [2℄. First, wepush out the sequene (1.1.6) along the trae on the left to get anexat sequene (de�ning 
1X;E)0! 
1X ! 
1X;E ! End(E)! 0(1.2.11)We onsider the omposed di�erential OX Æ���! 
1X;E and build adi�erential graded algebra 
�X;E subjet only to the relation that Æ(f) =df for f 2 OX . Even the algebra struture here is triky; 
�X;E is notsimply an exterior algebra on 
1X;E. One has as graded algebras^
1X;E 
 Sym(End(E)) �= 
�X;E(1.2.12)where End(E) has graded degree 2. (To see this, think about the aseX=point, 
1X = (0). The universal DGA struture in this ase makes
�X;E = ext. algebra on omplex in deg. [1; 2℄ End(E) =! End(E):)One de�nes a Hodge �ltrationF p
�X;E := Image��a+b�p ^a
1X;E 
 Symb(End(E))�! 
�X;E:(1.2.13)With respet to the Hodge �ltrations, the natural map(
�X ;
�p)! (
�X;E; F p
�X;E)(1.2.14)is a �ltered quasi-isomorphism.A onnetion r on E is equivalent to a splitting of (1.2.11) andhene also (1.2.14):OX ! 
1X;E ! ^2
1X;E � End(E) ! : : :k # r # . r2OX ! 
1X ! 
2X : : :(1.2.15)



ALGEBRAIC CHARACTERISTIC CLASSES 7The urvature r2 is the obstrution to ompatibility of this splittingwith the Hodge �ltration.Let N = rank(E). Invariant polynomials in Symp(End(E)) de�ne asubomplex with trivial di�erentialS := (Sym(k�NX [�2℄))SN ! 
�X;E(1.2.16)Note S2p (viewed as a omplex plaed in degree 2p) is generated byinvariant polynomials of degree p and maps to F p
�X;E (viewed as aomplex beginning in degree p). A universal argument on BGLN showsthat harateristi lasses for E assoiated to invariant polynomials ofdegree p an be de�ned inH 2p�X;Cone(Kp[�p℄� S2p ! F p
�X;E)[�1℄�(1.2.17)Finally, the splitting (1.2.15) indued by a onnetion arries S2p !F 2p
�X , so we get harateristi lasses(1.2.18) ̂(P;E;r) 2 H 2p�X;Cone(Kp[�p℄� F 2p
�X ! F p
�X)[�1℄��= dADp(X):If r is integrable, the map on S2p is zero and the lasses fall inADp(X) = H 2p�X;Cone(Kp[�p℄! F p
�X)[�1℄�:(1.2.19)1.3. Cheeger-Chern-Simons Classes. This is all a bit abstrat, butthere are muh more down to earth variants on the di�erential harateronstrution whih an be studied loally. Examining the omplexes(1.2.9) de�ning the dAD groups, one sees there are vertial maps andommutative diagrams:0 ��! AD1(X) ��! dAD1(X) ��! �(X;
2X)0 ��! 0??y�= ??y�= ??y�=0 ��! �(X;
1X;l=d log(O�X )) ��! �(X;
1X=d log(O�X)) ��!d �(X;
2X)0 ��! 0(1.3.1)We write Hn := 
nX;l=d
n�1X . For p > 1, the diagram orrespondingto (1.3.1) beomes0 ��! ADp(X) ��! dADp(X) ��! �(X;
2pX )0 ��! 0??y ??y ??y0 ��! �(X;H2p�1) ��! �(X;
2p�1X =d
2p�2X ) ��!d �(X;
2pX;l)(1.3.2)



8 SPENCER BLOCH AND H�EL�ENE ESNAULTNote when p > 1 the vertial arrows are no longer isomorphisms. Wewill write H2pCS(X) := (�(X;
1X=d logO�X) p = 1�(X;
2p�1X =d
2p�2X ) p � 2:(1.3.3)For an invariant polynomial P of degree p, there are lassesw(P;E;r) 2 H2pCS(X)(1.3.4)dedued from the dAD lasses via the vertial maps in (1.3.1) and(1.3.2).Proposition 1.3.1. Let � = Spe (k(X)) j! X be the generi point ofX. Then the pullbak maps j� : H2pCS(X)! H2pCS(�) are injetive.Proof. When p = 1 this amounts to the assertion that a logarithmi1-form dff is regular along a divisor D if and only if D is neither a zeronor a pole of f . For p > 1 it follows from the Gersten style resolution[8℄ 0!Hn ! j�(HnDR(�))! : : :(1.3.5)where Hn = 
nl=d
n�1.Thus, as setions of a sheaf, the w(P;E;r) may be alulated loally.Further, by the above proposition, they are determined by their value atthe generi point. One of the main results in [5℄ is that these lasses anbe alulated loally using the onnetion matrix as in Chern-Simonstheory.Proposition 1.3.2. Let U � X be non-empty and open suh thatEjU �= O�NU . Let A be the orresponding onnetion matrix of 1-formson U . For an invariant polynomial P of degree p � 2 de�neTP (A) := p Z 10 P (A ^ F (tA)p�1)dt; F (tA) := tdA� t2A ^ A:then dTP (A) = P (F (A));andTP (A)jU represents w(P;EjU ;r) 2 �(U;
2p�1=d
2p�2) = H2pCS(U):Proof. The �rst assertion is the basi result of Chern-Simons theory.The reader is referred to theorem (4.0.1) in [5℄ for the proof of theseond assertion.



ALGEBRAIC CHARACTERISTIC CLASSES 9Example 1.3.3. Suppose E is a rank 2 bundle with struture groupSL2, and r is a onnetion whih is written on some open U via itsonnetion matrix �� � ���after the hhoie of a basis. Then for the invariant polynomial P (M) =tr(M2) the Chern-Simons lass w(P;E;r) is represented by2�d�+ �d + d� � 4�� 2 �(U;
3):If r is at, that is r2 = 0, thend� = �; d = 2�; d� = 2��and thus w(P;E;r) is represented by2�d� 2 �(U;H3) � H4CS(U):Important question: Do there exist examples with X projetive wherethis lass is not trivial, i.e. where �d� is not an exat form in 
3k(X)?Example 1.3.4. Let � : Y ! X be a �nite �etale morphism, and de�neE = ��OY with the natural (Gau�-Manin) onnetion r. Then thelass assoiated to P (M) = tr(M) is alulated loally as follows. Wemay suppose X = Spe (R); Y = Spe (R[t℄=(f(t)), where f is a monipolynomial. Write dis(f) for the disriminant of f . Thenw(trae; ��OY ;r) = [12d log(dis(f))℄ 2 �(Spe (R);
1R;l=d log(O�)):This lass is trivial if and only if the disriminant is a square in R.Said another way, if we fator f =Q(t� ri), then the disriminant isQi6=j(ri � rj) and the lass is represented by d log(Qi<j(ri � rj)).Finally, we want to explain the relation between these lasses and theGriÆths group of algebrai yles. For simpliity we will stik to thease of odimension 2. Analogous results are available in higher odi-mensions but the appropriate equivalene relation on yles is de�nedvia a spetral sequene and the business beomes more tehnial.Let X be smooth and projetive over C . For an abelian group A,write Hn(A) for the Zariski sheaf assoiated to the presheaf U 7!Hn(Uan; A). Thus, the Hn above is Hn(C ). One has a spetral se-quene of Leray type assoiated to the \ontinuous map" Xan ! XzarEp;q2 = Hp(Xzar;Hq(A))) Hp+q(Xan; A)(1.3.6)



10 SPENCER BLOCH AND H�EL�ENE ESNAULTThe analysis of this spetral sequene arried out in [8℄ shows that onegets an exat sequene (Z(2) := Z � (2�i)2.)(1.3.7) H3(Xan;Z(2)) a! �(X;H3(Z(2))) d2! H2(Xzar;H2(Z(2)))b! H4(Xan;Z(2))Further, H2(Xzar;H2(Z)) is identi�ed with the group of odimension 2algebrai yles modulo algebrai equivalene, so Gri�2(X) := ker(b)is the GriÆths group of odimension 2 algebrai yles homologous tozero modulo algebrai equivalene. Write ~H3(X;Z(2)) := image(a), sowe get an exat sequene0! ~H3(X;Z(2))! �(X;H3(Z(2)))! Gri�2(X)! 0:(1.3.8)this an be interpreted as an exat sequene of (possibly in�nite di-mensional) mixed Hodge strutures, where the GriÆths group is givena trivial mixed Hodge struture (diret limit of Hodge strutures of theform �Z(0) + torsion).Now let (E;r) be a vetor bundle of rank � 2 with a at onnetionon X. We write wp(E;r) = w(P;E;r)where P is the invariant polynomial assoiated to the p-th elementarysymmetri funtion. Thus w2 is assoiated toP (M) = 12(�tr(M2) + tr(M))2)Let z = 2(E) be the seond Chern lass, whih we interpret as anelement in Gri�2(X) 
 Q . Tensoring (1.3.8) with Q and pulling bakto the �bre over Q � z yields an exat sequene of �nite dimensionalQ -mixed Hodge strutures, whih we write0! ~H3(Xan;Q(2)) ! Ez ! Q(0) ! 0(1.3.9)The Hodge struture on the left is pure of weight �1, so the sequenesplits anonially when tensored with R. That is, there exists a uniquew 2 F 0Ez 
 R lifting z.Proposition 1.3.5. Under the inlusion Ez 
 R � �(X;H3(C )), theabove element w lifting z is identi�ed with w2(E;r). In partiular,w2(E;r) = 0 () 2(E) = 0 in Gri�2(X)
 Q .Proof. This is theorem (5.6.2) in [5℄.



ALGEBRAIC CHARACTERISTIC CLASSES 112. Riemann-Roh2.1. Introdution. In this leture we will explain a sort of Riemann-Roh theorem for bundles with at onnetions having regular singularpoints. A preprint with details of these results is on the algebraigeometry server [6℄. Suh results extend to the irregular rank one ase[7℄, but we don't address this subjet in those notes. We just say thatthen, the top Chern lass of di�erential forms, whih in our theoryplays the role of the Todd lass, then depends on the onnetion.A bundle with a at onnetion is an example of a holonomi D-module, and very probably the orret Riemann-Roh theorem shouldbe formulated in that ontext (possibly inluding also the hypothesisof regular singular points.) One has various Riemann-Roh theoremsfor D-modules ([27℄, [23℄) but in the ontext of at onnetions thesegive little more than the Euler harateristi of the underlying oherentsheaf. On a projetive variety they depend only on the rank of the loalsystem. A model for a more preise theorem has been proven in theanalyti ategory by Bismut and Lott [3℄. A Riemann-Roh theoremwith values in the AD-lasses explained in the previous leture ouldbe expeted to yield an algebrai proof of the Bismut-Lott result. Fortehnial reasons, however, the algebrai result we want to explain isurrently limited to the Chern-Simons lasses in H�CS(X).De�nition 2.1.1. Let f : X ! S be a at morphism of smooth vari-eties. Let Y � X and T � S be normal rossings divisors, and assumethat set-theoretially f�1(T ) � Y . The data ff : X ! S; Y � X; T �Sg is said to be a relative normal rossings if
1X=S(log(Y )) := 
1X(logY )=f �
1S(logT )(2.1.1)is loally free of rank d = dim(X=S).Let Zi denote the omponents of Y not lying in f�1(T ). One hasresidue maps resZi : 
1X=S(log(Y ))! OZi(2.1.2)whih may be viewed as \partial trivializations" of 
1X=S(log(Y )). Us-ing ideas of T. Saito [32℄ one an de�ne relative top hern lasses(2.1.3) d(
1X=S(log(Y )); fresZig) 2 CHd(X;Z�) :=H d(X;Kd;X ! Kd;Z(1) ! Kd;Z(2) ! : : : )Here as before Kd denotes the Milnor K-sheaf, and Z(i) is the i-foldintersetions in Z = SZi.



12 SPENCER BLOCH AND H�EL�ENE ESNAULTWe ontinue to assume ff : X ! S; Y � X; T � Sg is a relativenormal rossing. Let E be a loally free sheaf on X, and letr : E ! E 
 
1X(log(Y ))be a at onnetion with logarithmi poles along Y . As in the �rstleture, suh a bundle with onnetion supports CS-lasses with logpoles. For the Riemann-Roh theorem we will need only the \Newtonlasses". Let P be the invariant polynomial of degree p whih maps thediagonal matrix with xi entries on the diagonal to P xpi . One de�nes(2.1.4) Nwp(E;r) = w(P;E;r) 2 H2pCS(X(logY )):= (�(X;
1X(logY )=d log(j�O�X�Y )) p = 1�(X;
2p�1X (logY )=d
2p�1X (logY )) p � 2Assume further that f : X ! S is projetive. The partial trivializa-tion built into the lass (2.1.3) ompensates for the log poles in (2.1.4),so one has a well-de�ned produt-pushforwardf��Nwp(E;r) � d(
1X=S(logY ); resZi)� 2 H2pCS(S(logT )):(2.1.5)We an use the lassial Gau�-Manin onstrution to push forward Eas follows (here again it would be muh more onvenient to work withD-modules). Consider the diagram of omplexes (with di�erentialsde�ned using the at onnetion r)(2.1.6) 0! E 
 
�X=S(logY )[�1℄
 
1S(logT )! E 
 
�X(logY )! E 
 
�X=S(logY )! 0The boundary map puts S-onnetions on the ohomology sheaves(2.1.7) rGM : Rif�DR(E) := Rif�(E 
 
�X=S(logY ))! Rif�DR(E)
OS 
1S(logT ):these onnetions are again integrable, and one an try to relate theirCS-lasses to the CS-lasses of E on X. (Warning: beause of logpoles, the ohomology sheaves are not neessarily loally free on S.)One further notation: write eE := E�rk(E)OX . One extends relativede Rham ohomology and harateristi lasses to suh virtual bundleswith onnetion by additivity.Theorem 2.1.2 (Riemann-Roh for at bundles). With notation as above(d = dim(X=S)) we havewp(R�f�DR( eE);rGM) = (�1)df��d(
1X=S(log(Y )); fresZig)�wp(E;r)�:



ALGEBRAIC CHARACTERISTIC CLASSES 13Remark 2.1.3. 1. Notie this Riemann-Roh has a very simple shape.wp(R�f�DR( eE);rGM) is determined by wp(E;r). This should be on-trasted with Riemann-Roh for oherent sheaves, where the inhomoge-neous nature of the Todd lass Td(TX=S) results in a mixing of degressof harateristi lasses. Essentially, for at bundles one an think oneis taking the hern harater of E

�X=S . The homogeneous result thenresults from the identity(�1)dim(X=S)d(
1X=S) = Td(TX=S) �Xi (�1)ih(
iX=S):(2.1.8)2. When p = 1, this result �xes the isomorphism lass of the loalsystem determinant of ohomology(det(R�f�DR( eE));rGM)For p � 2 the CS-lasses are rather mysterious. Using non-at on-netions (see 4.), one an give examples where they are non-zero, butthe situation is far from being understood.3. This Riemann-Roh theorem only gives information for virtual bun-dles of rank 0. It would be interesting to have a \Noether's theorem"alulating the Nwp(R�f�DR(OX). Suppose, e.g., S is a urve, and themorphism f degenerates over a divisor T � S. The lass Nw1 repre-sents the determinant det of de Rham ohomology, whih is a rank 1loal system on S � T . One an show (e.g. by looking at the represen-tation on ohomology with Z-oeÆients) that det2 is trivial, sodet := detRf�(C ) 2 H1(S � T;Z=2Z) �! H0(T;Z=2Z):(2.1.9)One question would be for t 2 T to ompute the t-omponent of �(det)in Z=2Z in terms of harateristi lasses supported on the singular�bre f�1(t).4. The Riemann-Roh theorem proved in [6℄ is somewhat more preisein that the urvature r2 is assumed to be basi, i.e. in End(E)
f �
2S,rather than atually zero.2.2. Sketh of Proof. We want to give some indiation of the basiideas of the proof of theorem 2.1.2.2.2.1. Step 1. Sine the CS-lasses are determined at the generi point,one redues to the ase S = Spe (F ) is the spetrum of a funtion�eld. By a Lefshetz penil argument, one redues further to the aseX = P1F , E = �OP1(mi); mi � 0. The Nwp take values in a Q -vetorspae (exept for Nw1, whih requires a speial argument) so we anreplae S by a �nite over and assume the onnetion has logarithmipoles along a divisor D = fa1; : : : ; aÆg � P1(F ). One shows further



14 SPENCER BLOCH AND H�EL�ENE ESNAULTthat one is free to augment D by adding points where the onnetiondoes not have log poles. In partiular, we may assume 1 2 D but rdoes not have a pole at 1.2.2.2. Step 2. We may assume E = O�nP1 . In the original version of thepaper, this redution ontained a serious error, whih was pointed outto us by O. Gabber. Thus, for the sake of redibility, I will give theargument here in full. Identify E = �O(mi � 1), and de�neE 0 = Mmi=0OP �Mmi>0O((mi � 1) � 1) � ELemma 2.2.1. With notation as above, E 0 � E is stable under r.proof of lemma. The assertion is invariant under an extension of F ,so we may assume D = fa1; : : : ; aÆ;1g with all a� 2 P (F ). Let1j; 1 � j � r be the evident basis of E on A 1 = P �f1g, and let z bethe standard parameter on P . An element  2 �(P;O(n)

1P1F (logD))for n � 0 an be uniquely written in the formÆX�=1 A�d log(z � a�) + nXi=0 zi�i + nXj=1 Cj(z � a1)jd log(z � a1);with A�; Cj 2 F and �i 2 
1F . Sine r(zmj1j) 2 �(E 
 
1P1F(logD)),we may write(2.2.1) r(1j) =X 1k 
 hmk�mjXi=0 �kij (z � a1)` +XAk�j d log(z � a�)+ mk�mjX̀=1 Ck`j (z � a1)`d log(z � a1)iIf mj > mk, the sums over i and ` on the right are not there. Ifmj = mk, the sum over ` is absent. With respet to (2.2.1) we havethe following fats: Ck;mk�mjj = 0(2.2.2)For mj � mk,X� Ak�j d log(z � a�) 2 �(P1;
1P1F(logD)((mk �mj) � 1)):(2.2.3)XAk�j d log(z � a�) 2 �(P1;
1P1F=F (logD)((mk �mj � 1) � 1)):(2.2.4)



ALGEBRAIC CHARACTERISTIC CLASSES 15To hek (2.2.2) we may suppose mk > mj. The omposition(2.2.5) O(mj) ,! E r! E 
 
1P1F(logD)! E 
 
1P1F=F (logD)res1! Ej1 � O(mk)j1 = O(mk � 1)=O((mk � 1) � 1)maps(z � a1)mj1j 7! Ck;mk�mjj (z � a1)mk (mod O((mk � 1) � 1))By assumption, the onnetion has zero residue at in�nity, so this iszero. The inlusion (2.2.3) follows beauser((z � a1)mj1j) =X(z � a1)mk1k 
 hÆmj ;mk � �k0j + (z � a1)mj�mkXAk�j d log(z � a�)i+mj(z � a1)mj1j 
 d log(z � a1)is assumed to extend aross in�nity. �nally, (2.2.4) holds beause ofthe vanishing of the residue (2.2.5). In the ase mj � mk the residuemap is 1j 7! �(z � a1)mj�mkXAk�j d log(z � a�)����1:Now view (2.2.1) as de�ning the onnetion matrix B = (bkj ) for ron P � f1g. The above assertions an be summarized as follows. Formk > mjbkj 2 ��P1; f �
1F ((mk �mj) � 1) + 
1P1F(logD)((mk �mj � 1) � 1)�and for � 2 
1F and mk � mj,bkj 2 ��P1;
1P1F(logD)((mk �mj) � 1)�bkj 2 ��P1;
1P1F=F (logD)((mk �mj � 1) � 1)�� ^ bkj 2 ��P1;
1F 
 
1P1F=F (logD)((mk �mj � 1) � 1)�:It follows that whenever mi � mk we havebji bkj 2 �(P1;
1F 
 
1P1F=F (logD)(mk �mi � 1) � 1)):Vanishing of Ck;mk�mii and the trivial urvature onditiondbki =Xj bji bkjimplies dbki = (mk �mi)�k;mk�mii (z � a1)mk�mid log(z � a1) + �



16 SPENCER BLOCH AND H�EL�ENE ESNAULTfor � 2 ��P1;
2P1F(log(D))((mk �mi � 1)1))�. It follows for mk > mithat �k;mk�mii = 0 as laimed.It follows now from (2.2.1) that r stabilizes E 0 � E, proving thelemma.The lemma implies redution to the ase E = �OP1 by indution onmaxfmig.2.2.3. Step 3. We ontinue to assume E = �OP with P := P1F andonnetion given byr(1j) =Xk� Ak�j 1k 
 d log(z � a�) +Xk 1k 
 �kj :(2.2.6)we de�ne an F -linear splitting � of the natural redution from absoluteto relative E-valued 1-forms� : �(P;
1P=F (logD))! �(P;
1P=k(logD));(2.2.7) �(1k 
 (z � a1)�dz) = 1k 
 (z � a1)�d(z � a1);�(1k 
 d log(z � a�)) = 1k 
 d log(z � a�)Now onsider the diagram �(E) = �(E)# r1 # rP=F�(E)
 
1F ! �(E 
 
1P (logD)) � ! �(E 
 
1P=F (logD))# rP=F 
 1 # r2�(E 
 
1P=F (logD))
 
1F= �(E 
 
2P (logD)=
2F )
(2.2.8)
Here r1 and r2 are the absolute onnetion maps. De�ne� := r1 � �rP=F ; 	 = �r2�:(2.2.9)The diagram �(E) ����! �(E)
 
1FrP=F??y ??yrP=F
1�(E 
 
1P=F (logD)) 	���! �(E 
 
1P=F (logD))
 
1F(2.2.10)represents (Pi=2i=0(�1)i(Rif�(E

�P=F ;rP=F ); GM i(r)) in the Grothendiekgroup K(F ) of F -vetor spaes with onnetion. We see from (2.2.6)that �(1j) = (r� �rP=F )(1j) =Xk 1k 
 �kj :(2.2.11)



ALGEBRAIC CHARACTERISTIC CLASSES 17Also(2.2.12) 	(1j 
 d log(z � a�) = �r(1j) ^ d log(z � a�) == ��Xk� Ak�j 1k 
 d log(z � a� )� 1k 
 �kj� ^ d log(z � a�) == �Xk� Ak�j 1k 
 �d log(z � a� )� d log(z � a�)�
 d log(a� � a� ) ++Xk 1k 
 d log(z � a�)
 �kj :De�ne Bk�j� = (�Ak�j d log(a� � a� ) � 6= ��kj +P� 6=� Ak�j d log(a� � a�) � = � :(2.2.13)Then 	(1j 
 d log(z � a�)) =Xk� 1k 
 d log(z � a� ) ^ Bk�j� :(2.2.14)The left hand side of the Riemann-Roh formula for E (in this asethere is no need to subtrat o� O�rk(E)) is given by(2.2.15) Nwn(( i=2Xi=0 (�1)i(Rif�(E 
 
�P=F ;rP=F ); GM i(r)))= Nwn(�)�Nwn(	):2.2.4. Step 4. We next make some observations about Nwn(	). De�neB�� (resp. B) to be the N � N matrix (resp. Æ � Æ matrix of N � Nmatries) B�� := (Bk�j� )1�j;k�N (resp. B = (B�� )1��;��n):(2.2.16)Lemma 2.2.2. LetM(B) = Br1(dB)r2 � � �Br2s�1(dB)r2s be some (non-ommuting) monomial in B and dB. ThenTr (M(B)) = nX�=1 Tr (M(B�� )):Proof. Write as aboveM(B)�� := (M(B)k�j� )1�j;k�N (resp. M(B) = (M(B)��)1��;��n):Then Trae(M(B)) =P� Trae(M(B)�� ). NowM(B)�� = X�1;:::;�r2s�1B�1� B�2�1 � � �B�r1�r1�1dB�r1+1�r1 � � �dB��r2s�1 :



18 SPENCER BLOCH AND H�EL�ENE ESNAULTFor � 6= � we an write B�� = C��d log(a� � a� ). Possibly introduingsome signs, the d log terms an be pulled to the right. Suppose, amongf�1; �2; : : : ; �r2s�1g we have �j1 ; : : : ; �ja 6= � and all the other �k = � .Then that partiular summand on the right multipliesd log(a� � a�j1 ) ^ � � � ^ d log(a�ja � a� ) = 0:(Note x1 + � � � + xa+1 = 0 ) dx1 ^ : : : ^ dxa+1 = 0.) Thus, one oneterm on the right is non-zero, andM(B)�� =M(B�� );proving the lemma.Sine Nwn(	) is a sum of terms Tr (M(B)) as in the lemma, weonlude Nwn(	) = ÆX�=1 Nwn(	� );(2.2.17)where 	� is the onnetion on F�N given (with notation as above) by1j 7! NXk=1 1k 
 (�kj +X� 6=� Ak�j d log(a� � a�))The onnetion matrix for 	� is thus� +X� 6=� A�d log(a� � a�)(2.2.18)where � = (�kj ) and A� = (Ak�j ).2.2.5. Step 5. We now onsider the right hand side of the Riemann-Roh formula, whih in our ase takes the form�Nwn(E;r) � 1(
1P=F (logD); resD)Sine 
1P=F (logD) has rank 1, the relative hern lass an be omputedin a standard way to be the divisor of any meromorphi setion !of the bundle suh that ! is regular along D and resD(!) = 1. Weshall assume that 0 =2 D. (This is easy to arrange by applying anautomorphism to P .) We take for our meromorphi setion! := � ÆX�=1 1z � a� � Æ + 1z �dz:(2.2.19)



ALGEBRAIC CHARACTERISTIC CLASSES 19Clearing denominators! = F (z)zQ(z � a� )dz; F (z) = ÆX�=1 a�Y� 6=�(z � a�)� ÆY�=1(z � a� ):(2.2.20)
Writing formally F =QÆi=1(z � �i), we get1(
1P=F (logD); res) = (!) =X(�i)� (0):2.2.6. Step 6. We shall need to ompute� ÆXi=1 Nwn(E;r)jz=�i +Nwn(E;r)jz=0(2.2.21)and ompare the answer to Nwp(�) � Nwp(	) (f. (2.2.11), (2.2.13),(2.2.15), (2.2.17), (2.2.18)).Proposition 2.2.3. Suppose given fj1; : : : ; jrg � f1; : : : ; Æg. Thend log(z � aj1) ^ � � � ^ d log(z � ajr)j(!) :=ÆXi=1 d log(�i� aj1)^ � � � ^ d log(�i� ajr)� d log(aj1)^ � � �^ d log(ajr) == Xt6=j1;:::;jr d log(at � aj1) ^ � � � ^ d log(at � ajr):Proof. To simplify notation we onsider the ase jk = k; 1 � k � r.Lemma 2.2.4.ÆXi=1 d log(�i � a1) ^ � � � ^ d log(�i � ar) == rXj=1(�1)j�1d log(F (aj)) ^ d log(aj � a1) ^ � � � ^ \d log(aj � aj) ^ � � �� � � ^ d log(aj � ar):proof of lemma 2.2.4. We an argue universally. Consider the ringsA = Q [z1 ; : : : ; zÆ; t1 : : : ; tr℄ � B = A[x℄=(xÆ + ÆXi=1 zixÆ�i) �=�= Q [z1 ; : : : ; zÆ�1; t1 : : : ; tr; X℄:



20 SPENCER BLOCH AND H�EL�ENE ESNAULTNote that both A and B are polynomial rings over Q . Let L � M betheir quotient �elds, and onsider the symbolS = fX � t1; : : : ; X � trg 2 Kr(M):We will ompute the norm, N(S) 2 Kr(L). Note the tame symbol isgiven bytame(S) = rXk=1(�1)k�1ftk � t1; : : : ; \tk � tk; : : : ; tk � trgjX=tkLet � : Spe (B)! Spe (A). We have a map on divisors��(X � ti = 0) = (F (ti) = 0)with degree 1, sotame(N(S)) = N(tame(S)) == rXk=1(�1)k�1ftk � t1; : : : ; \tk � tk; : : : ; tk � trgjF (tk)=0 == tame� rXk=1(�1)k�1fF (tk); tk � t1; : : : ; \tk � tk; : : : ; tk � trg�:(The last equality holds beause F (tj)=F (tk) = 1 on the divisor tj =tk.). Sine L is purely transendental over Q , this determines N(S)upto onstant symbols, whih an be ignored beause we want to applyd log. Speializing the zi to the oeÆients of our F and the ti 7! aiand applying d log, we dedue the lemma.Lemma 2.2.5.d log(b1) ^ � � � ^ d log(br) == ÆXk=1(�1)k�1d log(bk) ^ d log(bk � b1) ^ � � � ^ \d log(bk � bk) ^ � � �� � � ^ d log(bk � br):proof of lemma 2.2.5. As above, we argue universally and prove theorresponding identity for symbols. For this it suÆes to ompare theimages under the tame symbol. At the divisor bj � bk = 0 for j < k weneed0 = (�1)j+kfbk; bk � b1; : : : ; \bk � bj; : : : ; \bk � bk; : : : ; bk � brgjbk=bj ++ (�1)j+k�1fbj; bj � b1; : : : ; \bj � bk; : : : ; \bj � bj; : : : ; bj � brgjbk=bj ;



ALGEBRAIC CHARACTERISTIC CLASSES 21whih is lear. Finally at the divisor bk = 0 we need(�1)k�1f�b1; : : : ;d�bk; : : : ;�brg = (�1)k�1fb1; : : : ; b̂k; : : : ; brg+ �where � dies under d log. Again this is lear.Returning to the proof of proposition 2.2.3, we apply lemmas 2.2.4 and2.2.5 (with bj = aj) to onluded log(z � aj1) ^ � � � ^ d log(z � ajr)j(!) == rXs=1(�1)s�1d log� Yk=2fj1;:::;jrg(ajs � ak)� ^ d log(ajs � aj1) ^ � � �� � � ^ \d log(ajs � ajs) ^ � � � ^ d log(ajs � ajr)= s=rXk 6=j1;:::;jrs=1 (�1)s�1d log(ajs�ak)^d log(ajs�aj1)^� � �^ \d log(ajs � ajs)^� � �� � � ^ d log(ajs � ajr):Finally we apply lemma 2.2.4 again to this last expression, taking bs =ajs � ak, to get the assertion of the proposition:d log(z � aj1) ^ � � � ^ d log(z � ajr)j(!) == Xk 6=j1;:::;jr d log(aj1 � ak) ^ � � � ^ d log(ajr � ak):
Proposition 2.2.6. With notation as above, the Riemann-Roh for-mula holds for (E;r).Proof. The omputation mentioned in (2.2.21) an be done as follows.Let �� be losed 1-forms. For J = fj1 < : : : < jrg � f1; : : : ; Æg de�ne�J = �j1 ^ � � � ^ �jr . WriteNwn(O�NP ; ÆX�=1 A��� + �) = XJ�f1;:::;ÆgPJ(A� ; dA�;�; d�)�J +Nwn(O�NP ;�)(2.2.22)



22 SPENCER BLOCH AND H�EL�ENE ESNAULTHere A� (resp. �) are matries with oeÆients in F (resp. 
1F ), andthe PJ are independent of the �j. Then, using proposition 2.2.3, we get(2.2.23) �Nwn( ÆX�=1 A��� + �)j(!) == � XJ�f1;:::;Ægr=jJj�1 PJ(A�; dA�;�; d�)Xk=2J d log(aj1�ak)^� � �^d log(ajr�ak)++ (1� Æ)Nwn(F�N ;�):On the other hand, if we �x � � Æ and take �� = d log(a� � a�) for� 6= � and �� = 0 we �nd(2.2.24)Nwn(Rf�(E 
 
�P=F (logD))) = Nwn(FN ;�)� ÆX�=1 Nwn(FN ;	� ) == � ÆX�=1 XJ�f1;:::;Æg� =2J PJ(A�; dA�;�; d�)d log(aj1�a� )^� � �^d log(ajr�a� )++ (1� Æ)Nwn(�):The right hand sides of (2.2.23) and (2.2.24) oinide, proving theproposition.This ompletes the sketh of the proof of Riemann-Roh for bundleswith regular onnetions. For more details, the reader is referred to [6℄.Referenes[1℄ Atiyah, M.: Complex analyti onnetions in �bre bundles, Trans. Amer.Math. So. 85 (1957), 181-207[2℄ Beilinson, A.; Kazhdan, D.: Appendix B. Chern lasses, unpublished.[3℄ Bismut, J.-M.; Lott, J.: Flat vetor bundles, diret images and higher realanalyti torsion, J. of the Am. Math. So. 8 (1995), 291-363.[4℄ Bismut, J.-M.: Eta invariants, di�erential haraters and at vetor bundles,preprint 1995.[5℄ Bloh, S.; Esnault, H.: Algebrai Chern-Simons theory, Amerian J. of Math-ematis 119 (1997), 903-952.[6℄ Bloh, S.; Esnault, H.: A Riemann-Roh theorem for at bundles with valuesin the algebrai Chern-Simons theory (preprint 1998, 57 pages, available onthe alg-geom server), appears in the Annals of Maths.[7℄ Bloh, S.; Esnault, H.: Gau�-Manin determinants for rank 1 irregular onne-tions on urves, (preprint 1999, 46 pages, available on the alg-geom server).[8℄ Bloh, S.; Ogus, A.: Gersten's onjeture and the homology of shemes, Ann.Si. �E. N. S. (4) 7 (1974), 181-202.
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