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Introduction

In topology, one associates to a complex quadratic vector bundle E over a topo-
logical space X its Stiefel-Whitney classes

wi(E) ∈ Hi(X,Z/2).

These classes are essentially the only characteristic classes attached to qua-
dratic bundles: any such bundle is classified by the homotopy class of a map
X → BO(n,C) where n is the rank of E. The classifying space BO(n,C) has
a tautological quadratic bundle E of rank n, and H∗(BO(n,C),Z/2) is a polyno-
mial algebra on the Stiefel-Whitney classes of E .

The same holds in algebraic geometry, where to any quadratic vector bundle E
over a Z[1/2]-scheme X (a vector bundle provided with a unimodular symmetric
bilinear form) one can attach Stiefel-Whitney classes, living in mod 2 étale coho-
mology [17]

wi(E) ∈ Hi
ét(X,Z/2).
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Here again, these classes can be defined as pull-backs of universal classes wi in the
cohomology of the simplicial scheme BO(n)/Z[1/2]. Since the latter cohomology is
a polynomial algebra on the wi over the étale cohomology of Spec Z[1/2] [30], the
wi(E) are essentially the only characteristic classes with values in étale cohomology
with Z/2 coefficients attached to quadratic bundles in this context.

If we restrict to (say) virtual quadratic bundles E of rank 0 such that w1(E) =
w2(E) = 0, no new mod 2 characteristic classes arise: such bundles are classified by
the infinite spinor group Spin and one can show that H∗(B Spin,Z/2) is a quotient
of H∗(BO,Z/2), both in the topological and the étale context. In particular, the
Wu formula

w3 = w1w2 + Sq1w2

shows that w3(E) = 0 if w1(E) = w2(E) = 0, so that there are no non-trivial
degree 3 mod 2 characteristic classes for such bundles.

The situation is quite different if we restrict to quadratic bundles over schemes
of the form Spec k, where k is a field of characteristic 6= 2. To any k-quadratic form
q, of dimension divisible by 8 and such that w1(q) = w2(q) = 0, Arason [1] has
attached a non-trivial invariant

e3(q) ∈ H3
ét(k,Z/2)

(see section 1 for less restrictive conditions on q). From the preceding discussion, we
know that e3 cannot be expected to extend to a ‘global’ invariant, i.e. one defined
for quadratic bundles over arbitrary schemes. A question which arises naturally is
to determine the obstruction to the existence of such a global extension. The aim
of this paper is to answer this question in the case of quadratic bundles on smooth
varieties over fields.

More specifically, let X be a smooth, irreducible variety over k (still assumed to
be of characteristic 6= 2); let K be the function field of X and E a quadratic bundle
over X . The generic fiber Eη corresponds to a quadratic form q over K. Assume
its Arason invariant e = e3(q) ∈ H3

ét(K,Z/2) is defined; then one easily shows that
e in fact lies in the subgroup H0

Zar(X,H3
ét(Z/2)). There is an exact sequence

H3
ét(X,Z/2) −→ H0

Zar(X,H3
ét(Z/2))

d2−→ CH2(X)/2
cl2−→ H4

ét(X,Z/2)

where CH2(X) is the second Chow group of X . This sequence stems from the

Bloch-Ogus spectral sequence for X , with coefficients Z/2 [3], and cl2 is the cycle
class map modulo 2. Our main result is the computation of d2(e) ∈ CH2(X)/2.

In order to explain this result, we recall that any quadratic bundle has a Clifford
invariant

c(E) ∈ H2
ét(X,Z/2)

(a variant of w2(E), see Definition 2.3); in the case considered, we have

c(E) ∈ Ker(H2
ét(X,Z/2)→ H2

ét(K,Z/2)) ' Pic(X)/2.

On the other hand, the vector bundle underlying E has a second Chern class c2(E) ∈
CH2(X). We then have:

Theorem 1. Under the above assumptions,

d2(e) = c2(E) + c(E)2 ∈ CH2(X)/2.

Corollary 1. cl2(c2(E) + c(E)2) = 0.
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In fact, this corollary can be obtained by more elementary means than Theorem
1: generalizing the well-known relations between Chern and Stiefel-Whitney classes
which exist in topology, e.g. [49, p. 181, prob. 15-A], yields the formula c2(E) =
c(E)2 in H4

ét(X,Z/2).
The proof of Theorem 1 can be sketched as follows. We show that the hy-

pothesis on E implies that its class [E] ∈ H1
ét(X,O(n, n)) lifts to a class [̃E] ∈

H1
ét(X,Cliff(n, n)), where Cliff(n, n) is the split special Clifford group. Now we

shall associate to any Cliff(n, n)-torsor F on X two characteristic classes

γ1(F ) ∈ Pic(X),

γ2(F ) ∈ H4
ét(X,Γ(2))

(see 6.7), where the right-hand-side group on the second line is Lichtenbaum’s étale
weight-two motivic cohomology. Recall the exact sequence ([41], [33, th. 1.1])

0→ CH2(X)→ H4
ét(X,Γ(2))→ H0

Zar(X,H3
ét(Q/Z(2)))→ 0.

In light of this sequence, we show in Theorem 6.9 that

2γ2(F ) = c2(F ) + γ1(F )2 ∈ CH2(X)(0.1)

where c2(F ) is the second Chern class of the SL(2n)-torsor (a vector bundle) stem-
ming from F . Theorem 1 follows from this identity and the identification of the
map d2 as a differential in a snake diagram.

This paper is organized as follows. In section 1 we review Arason’s invariant,
and in section 2 the special Clifford group. The heart of the paper is sections 3 and
4, where we compute low-degree K-cohomology of split reductive linear algebraic
groups with simply connected derived subgroups and their classifying schemes. We
collect the fruits of our labor in section 6, where we define the invariants γ1(F ) and
γ2(F ) and prove identity (0.1). Theorem 1 is proven in section 8. In section 9 we
give some applications to quadratic forms over a field.

There are 3 appendices. Appendix A shows how different models of the simpli-
cial classifying scheme of a split torus yield the same K-cohomology. Appendix B
presents a construction and a characterization of the invariant defined by Serre and
Rost for torsors under a simple, simply connected algebraic group H over a field
(see [60] and the forthcoming paper [58]): in the case of Spin, this allows this paper
to be self-contained. Let us point out that our method tackles the p-primary part
of the Rost invariant as well, in case char k = p > 0. Finally, Appendix C compares
K-cohomology of the simplicial scheme BH with that of an approximating variety
BrH : it turns out that they don’t coincide. In this last appendix, we have to stay
away from the characteristic of k if it is nonzero.

The group H1(G,K2) was first computed by P. Deligne at the end of the seven-
ties [12] for any G, semi-simple, simply connected, and not necessarily split. Our
method here is different from his.

1. Review of the Arason invariant

Let k be a field of characteristic 6= 2. As is customary, we write

q = 〈a1, . . . , ar〉
for the isomorphism class of the quadratic form q(x) = a1x

2
1 + · · ·+ arx

2
r (ai ∈ k∗).
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Let W (k) be the Witt ring of k [35], [59]. The dimension of forms induces an
augmentation

W (k)
dim−→ Z/2

whose kernel, denoted by Ik, is the ideal of even-dimensional forms. Its n-th power
is denoted by Ink. Since Ik is additively generated by the forms 〈1,−a〉 (a ∈ k∗),
Ink is generated by n-fold Pfister forms

〈〈a1, . . . , an〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉.
For n ≤ 4, there are homomorphisms

en : Ink/In+1k → Hn(k,Z/2)

characterized by en(〈〈a1, . . . , an〉〉) = (a1, . . . , an) := (a1) · · · · · (an), where, for
a ∈ k∗, (a) ∈ H1(k,Z/2) is the class of a via Kummer theory. For n = 0, 1, 2,
the en come from elementary invariants dim, d±, c defined over the whole Witt ring
W (k). They can be described as follows:

• n = 0: e0(q) = dim q (mod 2).

• n = 1: e1(q) = d±q := ((−1)
r(r−1)

2 disc q), where r = dim q and disc q =
a1 · · · ar if q = 〈a1, . . . , ar〉.

• n = 2: let C(q) be the Clifford algebra of q and C0(q) the even part of C(q).
The algebra C(q) (resp. C0(q)) is a central simple algebra of exponent 2 over
k if dim q is even (resp. odd). Then

e2(q) = c(q) =

{
[C(q)] ∈ 2Br k if dim q even,

[C0(q)] ∈ 2Br k if dim q odd.

Note that 2Br k ' H2(k,Z/2) by Hilbert’s Theorem 90.

The relationship of d±q and c(q) with w1(q) and w2(q) is as follows:

• d±(q) = w1(q) + r(r−1)
2 (−1) (since disc q = w1(q));

• c(q) = w2(q) + a(−1) · w1(q) + b(−1,−1), with a = (r−1)(r−2)
2 and b =

(r+1)r(r−1)(r−2)
24 [35, prop. V.3.20]. In particular, if r ≡ 0 (mod 4), w1(q) =

w2(q) = 0 if and only if e1(q) = e2(q) = 0.

The existence of e3 was proven by Arason in his thesis [1] (see also Barge [2]):
it cannot be extended to a function W (k) → H3(k,Z/2) which would be natural
under change of base field [1, p. 491] (see Corollary 9.3 for an unstable refinement.)
Similarly, Jacob-Rost [28] and independently Szyjewski [64] proved the existence
of e4. Merkurjev [43] proved that e2 is an isomorphism, which shows with the
above remarks that e3(q) is defined as soon as w1(q) = w2(q) = 0. Rost [56] and
independently Merkurjev-Suslin [47] proved that e3 is an isomorphism. Voevodsky
has recently announced a proof that en exists and is an isomorphism for all n and
all fields.

2. The special Clifford group

Recall [17, 1.9] that a quadratic bundle E over a scheme X has a Clifford algebra
C(E). If E has even rank, C(E) is an Azumaya algebra with a canonical involution
σ, restricting to the identity on E ↪→ C(E). Recall also the Clifford group C∗(E)
[17, 1.9], defined as the homogeneous stabilizer of E in C(E)∗ (acting by inner
automorphisms). It is representable by a linear algebraic group scheme over X .
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When E = H(AnX) is the split bundle associated with the affine n-space AnX [17,
5.5], we denote this algebraic group scheme by C∗(n, n): it is defined over Z.

There is a “spinor norm” homomorphism C∗(E)
γ1→ Gm, given by γ1(x) = xσ(x);

as in [17, 1.9], we denote its kernel by Õ(E). The action of C∗(E) on E by inner
automorphisms is orthogonal, hence defines a homomorphism C∗(E)→ O(E) with
kernel the center of C∗(E), which is nothing else than Gm. The situation can be
summarized by the following commutative diagram with exact rows and columns:

1

��

1

��

1 // µ2 //

��

Õ(E) //

��

O(E) // 1

1 // Gm
//

��

2

C∗(E) //

��

γ1

O(E) // 1

Gm
//

=

��

Gm

��

1 1

(2.1)

Let us denote by Cliff(E) the even part of C∗(E): this is the special Clifford

group. The group Cliff(E) ∩ Õ(E) is nothing else than the spinor group Spin(E).
In case E = H(AnX), this is summarised by the following diagram, similar to (2.1):

1

��

1

��

1 // µ2 //

��

Spin(n, n) //

��

SO(n, n) //

��

=

1

1 // Gm
//

��

2

Cliff(n, n) //

��

γ1

SO(n, n) // 1

Gm
//

=

��

Gm

��

1 1

(2.2)

This allows one to recover Cliff in terms of Spin, if one wishes:

Cliff(n, n) = Spin(n, n)×Gm/µ2

via the diagonal action −(g, t) = (−g,−t).
Suppose X = SpecK. Given a quadratic form q, the action of O(q) on the vector

space underlying q extends to an action of O(q) on C(q) by algebra automorphisms.
When q = nH is split, C(q) ' M2n(K); we denote by ρ the corresponding homo-
morphism O(n, n)→ PGL(2n). Recall the invariant c(q) from section 1.



78 H. ESNAULT, B. KAHN, M. LEVINE, AND E. VIEHWEG

2.1. Lemma. Let K be a field and let q be a quadratic form with even rank
2n. Then c(q) = ∂[q] ∈ H2(K,µ2) = 2 Br(K) where [q] is the class of q in
H1(K,O(n, n)) and ∂ is the boundary map in non-abelian cohomology coming from
the exact sequence

1→ µ2 → Õ(n, n)→ O(n, n)→ 1

of diagram (2.1).

Proof. This follows immediately from the commutative diagram

1 // µ2 //

��

Õ(n, n) //

��

O(n, n) //

��

ρ

1

1 // Gm
// GL(2n) // PGL(2n) // 1

in which the middle vertical map is the natural embedding (from the definition of

C∗(n, n) and Õ(n, n)).

2.2. Remark. Hilbert’s Theorem 90 implies that the map

H1(K,Cliff(n, n))→ H1(K,SO(n, n))

is injective. In other words, over a field any quadratic form in I2 can be refined
into a Clifford bundle in a unique way (contrary to the situation for Spin-bundles).
Similarly for O(n, n) and C∗(n, n).

We now extend the invariants d±q and c(q) to quadratic bundles of even rank
over arbitrary schemes as follows.

2.3. Definition. If E is a quadratic bundle of rank 2n over X , then its signed
discriminant d±E is the image of [E] ∈ H1

ét(X,O(n, n)) into H1
ét(X,Z/2) via the

determinant map det : O(n, n)→ µ2 ' Z/2. Its Clifford invariant c(E) is the image
of [E] in H2

ét(X,Z/2) by the non-abelian boundary map associated with the exact
sequence

1→ µ2 → Õ(n, n)→ O(n, n)→ 1.

2.4. Remark. One can check that d±(E) and c(E) coincide with the similar invari-
ants defined by Parimala and Srinivas in [52, 2.2 and Lemma 6]. For the latter,
one proceeds as in the proof of Lemma 2.1, replacing GL(2n) and PGL(2n) by
the relevant ±-orthogonal and projective orthogonal groups, corresponding to the
canonical involution carried by C(E).

3. K-cohomology of split reductive algebraic groups

Let G be a split reductive algebraic group over k. In the next section, we shall
partially compute the K-cohomology of a classifying scheme BG; for this we have to
partially compute the K-cohomology groups Hi

Zar(G
a,Kj) for various a. Obviously

we can assume a = 1. The method we use is the one of [38, §2] (where it is applied
to computing K∗(G)).

The K-cohomology of G has been computed in full by Suslin in the cases G =
SL(N), GL(N) and Sp(2n) [62].
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3.1. To start the computation of the K-cohomology of G, recall that since G is
smooth this cohomology is given by the (co)homology of the corresponding Gersten
complex. The computation in fact applies to a large extent to arbitrary “cycle
modules” in the sense of Rost [57]. So we give ourselves a cycle module K 7→
M∗(K), for K running through finitely generated extensions of k. For any variety
(smooth or not) V/k, we write

C∗(V,Mj)

for the Gersten complex

· · · →
⊕

x∈V(i+1)

Mi+j+1(k(x))→
⊕
x∈V(i)

Mi+j(k(x))→
⊕

x∈V(i−1)

Mi+j−1(k(x))→ · · ·

where V(i) denotes the set of points of V of dimension i, and Ai(V,Mj) for its
homology. Since C∗ is covariant for proper morphisms [57], it can be extended to
simplicial k-schemes V• by taking the total complex associated with the bicomplex

· · · → C∗(Vn+1,Mj)→ C∗(Vn,Mj)→ C∗(Vn−1,Mj)→ · · ·
provided the face maps of V• are proper. Under this assumption we are allowed to
define cycle homology of V• as the homology of this total complex. Then there is a
spectral sequence

E1
p,q = Aq(Vp,Mj)⇒ Ap+q(V•,Mj).

We can do the same with an augmented simplicial scheme.

3.2. The pairings KM
i ⊗Z Mj →Mi+j give morphisms of complexes, for two vari-

eties V and W [57, (14.1)]:

C∗(V,KM
i )⊗Z C∗(W,Mj)→ C∗(V ×k W,Mi+j)(3.1)

hence homomorphisms

Am(V,KM
i )⊗Z An(W,Mj)→ Am+n(V ×k W,Mi+j)

and, for i = −m:

CHm(V )⊗Z An(W,Mj)→ Am+n(V ×k W,Mj−m)

where CHn(V ) are Chow homology groups [19, §1.3]. Putting all gradings together,
we note that (3.1) refines into a morphism of complexes

C∗(V,KM
∗ )⊗KM∗ (k) C∗(W,M∗)→ C∗(V ×k W,M∗)(3.2)

since the Cm(V,KM∗ ) and Cn(W,M∗) are all modules over KM∗ (k).

3.3. If Z is a closed subset of V , one has an exact sequence of complexes

0→ C∗(Z,Mj)→ C∗(V,Mj)→ C∗(V − Z,Mj)→ 0(3.3)

which is canonically split as an exact sequence of graded abelian groups [57, (3.10.1)].
This yields a “localization” exact sequence [57, §5]

· · · → Ai(Z,Mj)→ Ai(V,Mj)→ Ai(V − Z,Mj)→ Ai−1(Z,Mj)→ · · · .
(3.4)

Putting all gradings together, we note that (3.3) gives an exact sequence of com-
plexes

0→ C∗(Z,M∗)→ C∗(V,M∗)→ C∗(V − Z,M∗)→ 0(3.5)

which is split as an exact sequence of graded KM
∗ (k)-modules.
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Suppose we have a finite closed covering Z =
⋃
i Zi of some variety Z, and let

Z• be the associated simplicial scheme. Note that all face maps come from closed
immersions, hence C∗(Z•,M∗) is defined (compare 3.1). By a well-known argument,
(3.4) implies that the augmentation Z• → Z gives an isomorphism on A∗, yielding
a Čech spectral sequence of homological type:

E1
p,q =

⊕
i0<···<ip

Aq(Zi0 ∩ · · · ∩ Zip ,Mj)⇒ Ap+q(Z,Mj).

Suppose now that U ⊂ V is an open subset of a variety V such that Z = V −U
is covered by the Zi. Considering the augmented simplicial scheme Z• → V , we
get a spectral sequence analogous to [38, (1.5)G]

E1
p,q ⇒ Ap+q(U,Mj)(3.6)

with

E1
p,q =

Aq(V,Mj) if p = 0,⊕
i1<···<ip

Aq(Zi1 ∩ · · · ∩ Zip ,Mj) if p > 0.

3.4. If V is purely of dimension d, define Ai(V,Mj) as Ad−i(V,Mj−d). This cycle
cohomology is contravariant for all maps to a smooth variety [57, §12]. We have
homotopy invariance:

Ai(V,Mj)
∼→ Ai(W,Mj)

if V is equidimensional and W → V is an affine bundle [57, prop. 8.6].

3.5. Let us say that a variety X over k is Künneth if, for any k-variety Y and any
cycle-module M , the pairing of complexes (3.2) is a quasi-isomorphism. (See [29,
def. 14.6] for a related definition.) The following lemma gives examples of Künneth
varieties:

3.6. Lemma. (i) Spec k is Künneth.

(ii) If X and Y are Künneth, so is X ×k Y .
(iii) Any affine bundle over a Künneth variety is Künneth.
(iv) Let X be a k-variety, Z a closed subset of X and U the complementary open

subset. If among X,Z,U , two are Künneth varieties, then the third is.

Proof. (i) and (ii) are trivial and (iii) follows from 3.4. To see (iv), we apply the
exact sequence of complexes (3.3) to (X,Z,U) and (X×k Y, Z×k Y, U×k Y ). Since
(3.5) is split as an exact sequence of graded KM∗ (k)-modules, it remains exact
after tensorization over KM

∗ (k). So we get a commutative diagram of short exact
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sequences of complexes:

0

��

0

��

C∗(Z,KM∗ )⊗KM∗ (k) C∗(W,M∗) //

��

C∗(Z ×kW,M∗)

��

C∗(V,KM∗ )⊗KM∗ (k) C∗(W,M∗) //

��

C∗(V ×k W,M∗)

��

C∗(U,KM∗ )⊗KM∗ (k) C∗(W,M∗) //

��

C∗(U ×k W,M∗)

��

0 0

The five lemma now shows that if two rows are quasi-isomorphisms, so is the third
one.

Recall that a k-variety X is cellular if X contains a closed subset Z 6= X such
that X − Z ' Ank for some n and Z is cellular (a recursive definition).

3.7. Proposition. a) Any cellular variety is Künneth. Moreover, if X is cellular
and Y is arbitrary, then the CHp(X) are finitely generated free abelian groups and
the natural map⊕

p≥0

CHp(X)⊗Z An−p(Y,Mi+p)
∼→ An(X × Y,Mi)

is an isomorphism for all M∗, n, i.
b) A split torus is a Künneth variety.

Proof. The fact that cellular varieties and tori are Künneth follows immediately
from Lemma 3.6. The fact that Chow groups of a cellular variety are finitely
generated free is well-known [19, ex. 1.9.1]. It remains to show the isomorphism.
For this, it suffices to show that the Ai(X,K

M
∗ ) are free modules over KM

∗ (k). This
follows from

3.8. Lemma ([44], proof of prop. 1). Let X be a cellular variety over k. Then the
natural maps from 3.2

CHi(X)⊗KM
j (k)→ Ai(X,K

M
j−i)

are isomorphisms.

3.9. If V is smooth, one has

Ap(V,Mi) = Hp
Zar(V,Mi)

where Mi is the Zariski sheaf U 7→ A0(U,Mi) (Gersten’s conjecture, [57, cor.
6.5]). When Mi is given by a suitable cohomology theory with supports (defined
on all smooth k-schemes) satisfying a purity theorem,Mi can further be identified
with the Zariski sheafification of U 7→ Mi(U). This applies to algebraic K-theory
(Quillen [54]) and to étale cohomology with coefficients in twisted roots of unity or
singular cohomology with integer coefficients when k = C (Bloch-Ogus [3]).
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3.10. Let G be our split reductive algebraic group. We let LG = Hom(T,Gm) be
the character group of a maximal torus T of G. The choice of a Z-basis of LG gives
a k-isomorphism

T
∼→ Gr

m

with r = rank G.

3.11. Consider the projection G → G/T , with fibers T . Letting X := G/T , one
has

Hi(X,Kj) ' Hi(G/B,Kj)
where B is a Borel subgroup, because X → G/B is an affine bundle (i.e. a torsor
under a vector bundle).

The isomorphism T
∼→ Gr

m defines r rank one bundles L1, . . . , Lr on X such
that

G = L×1 ×X · · · ×X L×r
where L×i is the total space of the corresponding Gm-bundle. We can then embed
G into the affine bundle

Ḡ := L1 ×X · · · ×X Lr.

One has the following properties

(i) Ḡ−G =

r⋃
i=1

Di

where Di is the divisor Di = L1 ×X · · · ×X {0} ×X · · · ×X Lr in which the
zero section {0} is taken on the i-th factor of L1 ×X · · · ×X Lr.

(ii) [Di] ∈ Pic(Ḡ) corresponds to c1(Li) ∈ Pic(X) under the isomorphism Pic(X)
∼→ Pic(Ḡ).

3.12. We now apply the spectral sequence (3.6) to V = Ḡ, U = G and Zi = Di.
This gives a spectral sequence

E1
p,q =

Aq(Ḡ,Mj) if p = 0⊕
i1<···<ip

Aq(Di1 ∩ · · · ∩Dip ,Mj) if p > 0 ⇒ Ap+q(G,Mj).

Let d = dimG = dim Ḡ; note that dim(Ḡ − G) = dimDi = d − 1 for all i and
similarly dim(Di1 ∩ · · · ∩ Dip) = d − p for all p > 0. Hence the spectral sequence
can be rewritten as

E1
p,q=

A
d−q(Ḡ,Mj+d) if p=0⊕

i1<···<ip
Ad−p−q(Di1 ∩ · · · ∩Dip ,Mj+d−p) if p>0 ⇒ Ad−p−q(G,Mj+d).

Since Ḡ and the Di1 ∩ · · · ∩Dip are all affine bundles over X , we can rewrite the

E1-term, using homotopy invariance 3.4

E1
p,q = ∧∧∧p LG ⊗Ad−p−q(X,Mj+d−p)

where LG is the group of characters of the split maximal torus T .
Since X is an affine bundle over the cellular variety G/B (for this, e.g. [7]),

Lemma 3.8 and homotopy invariance yield the final form of the E1-term of the
above spectral sequence (after a shift on j):

E1
p,q = ∧∧∧p LG ⊗ CHd−p−q(X)⊗Mj+q−d(k)⇒ Ad−p−q(G,Mj);(3.7)
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compare [38, §2]. This spectral sequence is contravariant in G (for group scheme
homomorphisms).

It would be beyond the scope of this article to study this spectral sequence in
detail, and in particular to show that it degenerates at E2 like the similar one
in [38]. We will content ourselves here with elementary remarks and low-degree
computations.

3.13. From now on, we assume that Mj = 0 for j < 0. Note that this implies
An(X,Mj) = 0 for n > j, any X . Hence we shall care about An(X,Mj) only for
n ≤ j.
3.14. In view of the definition of the Čech d1-differential, the complexes

(K···(G, d− q)) · · · → ∧∧∧p+1 LG ⊗ CHd−p−q−1(X)→∧∧∧p LG ⊗ CHd−p−q(X)

→∧∧∧p−1 LG ⊗ CHd−p−q+1(X)→ · · ·
of the E1-terms of (3.7) can be described as follows. Let c1 : LG → Pic(X) be the
homomorphism given by the first Chern class. It gives rise to a Koszul complex
[27, prop. 4.3.1.2]:

(Kos···(c1, d− q))
· · · → ∧∧∧p+1 LG ⊗ Sd−p−q−1(Pic(X))→∧∧∧p LG ⊗ Sd−p−q(Pic(X))

→∧∧∧p−1 LG ⊗ Sd−p−q+1(Pic(X))→ · · · .
Then the natural maps Sr(Pic(X)) → CHr(X) given by the intersection product
provide a morphism of complexes from Kos···(c1, d− q) to K···(G, d− q).
3.15. The first two terms of K···(G, d−q) and Kos···(c1, d−q) coincide. In particular,
this yields

E2
p,d−p = ∧∧∧p(Ker c1).

3.16. Suppose k = C and Mi(K) = lim−→H i
an(U,Z), where U runs through the open

subsets of a model of K/C. Then Mi(C) = 0 for i 6= 0 and the spectral sequence
(3.7) degenerates, yielding isomorphisms

Hp(K···(G, d − q)) ' Hd−p−q(G,Hd−qan (Z)).

3.17. Suppose that G is a torus. Then X = Spec k, hence CHi(X) = 0 for i > 0
and (3.7) degenerates at E1, yielding

• Ap(G,Mj) = 0 (p > 0);
• There is a filtration on A0(G,Mj) with successive quotients ∧∧∧p LG⊗Mj−p(k).

3.18. For j = 0, (3.7) gives an isomorphism M0(k)
∼→ A0(G,M0). For j = 1, it

gives an exact sequence

(3.8) 0→M1(k)→ A0(G,M1)→ LG ⊗M0(k)

c1⊗1−→ Pic(X)⊗M0(k)→ A1(G,M1)→ 0.

From now on, we make the following

3.19. Assumption. G is split reductive and its derived subgroup H is simply
connected.
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Therefore we have an exact sequence 1→ H → G→ S → 1 where

• S is a split torus
• H is semi-simple, simply connected and has a split torus TH .

The unique maximal torus of G containing TH is TG = Z(G)0TH , where Z(G)0

is the connected component of 1 in the center of G [13, exposé XXII, p. 260, prop.
6.2.8]. We have an exact sequence

1→ TH → TG → S → 1

and the assumption that H is simply connected implies that LH
c1→ Pic(X) is an

isomorphism [14]. We also have XG = XH (and XS = Spec k). This gives a split
short exact sequence

0→ LS → LG
c1−→ Pic(X)→ 0.(3.9)

3.20. Proposition. Under Assumption 3.19,

(i) For j ≥ 0, the maps A0(S,Mj)→ A0(G,Mj) are isomorphisms. If S = {1},
we have Mj(k)

∼→ A0(G,Mj) for all j > 0.
(ii) There is for j = 1 a short exact sequence

0→M1(k)→ A0(G,M1)→ LS ⊗M0(k)→ 0.

Moreover, A1(G,M1) = 0.
(iii) For j = 2, we have

• an exact sequence

0→ A1(G,M2)→ S2(LH)⊗M0(k)
c⊗1−→ CH2(X)⊗M0(k)→ 0

where c is the characteristic map S2(LH)→ CH2(X);

• isomorphisms A1(G,M2)
∼→ A1(H,M2) and equalities A2(G,M2) =

A2(H,M2) = 0.

Proof. To see the first claim of (i), note that 3.15 implies that the E2
p,q(S,Mj)

∼→
E2
p,q(G,Mj) for p + q = d in the spectral sequence (3.7) attached to S and G. As

observed in 3.17, E2
p,q(S,Mj) = 0 for p+ q 6= d, which implies that all differentials

starting from E2
p,q(G,Mj) are 0. Since no differentials arrive at E2

p,q(G,Mj), this

means that E2
p,q(G,Mj) = E∞

p,q(G,Mj). The map A0(S,Mj)→ A0(G,Mj) respects
the filtrations from (3.7) and is an isomorphism on the associated graded, so it is
an isomorphism. The second claim of (i) follows immediately.

(ii) follows from (3.8) and the fact that c1 ⊗ 1 is surjective (3.9). We now look
at the spectral sequence (3.7) for j = 2. It follows from (3.9) and the description
of (K···(G, d− q)) as a Koszul-like complex that

E2
2,d−2 = ∧∧∧2(LS)⊗M0(k) E2

1,d−2 = Ker c⊗M0(k) E2
0,d−2 = Coker c⊗M0(k)

E2
1,d−1 = LS ⊗M1(k)

E2
0,d = M2(k)

E2
p,q = 0 otherwise.

(3.10)

(iii) follows easily from this computation, except for the vanishing of A2(G,M2).
To see this, suppose first that M = KM (Milnor K-theory). Then A2(G,M2) =
CH2(G) and this group is 0 by [42] for G semi-simple classical, [38, th. 2.1] in
general. Indeed, [38, th. 2.1] implies that K0(G) ' Z with trivial topological
filtration, and it is well-known that for any smooth variety V , the natural map
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CHi(V ) → griK0(V ) = 0 is surjective with kernel killed by (i − 1)!. So the
characteristic map c is surjective, which gives the result in general.

Let C be a category with finite products. Recall that a contravariant functor
T : Co → {abelian groups} is additive if T (∗) = 0, where ∗ is the final object of C,
and T (X)⊕ T (Y )→ T (X × Y ) is an isomorphism for all X,Y ∈ C, where the map
is given by the two projections.

3.21. Corollary. Let C be the category of k-reductive groups satisfying Assumption
3.19. Then G 7→ A1(G,M2) is additive.

Proof. Recall that, for G ∈ C, the first Chern class identifies LH with Pic(X). Let
G1, G2 ∈ C, with split maximal tori T1 and T2, G = G1 × G2 with split maximal
torus T = T1×T2, and X1 = G1/T1, X2 = G2/T2, X = G/T . Then X ' X1×X2,
hence we get decompositions (using Proposition 3.7):

S2(Pic(X)) ' S2(Pic(X1))⊕ Pic(X1)⊗ Pic(X2)⊕ S2(Pic(X2)),

CH2(X) ' CH2(X1)⊕ Pic(X1)⊗ Pic(X2)⊕ CH2(X2).

Moreover, the multiplication map µ : S2(Pic(X)) → CH2(X) is diagonal with
respect to these decompositions:

µ = diag(µ1, Id, µ2)

with obvious notation.

We shall need the following corollary in Appendices B and C:

3.22. Corollary. Let A be a semi-local ring of a smooth variety over k. Then,
for any split semi-simple simply connected algebraic group H over k and any cycle
module M∗, there are isomorphisms:

H0
Zar(HA,Mi) ' H0(A,Mi) for all i ≥ 0,

H1
Zar(HA,M2) ' Ker c⊗H0(A,M0) ' Ker c⊗M0(K),

Hq
Zar(HA,M2) = 0 for q ≥ 2

where c is the characteristic map of Proposition 3.20 (ii) and Mi is the Zariski
sheaf associated to Mi as in 3.9.

Proof. Consider the cohomology theory with supports

(X,Z) 7→ h∗Z(X) := H∗
H×Z (H ×X,Mi)

(Zariski cohomology) for some i ≥ 0. It satisfies étale excision (in the sense that

h∗Z(X)
∼→ h∗Z(X ′) for an étale morphism X ′ f→ X such that f−1(Z)

∼→ Z) and is
homotopy invariant; the first fact follows from the stronger localization property
(3.4) for cycle cohomology, and the second is 3.4. By the arguments of [20] (see
also [10]), this cohomology theory satisfies Gersten’s conjecture. In particular, for
A as in Corollary 3.22, with field of fractions K, we have exact sequences:

0→ hq(A)→ hq(K)→
⊕
y∈Y (1)

hq+1
y (A)

where Y = SpecA. Identifying hq+1
y (A) with Hq(Hk(y),Mi−1) via (3.4), this trans-

lates as

0→ Hq(HA,Mi)→ Hq(HK ,Mi)→
⊕
y∈Y (1)

Hq(Hk(y),Mi−1).
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Corollary 3.22 follows from this and the computations of Proposition 3.20 and
Corollary 3.21.

3.23. Remark. Replacing H1
Zar(HA,M2) by A1(HA, K2), one gets the same answer

when A is an arbitrary discrete valuation ring. This can be proven by considering
the localization sequence for the generic and closed points of A, together with the
fact that H can be defined over Z as a “groupe épinglé” (Chevalley’s theorem), the
latter implying that the characteristic map is independent of the base.

4. K-cohomology of BG

In this section, we compute the groups Hi
Zar(BG,Mj), whereMj is as in 3.9:

• in general when G is a split torus;
• for j ≤ 2 when G is as in 3.19.

For simplicity, we sometimes drop the index Zar from the groups Hi
Zar(BG,Mj).

4.1. Let X• be a simplicial k-scheme such that all Xn are smooth. Let T be
a Grothendieck topology over the category of schemes of finite type over k (for
example the Zariski or the étale topology, or the analytic topology if k = C).
Recall the spectral sequence [11]

Ep,q1 (F•) = Hq
T(Xp,Fp)⇒ Hp+q

T (X•,F•)(4.1)

for any complex of simplicial sheaves F• over X•, with differential

d1 : Ep,q1 → Ep+1,q
1 , d1 =

p+1∑
i=0

(−1)iδ∗i .

4.2. We are especially interested in the case where X• = BG, where G is an
algebraic group over k and BG = EG/G, where EG is defined by

(EG)` = G∆`

with ∆` = {0, . . . , `}. Here G acts on EG diagonally on the right:

(g0, . . . , g`) · h = (g0h, . . . , g`h)

for (g0, . . . , g`) ∈ (EG)` and h ∈ G. The face map δi is just “forgetting i”.

4.3. Lemma. Suppose k is algebraically closed, let U be a unipotent subgroup of
G, and take u in U(k). Then conjugation by u acts by the identity on H∗(BG,M∗).

Proof. Let µ : G ×k BG→ BG be the morphism giving the action of conjugation.
As a variety U is an affine space over k, there is a map ϕ : A1

k → G such that
u = ϕ(1), 1G = ϕ(0). Pulling back µ by ϕ gives the morphism

ν : A1 ×k BG→ BG.

We have the sections

i0, i1 : BG→ A1 ×k BG
with respective values 0 and 1. The projection p2 gives a map

p∗2 : H∗(BG,M∗)→ H∗(A1 ×k BG,M∗).

This map is an isomorphism by homotopy invariance for the cohomology of Gp

and a comparison of spectral sequences. It follows that
id = i∗0 ◦ ν∗ = i∗1 ◦ ν∗ = conjugation by u.
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4.4. Proposition (compare [23], lemme 1). Suppose k is algebraically closed.
Then the natural action of G(k) on the cohomology groups Hi

Zar(BG,Mj) via inner
automorphisms is trivial.

Proof. (compare loc. cit.) The groupG(k) is generated by the k-points of unipotent
subgroups of G, together with the k-points of the center: if G is simple the subgroup
ofG generated by all unipotent subgroups is normal and not contained in the center,
hence equal to G. The simple case implies the semi-simple case, and in general G
is generated by its derived subgroup and its center. Since k-points of the center
obviously act trivially, the conclusion follows from Lemma 4.3.

4.5. Lemma. Let C be a category with finite products and T : Co→{abelian groups}
an additive functor. Let G be a group object of C. Then the cohomotopy of the
cosimplicial abelian group T (BG) is T (G) in degree 1 and 0 elsewhere.

This is clear, since T (BG)n = T (G)n and therefore T (BG) is “dual” to BT (G).

4.6. Theorem. Let S be a split torus over k, with character group LS. Then, for
all i, j ≥ 0, we have a canonical isomorphism

Si(LS)⊗Mj−i(k)
∼→ Hi

Zar(BS,Mj).

Proof. By 3.9, 3.17 and (4.1), H i
Zar(BS,Mj) is the i-th homotopy group of the

simplicial abelian group

· · ·
�...
�
A0(Sn−1,Mj)

�...
�
A0(Sn,Mj)

�...
�
A0(Sn+1,Mj)

�...
�
· · ·

and this simplicial abelian group has a filtration whose typical quotient is

(· · ·
�...
�
∧∧∧i(Ln−1

S )
�...
�
∧∧∧i(LnS)

�...
�
∧∧∧i(Ln+1

S )
�...
�
· · · )⊗Mj−i(k).(4.2)

Consider the cosimplicial abelian group “BLS”. By Lemma 4.5, its homotopy is
LS in degree 1 and 0 in all other degrees. By [27, prop. 4.3.2.1], the homotopy of

· · ·
�...
�
∧∧∧i(Ln−1

S )
�...
�
∧∧∧i(LnS)

�...
�
∧∧∧i(Ln+1

S )
�...
�
· · ·

is therefore Si(LS) in degree i and 0 elsewhere; since this group is torsion-free, the
homotopy of (4.2) is Si(LS) ⊗Mj−i(k) in degree i and 0 elsewhere. All quotients
(4.2) have their homotopy concentrated in one degree. In the spectral sequence
associated to the filtration all those degrees lie on the codiagonal, hence all the
differentials vanish. This yields Theorem 4.6.

4.7. Theorem. Under Assumption 3.19,

(i) For all j, we have isomorphisms

Mj(k)
∼→ H0(BG,Mj),

H1(BS,Mj)
∼→ H1(BG,Mj)

and for j ≤ 2 an exact sequence

0→ H2(BS,Mj)→ H2(BG,Mj)→ E1,1
2 (G,Mj)

→ H3(BS,Mj)→ H3(BG,Mj)

where E1,1
2 (G,Mj) is a subgroup of H1(H,Mj).
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(ii) We have

H0(BG,M1) 'M1(k),

H1(BG,M1) ' LS ⊗M0(k),

Hn(BG,M1) = 0 for n ≥ 2.

(iii) We have

H0(BG,M2) 'M2(k),

H1(BG,M2) ' LS ⊗M1(k),

Hn(BG,M2) = 0 for n ≥ 3.

(iv) The spectral sequence (4.1) yields an exact sequence

0→ E2,0
2 (G,M2)→ H2

Zar(BG,M2)→ E1,1
2 (G,M2)→ 0

which coincides canonically with the (exact) sequence

0→ H2
Zar(BS,M2)→ H2

Zar(BG,M2)→ H2
Zar(BH,M2)→ 0.

Moreover, E1,1
2 (G,M2)

∼→ H1(H,M2).

Proof. Note that E0,q
1 (G,Mj) = 0 for q > 0 in the spectral sequence (4.1); (i)

follows from this and Proposition 3.20 (i). On the other hand, Ep,q1 (G,Mj) = 0

for q > j (Gersten’s conjecture). If j = 1, we have moreover Ep,11 = 0 for all p
by Proposition 3.20: this and Theorem 4.6 give (ii). Assume now j = 2 and let
us simply write Ep,qr (G) for Ep,qr (G,M2). This time, Proposition 3.20 (iii) implies

that Ep,22 (G) = 0 for all p ≥ 0. Note also that Corollary 3.21 and Lemma 4.5 give

Ep,12 (G) = 0 for p > 1 and E1,1
2 (G) = H1(G,M2). Moreover, by Proposition 3.20

(i) and Theorem 4.6, we have

Sp(LS)⊗M2−p(k)
∼→ Ep,02 (S)

∼→ Ep,02 (G).

Finally, the only nonzero E2-terms are E1,1
2 (G) and Ep,02 (G) (0 ≤ p ≤ 2); in

particular, E2 = E∞. Theorem 4.7 follows easily from all these facts and Corollary
3.21.

Let NT be the normalizer of T = TG in G, which we let act on G by conjugation.
The Weyl group W (G) is by definition the quotient NT /T . The actions of NT on
G and T extend to actions on EG and ET , giving an action of NT on BG and BT .

Let ks be a separable closure of k. The restriction map

Hi
Zar(BG/ks, K

M
i )→ Hi

Zar(BT/ks, K
M
i ) (i ≤ 2)(4.3)

is NG(T )(ks)-equivariant; by Proposition 4.4, the action of the latter group on

Hi
Zar(BG/k,K

M
i ) is trivial. On the other hand, since T is commutative, the action

of T on ET by conjugation is trivial, hence the NT (ks)-action on Hi
Zar(BT/k,K

M
i )

descends to an action of W (G). It follows that the image of (4.3) is contained in
the Weyl invariants H i

Zar(BT/k,K
M
i )W (G). By Theorem 4.7, Hi

Zar(BG/k,K
M
i )→

H i
Zar(BG/k,K

M
i ) and Hi

Zar(BT/k,K
M
i ) → Hi

Zar(BT/k,K
M
i ) are isomorphisms,

hence the image of H i
Zar(BG/k,K

M
i )→ Hi

Zar(BT/k,K
M
i ) is also contained in the
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Weyl invariants. We are now all set to prove:

4.8. Theorem. Under Assumption 3.19, restriction to the maximal torus T of G
yields a chain of isomorphisms

H i
Zar(BG,Mj)

∼← Hi
Zar(BG,KMi )⊗Mj−i(k)

∼→ Hi
Zar(BT,KMi )W (G) ⊗Mj−i(k)

∼← Si(LG)W (G) ⊗Mj−i(k)

for 0 ≤ i ≤ j ≤ 2, where W (G) is the Weyl group of G. These isomorphisms are
natural in G.

Proof. The left isomorphism follows from Theorem 4.7 and the right one from
Theorem 4.6. It remains to prove that the middle map is an isomorphism. It
suffices to do this for M∗ = KM∗ and j = i. We proceed in two steps:

Step 1. G is semi-simple. The cases i = 0, 1 are trivial. We compute the K-
cohomology of BT via the spectral sequence associated to its simplicial model
EG/T (see Example A.6). The E1-term of this spectral sequence is

Ep,q1 = Hq
Zar(G/T ×Gp,K2).

We have Ep,q1 = 0 for q > 2. Since X = G/T is an affine bundle over a cellular
variety, Propositions 3.7 a) and 3.20 give isomorphisms:

Ep,01 = K2(k),

Ep,11 = Pic(X)⊗K1(k)⊕H1
Zar(G

p,K2),

Ep,21 = CH2(X).

It follows that Ep,q2 = 0, except for

E0,2
2 = CH2(X),

E0,1
2 = Pic(X)⊗K1(k), E1,1

2 = H1
Zar(G,K2),

E0,0
2 = K2(k).

We therefore get a short exact sequence

0→ H1
Zar(G,K2)→ H2

Zar(BT,K2)→ CH2(X)→ 0(4.4)

and comparing with the spectral sequence for BG, it is clear that the isomorphism
of Theorem 4.7 identifies the first map with the restriction map

H2
Zar(BG,K2)→ H2

Zar(BT,K2).

The exact sequence (4.4) shows that Coker(H2
Zar(BG,K2) → H2

Zar(BT,K2)) is
torsion-free and by Theorem 4.6 Im(H2

Zar(BG,K2) → H2
Zar(BT,K2)) is contained

in the Weyl invariants H2
Zar(BT,K2)

W ' S2(LG)W .
On the other hand, by Proposition 3.20, H1

Zar(G,K2) is the kernel of the char-
acteristic map c : S2(LG) → CH2(X) and Demazure identified this kernel with
S2(LG)W ([14, cor. 2 to prop. 3] and [15], completed by [61]).

It follows that the map H2
Zar(BG,K2) → H2

Zar(BT,K2)
W is an injection with

torsion-free cokernel between two abelian groups of the same rank. Therefore it
must be surjective.

Step 2. The general case. We need a lemma:

4.9. Lemma. Let W be a finite group acting on a finitely generated free Z-module
A. Let B ⊆ A be a subgroup such that W acts trivially on B and C := A/B is free.
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Then

(i) The sequence

0→ B → AW → CW → 0

is exact.
(ii) If CW = 0, the sequence

0→ S2(B)→ S2(A)W → S2(C)W

is exact.

Proof. The first claim follows from the cohomology exact sequence and the equality
H1(W,B) = Hom(W,B) = 0. To see the second one, consider the complex of W -
modules

0→ S2(B)→ S2(A)→ S2(C)→ 0.(K)

This complex is acyclic, except at S2(A) where its cohomology is B ⊗ C. We
have two hypercohomology spectral sequences

Ip,q1 = Hq(W,Kp)⇒ Hp+q(W,K)⇐ IIp,q2 = Hp(W,Hq(K)).

The spectral sequence II degenerates, yielding a spectral sequence

Ip,q1 = Hq(W,Kp)⇒ Hp+q−1(W,B ⊗ C).

Since CW = 0 and B is free, (B ⊗ C)W = 0 too. So we get I0,0
2 = I1,0

2 = 0 and
the claim follows.

End of proof of Theorem 4.8. We check it case by case with the help of Theorems
4.6 and 4.7. The case i = 0 is trivial. Note that W (G) = W (H) [26, p. 181, Lemma
29.5] and (LH)W (H) = 0 since H is semi-simple. This yields immediately the case
i = 1. As for i = 2, it follows from the commutative diagram

0 // S2(LS)⊗M0(k) // H2
Zar(BG,M2) //

��

S2(LH)W⊗M0(k) // 0

0 // S2(LS)⊗M0(k) // S2(LG)W⊗M0(k) // S2(LH)W⊗M0(k)

where the top row is exact by Theorem 4.7 and the bottom row is exact by Lemma
4.9 (note that S2(LS), S2(LG)W and S2(LH)W are torsion-free).

4.10. Remark. The proof of Theorem 4.8 implies that for a semi-simple group G
the exact sequence (4.4) is up to isomorphism the same as the one in Proposition
3.20 (iii).

For a simple group G, it is well-known that the Weyl invariants S2(LG)W have
rank 1. In fact, the representation of W on LG is irreducible over C and hence

dim(S2(LG)W )+dim(∧∧∧2(LG)W ) = dim((LG⊗LG)W ) = dim((LG⊗(LG)∨)W ) = 1.

On the other hand, W cannot act as a symplectic representation as LG is defined
over Q, hence dim(∧∧∧2(LG)W ) = 0.

We now compare K-cohomology with analytic cohomology. This will be used in
Appendices B and C.
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4.11. Theorem. Under Assumption 3.19, there are isomorphisms

H1(BG,K1)
∼→ H2

an(BG(C),Z),

H2(BG,K2)
∼→ H4

an(BG(C),Z)

which are natural with respect to algebraic group homomorphisms.

The proof will be in four steps.

Step 1. For i = 1, 2, H i(BG,Ki) is invariant under base change.

This is clear from Theorem 4.8. More precisely, choose a Chevalley model of
G over Z [13], that we still denote by G, and choose a split maximal torus T of
this model as well. Then, for i = 1, 2, the functor A 7→ (Si(X(TA)))W from com-
mutative rings to abelian groups defines a constant sheaf for the Zariski topology,
where X(TA) is the group of characters of TA. By Theorem 4.8, (S2(X(Tk)))

W

is naturally isomorphic to H2(BG/k,K2) when k is a field. This argument allows
us in particular to pass from characteristic 0 to characteristic p via some discrete
valuation ring of unequal characteristic.

This shows that we may assume k = C in Theorem 4.11.

Step 2. For i = 1, 2, there is a natural map of Zariski sheaves Ki → Hian(Z), and

this map induces isomorphisms H i(BG,Ki) ∼→ Hi(BG,Hian(Z)).

For i = 1, the map is given by the composite map of presheaves

Γ(U,O∗U )→ H0
an(U,Gm)→ H1

an(U,Z)

where the second map comes from the exponential exact sequence

0→ Z 2πi−→ Ga
exp−→ Gm → 1.

This induces a composite

K1 ⊗K1 → H1
an(Z)⊗H1

an(Z)→ H2
an(Z)

in which the last map is cup-product. Since H2
an(A1

C−{0, 1},Z) = 0, this composite
factors through K2. Now that we have comparison maps, the claim follows once
again from Theorem 4.7.

Step 3. For i = 1, 2, there is a natural map Hi(BG,Hian(Z))→ H2i
an(BG,Z).

Indeed, for p+ q = 2 or 4, we have Hp(BG,Hqan(Z)) = 0 for p > q by Theorem
4.7. The Bloch-Ogus spectral sequence then yields the desired homomorphism.

Step 4. The map of Step 3 is an isomorphism.

Indeed, by Theorem 4.7 (iv), we have Hp(BG,H4−p
an (Z)) = 0 for p = 0, 1.

4.12. Remark. Theorem 4.7 shows that, for any cycle module M ,

Hi(BG,Ki)⊗Mj−i(k)→ H i(BG,Mj)

is an isomorphism for 0 ≤ j ≤ 2. Together with Theorem 4.11, this yields canonical
isomorphisms

Hi(BG,Mj) ' H2i
an(BG(C),Z) ⊗Mj−i(k)

for 0 ≤ j ≤ 2.



92 H. ESNAULT, B. KAHN, M. LEVINE, AND E. VIEHWEG

5. GL(N) and Cliff(n, n)

In this section, we use Theorem 4.8 to compute explicitly the lowerK-cohomology
of BG, where G = GL(N), SL(N),Cliff(n, n) and Spin(n, n).

5.1. SL(N) and GL(N). We take as maximal split torus for GL(N) the group
T of diagonal matrices and for SL(N) diagonal matrices T0 with determinant 1.
If x1, . . . , xN is the corresponding basis of characters of LGL(N), then LSL(N) =
LGL(N)/〈

∑
xi〉. The Weyl group W = SN acts by permutation of the xi; it fol-

lows that S(LGL(N))
W is the free polynomial algebra on the elementary symmetric

functions cr of the xi and that S(LSL(N))
W is its quotient by the ideal generated

by c1 =
∑
xi. In particular:

LWGL(N) = Zc1, LWSL(N) = 0,

S2(LGL(N))
W = Zc21 ⊕ Zc2, S2(LSL(N))

W = Zc2.

The restriction map induces homomorphismsH i(BGL(N),Kj)→ Hi(BT,Kj)W
and Hi(BSL(N),Kj) → H i(BT0,Kj)W , which are seen to be isomorphisms by
Theorem 4.8. By Theorem 4.6 and the above computation, we get:

5.2. Theorem. For N ≥ 1, restriction to the maximal torus yields isomorphisms:

H1(BGL(N),K1) = Zc1, H1(BSL(N),K1) = 0,
H2(BGL(N),K2) = Zc21 ⊕ Zc2, H2(BSL(N),K2) = Zc2.

5.3. Proposition. The Whitney formula holds for c1 and c2: for M,N ≥ 1 one
has

ρ∗c1 = c1 × 1 + 1× c1,
ρ∗c2 = c2 × 1 + c1 × c1 + 1× c2

where ρ is the embedding GL(M)×GL(N) ↪→ GL(M +N). In particular, c1 and
c2 are stable.

Proof. This can be proven by restriction to the maximal torus (Theorem 4.8) or by
reduction to topology (Theorem 4.11).

5.4. Remark. This shows that the classes c1, c2 of Theorem 5.2 coincide with the
Chern classes defined by Gillet in [21]. For c1, reduce by stability to the tautological
case of GL(1). For c2, reduce by Theorem 4.8 and the Whitney formula for the
Gillet classes to the case of c1.

5.5. Spin(n,n) and Cliff(n,n). We have the following

5.6. Proposition. Let q = nH, where H is the quadratic form xy. Let (e1, f1, . . . ,
en, fn) be the corresponding basis of the space underlying q. Then, in Cliff(nH) =
Cliff(n, n), the assignment

(t0, t1, . . . , tn) 7→ t0(t1e1 + f1)(e1 + f1) . . . (tnen + fn)(en + fn)

defines an isomorphism Gn+1
m

τ→∼ T of Gn+1
m onto a split maximal torus T . We

have:

(i) γ1 ◦ τ(t0, . . . , tn) = t20t1 . . . tn, where γ1 is the spinor norm of section 2 (see
diagram (2.2)).

(ii) ψ ◦ τ(t0, . . . , tn) = diag(t1, t
−1
1 , . . . , tn, t

−1
n ), where ψ : Cliff(n, n)→ SL(2n) is

the natural map.
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(iii) For n ≥ 2, the Weyl group W (Cliff(n, n)) is isomorphic to the subgroup of the
wreath product Sn o µ2 = Sn n {±1}n consisting of elements (σ, ε1, . . . , εn)
such that ε1 . . . εn = 1. For n = 1, it is trivial.

(iv) Suppose n ≥ 2. Via the isomorphism τ , W (Cliff(n, n)) acts on Gn+1
m as

follows:

σ(t0, t1, . . . , tn) = (t0, tσ(1), . . . , tσ(n)),

ε(t0, t1, . . . , tn) = (t0
∏
εi=−1

ti, t
ε1
1 , . . . , t

εn
n )

where σ ∈ Sn and ε = (ε1, . . . , εn) (with
∏
εi = 1).

Proof. Let us record the identities in the Clifford algebra of nH:

e2i = f2
i = 0,

eiej = −ejei; fifj = −fjfi,
eifj = −fjei (i 6= j),

eifi + fiei = 1,

eifiei = ei; fieifi = fi.

We first show that τ is a homomorphism. Since the ei and fi with different
indices anticommute, the (tiei+fi)(ei+fi) mutually commute and we may assume
n = 1 and obviously t0 = 1. Let us drop the indices 1 for simplicity. We have

(te+ f)(e + f) = tef + fe,

(sef + fe)(tef + fe) = st(ef)2 + (fe)2 = stef + fe.

Similarly, to compute γ1 ◦ τ and ψ ◦ τ , we may assume n = 1 and t0 = 1. We
have:

γ1((te+ f)(e + f)) = (te+ f)(e+ f)(e+ f)(te + f) = (te + f)2 = t.

On the other hand,

(tef + fe)e(tef + fe)−1 = (tef + fe)e(t−1ef + fe) = tefefe = te;

(tef + fe)f(tef + fe)−1 = (tef + fe)f(t−1ef + fe) = t−1fefef = t−1f ;

and, for v orthogonal to 〈e, f〉:
(tef + fe)v(tef + fe)−1 = (tef + fe)v(t−1ef + fe)

= v(tef + fe)(t−1ef + fe) = v.

The composition Gn+1
m

τ−→ T
(ψ,γ1)−→ TSL(2n) × Gm obviously has kernel µ2 ×

(1, . . . , 1), and scalar multiplication acts faithfully on C(nH), so that τ is injective.
Since the dimension of a maximal torus of Spin(n, n) or SO(n, n) is n, τ is also
surjective.

For n ≥ 2, the Weyl group of Cliff(n, n) is the same as that of its derived
subgroup Spin(n, n). This Weyl group is classically known [6, ch. VI, planche IV,
(X)]. For n = 1, Cliff(n, n) ' Gm × Gm, so W = 1. Finally, let us prove the last
claim. It suffices to observe that σ is represented by an element of Cliff(n, n) that
maps (ei, fi) to ±(eσ(i), fσ(i)) by conjugation (for σ = (1, 2), we may choose for
such an element (e1 + e2)(f1 + f2)− 1) and that ε is represented by an element of
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Cliff(n, n) that exchanges ei and fi exactly for those i such that εi = −1 (we may
choose for such an element

∏
εi=−1(ei + fi)).

We translate the action of W (Cliff(n, n)) on the group of characters LCliff(n,n),
provided with the basis x0, . . . , xn given by τ . We get:

• For σ ∈ Sn:
σx0 = x0, σxi = xσ−1(i) (i > 0).

• For ε ∈ {±1}n:

εxi =

{
εixi if i > 0,

x0 +
∑
j>0

1−εj
2 xj if i = 0.

On the other hand, a maximal torus of Spin(n, n) is given by Ker((γ1)|T ), hence
LSpin(n,n) is the quotient of LCliff(n,n) by the subgroup generated by

γ1 = 2x0 +
∑
i>0

xi.(5.1)

Let us also define

γ2 = 2x2
0 + 2x0

∑
i>0

xi +
∑

0<i<j

xixj .(5.2)

The following proposition follows from elementary computations.

5.7. Proposition. We have

(i) (LCliff(n,n))
W =

{
Zγ1 for n ≥ 2,

Zγ1 ⊕ Zx0 for n = 1.

(ii) (LSpin(n,n))
W =

{
0 for n ≥ 2,

Zx0 for n = 1.

(iii) S2(LCliff(n,n))
W =


Zγ2

1 ⊕ Zγ2 for n ≥ 3,

Zγ2
1 ⊕ Zγ2 ⊕ Zx0(γ1 − x0) for n = 2,

Zγ1x0 ⊕ Zγ1x1 ⊕ Zx2
0 for n = 1.

(iv) S2(LSpin(n,n))
W =


Zγ2 for n ≥ 3,

Zγ2 ⊕ Zx2
0 for n = 2,

Zx2
0 for n = 1.

(v) ψ∗c2 = 2γ2 − γ2
1 ∈ S2(LCliff(n,n)).

5.8. Theorem. For n ≥ 3, restriction to the maximal torus yields isomorphisms:

H1(B Cliff(n, n),K1) = Zγ1, H1(B Spin(n, n),K1) = 0,
H2(B Cliff(n, n),K2) = Zγ2

1 ⊕ Zγ2, H2(B Spin(n, n),K2) = Zγ2.

We have the identity, valid for all n ≥ 1:

ψ∗c2 = 2γ2 − γ2
1 ∈ H2

Zar(B Cliff(n, n),K2)(5.3)

where ψ : Cliff(n, n)→ SL(2n) is the natural map.

5.9. Proposition. The Whitney formula holds for γ1 and γ2: for m,n ≥ 1 one
has

ρ∗γ1 = γ1 × 1 + 1× γ1,

ρ∗γ2 = γ2 × 1 + γ1 × γ1 + 1× γ2
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where ρ is the embedding Cliff(m,m) × Cliff(n, n) ↪→ Cliff(m + n,m + n). In
particular, γ1 and γ2 are stable.

Proof. This is clear for γ1. For γ2, the easiest is to use formula (5.3) of Theorem
5.8. Note that c2 is additive since it comes from SL(2n). So (5.3) gives the Whitney
formula for γ2 multiplied by 2, and we can then divide by 2 since

H2
Zar(B(Cliff(m,m)× Cliff(n, n)),K2)

is torsion-free.

6. Two invariants for Clifford bundles

In this section we associate to a torsor F under Cliff(n, n) on a scheme X two
invariants with values in étale motivic cohomology of X , which are related to the
second Chern class of the vector bundle underlying F . When X = SpecK, K a
field, we relate these to the Arason invariant.

6.1. Recall Lichtenbaum’s complexes Γ(i) (i ≤ 2) ([39], [40], [41]). One has Γ(0) =
Z placed in degree 0, Γ(1) = Gm placed in degree 1 and Γ(2) is constructed in [40].

There are products Γ(i)
L⊗Γ(j) → Γ(i + j) for i + j ≤ 2. If X is a smooth variety

defined over a field k, one has ([41], [33, th. 1.1]):

Hi
ét(X,Γ(2)) =


0 i ≤ 0,

K3(k(X))ind i = 1,

H0
Zar(X,K2) i = 2,

H1
Zar(X,K2) i = 3,

(6.1)

and an exact sequence

0→ CH2(X)→ H4
ét(X,Γ(2))→ H0

Zar(X,H3(Q/Z(2)))→ 0(6.2)

when Hj(F) is the Zariski sheaf associated to the presheaf U 7→ Hj
ét(U,F).

This computation is done via the Leray spectral sequence for the map α : Xét →
XZar, together with the following computation of the Zariski sheaves:

Rqα∗Γ(2) =



0 for q ≤ 0,

the constant sheaf K3(k(X))ind for q = 1,

K2 for q = 2,

0 for q = 3,

Hq−1(Q/Z(2)) for q ≥ 4.

(6.3)

Here the étale sheaf Q/Z(2) is defined as lim−→µ⊗ 2
n if char k = 0 and

lim−→
(n,charF )=1

µ⊗ 2
n ⊕ lim−→

r

WrΩ
2
log[−2],

where WrΩ
2
log is the sheaf of logarithmic de Rham-Witt differentials over the big

étale site of Spec k and the transition maps are given by the Verlagerung (compare
[33]).

On the other hand, one has ([41], [33, th. 1.2])

Hi
Zar(X,Γ(2)) =


K3(k(X))ind i = 1,

H i−2
Zar (X,K2) 2 ≤ i ≤ 4,

0 otherwise.
(6.4)
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6.2. Lemma. Let X/k be a smooth, geometrically connected rational variety.
(This means that ks(X)/ks is a purely transcendental extension, where ks is a sep-
arable closure of k.) Then the map K3(k)ind → K3(k(X))ind is an isomorphism.

Proof. If k(X)/k is purely transcendental, this follows from [37, pp. 327–328] or
[48, lemma 4.2]. In general this follows from the commutative diagram

(K3(ks)ind)
Gk //

∼
(K3(ks(X))ind)

Gk

K3(k)ind

OO

o

// K3(k(X))ind

OO

o

in which the vertical isomorphisms follow from [37, th. 4.13] or [48, prop. 11.4].

6.3. Remark. One could weaken the assumption “rational” into “unirational”. It
is in fact conjectured that the result holds for any geometrically connected X (uni-
rational or not) [48, Conj. 11.7].

Hypercohomology with coefficients in Γ(2) extends to simplicial schemes. We
have:

6.4. Lemma. a) Let X• be a simplicial k-scheme, with all Xn smooth, geometri-
cally connected and rational (see Lemma 6.2). Then H1

ét(X•,Γ(2)) ' K3(k)ind and
the other formulæ in (6.1) and (6.2) hold for étale and Zariski cohomology of X•
(replacing CH2(X) by H2

Zar(X•,K2) in (6.2)).
b) Assume further that X0 = Spec k. Then the exact sequence (6.2) degenerates

into a canonical isomorphism

H4
ét(X•,Γ(2)) ' H3

ét(k,Q/Z(2))⊕H2
Zar(X•,K2).

This applies in particular to X• = BG/k, where G is a connected linear algebraic
group over k.

Proof. a) To compare H∗
ét(X•,Γ(2)) with H∗

Zar(X•,K2), we use the “Leray” spectral
sequence

Ep,q2 = Hp
Zar(X•, Rqα∗Γ(2))⇒ Hp+q

ét (X•,Γ(2))

where α is the natural map from the big étale site of Spec k to its big Zariski
site. The simplicial Zariski sheaves Rqα∗Γ(2) are given by (6.3); moreover the
assumption on X• and Lemma 6.2 imply that R1α∗Γ(2) is the constant simplicial
sheaf with value K3(k)ind. Therefore,

Ep,12 = Hp
Zar(X•, K3(k)ind) =

{
K3(k)ind p = 0,

0 p > 0,

and the computations of [41], [33] apply mutatis mutandis. (For b), we observe that
the composite map

H3(k,Q/Z(2)) = H4
ét(Spec(k),Γ(2))→ H4

ét(X•,Γ(2))→ E0,4
2

= H0
ét(X•,H3(Q/Z(2)))

is bijective, which follows from the spectral sequence (4.1) and the assumptions on

X0. It follows that the differential E0,4
2

d3→ E3,2
2 is 0, even though the latter group

may be nonzero.) The last claim follows from the fact that G, hence all Gp, are
geometrically connected rational varieties over k.
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6.5. Let X be a scheme. We shall give parallel definitions of Chern classes c1(V ),
c2(V ) for a vector bundle V on X (with values in Zariski motivic cohomology) and
classes γ1(F ), γ2(F ) for a Clifford bundle F on X (with values in étale motivic
cohomology). The classifying simplicial schemes BGL(N) and B Cliff(n, n) used
below will be considered over Z.

6.6. Vector bundles. Let V be a vector bundle of rank N on X . Then V is
locally trivial for the Zariski topology. Let (Ui) be a Zariski cover of X trivializing
V , and let U• be the associated simplicial scheme. We have a diagram

BGL(N)

U•

::

[V ]
v
v
v
v
v
v
v
v
v

$$
I
I
I
I
I
I
I
I
I
I

X

(6.5)

in which X is considered as a constant simplicial scheme. The top map [V ] is in-
duced by transition functions between given trivializations of V on the Ui’s. Since
the bottom map induces an isomorphism on Zariski cohomology, (6.5) yields ho-
momorphisms

H2i
Zar(BGL(N),Γ(i))

[V ]∗−→ H2i
Zar(X,Γ(i))

which only depend on the isomorphism class of V . We define

c1(V ) = [V ]∗c1 ∈ H2
Zar(X,Γ(1)),

c2(V ) = [V ]∗c2 ∈ H4
Zar(X,Γ(2)).

Note that H2i
Zar(X,Γ(i)) = Hi

Zar(X,Ki) (i ≤ 2). If X is a smooth variety over a
field, then the Bloch-Quillen isomorphism

Hi
Zar(X,Ki) ' CHi(X)

together with Remark 5.4 identifies c1(V ) and c2(V ) with the classical Chern classes
with values in the Chow ring of X .

6.7. Clifford bundles. Let F be a torsor on X under Cliff(n, n) (briefly, a
Cliff(n, n)-bundle). Then F is locally trivial for the étale topology. Let (Ui) be
an étale cover of X trivializing F , and let U• be the associated simplicial scheme.
We have a diagram

B Cliff(n, n)

U•

99

[F ]
s
s
s
s
s
s
s
s
s
s

%%
L
L
L
L
L
L
L
L
L
L
L

X

(6.6)

in which X is considered as a constant simplicial scheme. The top map [F ] is in-
duced by transition functions between given trivializations of F on the Ui’s. Since
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the bottom map induces an isomorphism on étale cohomology, (6.6) yields homo-
morphisms

H2i
ét(B Cliff(n, n),Γ(i))

[F ]∗−→ H2i
ét(X,Γ(i))

which only depend on the isomorphism class of F . We define

γ1(F ) = [F ]∗γ1 ∈ H2
ét(X,Γ(1)),

γ2(F ) = [F ]∗γ2 ∈ H4
ét(X,Γ(2)).

Note that, even though γ1 and γ2 are classes in Hi
Zar(B Cliff(n, n),Ki) (i =

1, 2), [F ] is only defined in the étale topology, so γi(F ) is not a priori a Zariski
cohomology class. The class γ1(F ) certainly is, since H2

Zar(X,Γ(1))→ H2
ét(X,Γ(1))

is an isomorphism. But, when X is smooth over a field, the map

CH2(X) ' H4
Zar(X,Γ(2))→ H4

ét(X,Γ(2))

(cf. (6.4)) coincides with the map of (6.2). The main point of this paper is that in
general γ2(F ) /∈ CH2(X), i.e. is not algebraic.

6.8. By pushout, the map

Cliff(n, n)→ SO(n, n)

associates to F a SO(n, n)-torsor E onX , that we shall call the underlying quadratic
bundle of F . Similarly, the composite

Cliff(n, n)→ SO(n, n)→ SL(2n)

associates to F an SL(2n)-torsor V , the underlying vector bundle of F .
The vector bundle V has a second Chern class c2(V ) ∈ H4

Zar(X,Γ(2)), that
we may map to H4

ét(X,Γ(2)). If 2 is invertible on X , the quadratic bundle E
has a Clifford invariant c(E) ∈ H2

ét(X,Z/2) (Definition 2.3). We define c2(F ) as
c2(V ) ∈ H4

ét(X,Γ(2)) and c(F ) as c(E).

6.9. Theorem. The characteristic classes

γ1(F ) ∈ H2
ét(X,Γ(1)), γ2(F ) ∈ H4

ét(X,Γ(2))

have the following properties and relations with c2(F ) ∈ H4
ét(X,Γ(2)) and c(F ) ∈

H2
ét(X,Z/2) (1/2 ∈ OX):

(i) naturality for all morphisms;

(ii) additivity:

{
γ1(F ⊥ F ′) = γ1(F ) + γ1(F

′),
γ2(F ⊥ F ′) = γ2(F ) + γ1(F ) · γ1(F

′) + γ2(F
′),

where the product corresponds to the pairing Γ(1)× Γ(1)→ Γ(2);
(iii) relation with c2: c2(F ) = 2γ2(F )− γ1(F )2;
(iv) relation with c (1/2 ∈ OX): δ1(γ1(F )) = c(F ), where δ1 : H2

ét(X,Γ(1)) =
H1

ét(X,Gm) → H2
ét(X,Z/2) is the boundary map from the Kummer exact

sequence.

Note that the class γ1(F ) has an elementary description as the image of [F ] ∈
H1

ét(X,Cliff(n, n)) into H1
ét(X,Gm) = H2

ét(X,Γ(1)) via the spinor norm γ1 of (2.2).

Proof. (i) is trivial; (ii) and (iii) follow from Theorem 5.8. It remains to prove (iv).
The diagram (2.2) gives an exact sequence

1→ µ2 → Cliff(n, n)
(ρ,γ1)−→ SO(n, n)×Gm → 1
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and the induced composed map

H1(X,Cliff(n, n))
(ρ∗,(γ1)∗)−→ H1(X,SO(n, n))×H1(X,Gm)→ H2(X,µ2)

of non-abelian cohomology pointed sets is zero. Hence the diagram

H1
ét(X,Cliff(n, n)) //

ρ∗

��

(γ1)∗

H1
ét(X,SO(n, n))

��

H1
ét(X,Gm) //

δ1
H2

ét(X,Z/2)

commutes.

Suppose X = SpecK where K is a field of characteristic 6= 2. Then H2(K,Γ(1))
= H1(K,Gm) = 0 (Hilbert 90) and c2(F ) = 0 since any vector bundle over SpecK
is trivial. So γ1(F ) = 0 and formula (ii) in Theorem 6.9 says that γ2 is additive,
while formula (iii) reduces to

2γ2(E) = 0.(6.7)

6.10. Lemma. Let F be a Cliff(n, n)-bundle over a field K, and let q be its un-
derlying quadratic form. Then q ∈ I3K.

Proof. By Merkurjev’s theorem [43] it suffices to see that c(q) = 0: this follows
immediately from Lemma 2.1 (or Theorem 6.9 (iv)).

6.11. Theorem. Let F be a Cliff(n, n)-bundle over K and q the underlying qua-
dratic form. Then

δ2(e
3(q)) = γ2(F )

where δ2 : H3(K,Z/2)→ H4(K,Γ(2)) is the boundary map coming from the Kum-
mer triangle [41], [33, (9)]

Z/2[−1]→ Γ(2)
2−→ Γ(2)→ Z/2.(6.8)

Proof. Write q +
∑
ϕi = 0 in W (K), where the ϕi are multiples of 3-fold Pfister

forms. So we have an isomorphism q ⊥⊥i ϕi ∼= mH for some m. Letting Fi and H
denote Cliff-bundles representing the ϕi and mH, we have (with obvious notation)

F ⊥⊥i Fi ' H
in view of Remark 2.2, hence γ2(F ⊥⊥i Fi) = γ2(H) = 0, and by Theorem 6.9 (ii):

γ2(F ) +
∑

γ2(Fi) = 0

(note that γ1 ≡ 0 on Spec k). Since e3(q) =
∑
e3(ψi) too, we are reduced to the

case in which q is a 3-fold Pfister form.
Recall that H3(K,Γ(2)) = 0 (see 6.1), so that δ2 is an isomorphism onto

2H4(K,Γ(2)). By diagram (6.7), γ2(F ) is 2-torsion: let γ̃2(F ) denote δ−1
2 (γ2(F )) ∈

H3(K,Z/2).

Let F̃ be a Spin-bundle lifting F , whose existence is assured by diagram (2.2)
and Hilbert’s Theorem 90. Then, by construction, γ̃2(F ) is nothing else than the

Rost invariant associated with F̃ (see Appendix B). Let K1 = K(q) be the function

field of the quadric defined by q and K2 = K(F̃ ) the function field of the torsor

F̃ . Since q is a Pfister form, qK1 is hyperbolic [35, cor. X.1.6], hence F̃K1 is trivial
as the map H1(K1, Spin(n, n))→ H1(K1, SO(n, n)) has trivial kernel (this follows
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from the surjectivity of the spinor norm for isotropic forms). Conversely, F̃K2 is
trivial, hence qK2 is hyperbolic. It follows that

e3(q), γ̃2(F ) ∈ Ker(H3(K,Z/2)→ H3(K1,Z/2))

∩Ker(H3(K,Z/2)→ H3(K2,Z/2)).

By Arason’s theorem [1, th. 5.6], the first kernel is generated by e3(q). By
Rost’s theorem (Theorem B.11), the second kernel is generated by γ̃2(F ). Therefore
γ̃2(F ) = e3(q), as we wanted.

7. Snaking a Bloch-Ogus differential

Let X be a smooth variety over k and n be prime to chark. Consider the
commutative diagram with exact rows and columns:

0

��

H0(X,H3(µ⊗2
n ))

��

0→ CH2(X) //

��

n

H4
ét(X,Γ(2)) //

��

n

H0(X,H3(Q/Z(2)))→ 0

��

n

0→ CH2(X) //

��

H4
ét(X,Γ(2)) // H0(X,H3(Q/Z(2)))→ 0

CH2(X)/n

��

0

(7.1)

The snake lemma defines a map

S : H0(X,H3(µ⊗2
n ))→ CH2(X)/n,

S(x) = Imnx̃ ∈ CH2(X)/n

where x̃ is a lift of x in H4
ét(X,Γ(2)).

7.1. Theorem. Let

d2 : H0(X,H3(µ⊗2
n ))→ H2(X,H2(µ⊗2

n )) ' CH2(X)/n

be the d2-differential from the Bloch-Ogus spectral sequence. Then d2 = S.
Proof. Let I∗ be a torsion free acyclic complex quasi-isomorphic to Γ(2). Multipli-
cation by n gives an injective map of complexes:

α∗I0 //
d

��

n

α∗I1 //

��

n

. . . // α∗Ii //

��

n

. . .

α∗I0 //
d

α∗I1 // . . . // α∗Ii // . . .

(7.2)
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with cokernel α∗Ii/nα∗Ii = α∗(Ii/nIi) quasi-isomorphic to µ⊗2
n .

Any n-torsion class e ∈ H0(X,R4α∗Γ(2)) = H0(X,H3(Q/Z(2))) is represented
on a suitable Zariski covering X• of X by xi ∈ Γ(Xi, α∗I4)d closed, with dxi = 0,
nxi = dyi for some yi ∈ Γ(Xi, α∗I3). To obtain S(e), one first lifts e as a class in
H4

ét(X,Γ(2)), with Čech cocycle

x = (xi0...i4 , xi0...i3 , . . . , xi0) ∈ (C4(α∗I0)× . . .× C0(α∗I4))d−δ,

where δ is the Čech differential. Thus

nx = (nxi0...i4 , . . . , nxi0 )
≡ (nxi0...i4 , . . . , nxi0i1 − (δy)i0,i1 , 0).

As R3α∗Γ(2) = 0, there are (after refining X•) elements zi0i1 ∈ C1(α∗I2) verify-
ing: dzi0i1 = nxi0i1 − (δy)i0i1 . Thus

nx ≡ (nxi0...i4 , nxi0i1i2i3 , nxi0i1i2 − (δz)i0i1i2 , 0, 0)

and S(e) is the class of

nxi0i1i2 − (δz)i0i1i2 in CH2(X) = H2
Zar(X,R

2α∗Γ(2)).

On the other hand, d2(e) is obtained as follows:

e as a class in H0
Zar(X,

Ker{α∗(I3/n)→ α∗(I4/n)}
Imα∗(I2/n)

)

is given by yi (mod n).
One takes yi0i1 ∈ Γ(Xi0i1 , α∗I2/n) verifying dyi0i1 = (δy)i0i1 mod n.
Then d2(e) = δy ∈ H2

Zar(X,H2(µ⊗2
n )). But we can take yi0i1 ≡ −zi0i1 (mod n).

Thus

δy ≡ −δz (mod n) ≡ +nx− δz (mod n).

This is S(e).

8. Proof of Theorem 1

First we remark that e = e3(q) lies in H0(X,H3(Z/2)): this is obvious from

Theorem 6.11 and the fact that H3
ét(O,Z/2)

δ2→ 2H4
ét(O,Γ(2)) is bijective for the

local rings O of X (Hilbert 90 for K2, see (6.3) and (6.8)).
We now consider the signed discriminant and Clifford invariant d±E, c(E) of

Definition 2.3. The Bloch-Ogus spectral sequence gives an exact sequence

0→ Pic(X)/2→ H2
ét(X,Z/2)→ H2(K,Z/2).(8.1)

8.1. Lemma. We have

d±E = 0,

[E] ∈ Im(H1
ét(X,SO(n, n)))→ H1

ét(X,O(n, n)), 1

and

c(E) ∈ Pic(X)/2.

1Although H1
ét(X, SO(n,n)) → H1

ét(X,O(n, n)) is injective if X is the spectrum of a field, it

need not be in general: we are indebted to Serre and Parimala for pointing this out.
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Proof. By assumption we have

(d±E)η = 0 = c(E)η

where η is the generic point of X . Since H1
ét(X,Z/2) → H1(K,Z/2) is injective,

this gives the first two claims, and the third follows from (8.1).

8.2. Lemma. The class [E] ∈ H1
ét(X,O(n, n)) is in the image of

H1
ét(X,Cliff(n, n))→ H1

ét(X,O(n, n)).

Proof. By Lemma 8.1, [E] can be lifted to H1
ét(X,SO(n, n)). Diagram (2.2) gives

a commutative diagram of pointed sets

H1
ét(X, Spin(n, n)) //

��

H1
ét(X,SO(n, n)) //

∂µ2
H2

ét(X,µ2)

��

θ

H1
ét(X,Cliff(n, n)) // H1

ét(X,SO(n, n)) //
∂Gm

H2
ét(X,Gm)

But by the Kummer exact sequence, Pic(X)/2 = Ker θ, so

∂Gm([E]) = θ(∂µ2([E])) = θ(c(E)) = 0

by Lemma 8.1.

Let F be a Cliff-bundle refining E (Lemma 8.2). By Theorem 6.11, we have

γ2(F )η = δ(e3(q))(8.2)

where δ is the “Kummer” boundary for weight-two étale motivic cohomology. By
Theorem 7.1, we have

d2(e
3(q)) = S(e3(q))

where S is the snake map of section 7. Equation (8.2) and the commutative diagram

H0(X,H3(Z/2))

��

�
�

// H3(K,Z/2)

��

δ

H4
ét(X,Γ(2)) // H0(X,H3(Q/Z(2)))

�
�

// H4(K,Γ(2))

shows that γ2(F ) lifts the image of e3(q) in H0(X,H3(Q/Z(2))). Therefore, the im-
age of e3(q) by S is the projection of 2γ2(F ) ∈ CH2(X) in CH2(X)/2. By Theorem
6.9 (iii), this is c2(E)+γ1(F )2. But by Theorem 6.9 (iv) we have δ1(γ1(F )) = c(F ),
hence (with an obvious abuse of notation) γ1(F ) = c(E) ∈ Pic(X)/2. Theorem 1
is proven.

9. Application to quadratic forms

Let q be a quadratic form over k. We assume q ∈ I2k, i.e. dim q even and
d±q = 1. The Clifford algebra C(q) is central simple over k: let X be its Severi-
Brauer variety and K = k(X). Over K, C(q) is split, hence (by Merkurjev’s and
Arason’s theorems) qK ∈ I3K and e3(q) is defined.

9.1. Theorem. If indC(q) ≥ 8, then d2(e
3(qK)) 6= 0.

9.2. Corollary. Under the conditions of Theorem 9.1, e3(qK) 6= 0, hence qK /∈
I4K.
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9.3. Corollary. Let n, i ≥ 0 and let Q(k, 2n, i) be the set of isomorphism classes
of quadratic forms q over k such that dim q = 2n, d±q = 1 and indC(q) ≤ i. Then,
if i ≥ 8, there exists no cohomological invariant eF : Q(F, 2n, i) → H3(F,Z/2)
(F ⊇ k) commuting with change of base field and such that e(q) = e3(q) if q ∈ I3F .

Corollary 9.2 is wrong if indC(q) ≤ 4. For example, let q be a non-hyperbolic
Albert form; then qK ∼ 0. Similarly, Corollary 9.3 is wrong for i = 2: one can
then define e(q) = e3(q ⊥ τ), where τ is the quaternion form such that c(q) = c(τ).
On the other hand, it seems likely that Corollary 9.3 still holds if i = 4, provided
n ≥ 4.

Proof of Theorem 9.1. Let E be the quadratic bundle q⊗kX , with generic fiber qK :
we are in the situation of Theorem 1. Since E is extended from k, its underlying
vector bundle is trivial, hence c2(E) = 0 and Theorem 1 reduces to

d2e
3(qK) = c(E)2.

To prove Theorem 9.1, it therefore suffices to show that c(E)2 6= 0 ∈ CH2(X)/2.
Let X = X ⊗k ks, where ks is a separable closure of k. Recall that X ' Pnks , with
n = dimX . On the other hand, we have:

9.4. Lemma. Let A be a central simple algebra of exponent 2 over k, and let X
be its Severi-Brauer variety.

a) Suppose that indA > 1. Then the map Pic(X)→ Pic(X) is injective and its
image is 2Zh, where h is the class of a hyperplane section in Pic(X).

b) Suppose that indA ≥ 8. Then Im(CH2(X)→ CH2(X)) = 4Zh2.

In particular, if H = 2h is the generator of Pic(X), then H2 /∈ 2CH2(X).

Proof. Recall first that CH i(Pnks) = hiZ, where h is the class of a hyperplane
section.

a) The injectivity is well-known and the value of the image is an easy consequence
of Roquette’s results on the Brauer group [55] (see also Panin [50]). (One can also
get it from the calculation below.)

b) From a), we evidently have the inclusion ⊇. To get the reverse inclusion, note
the commutative diagram

CH2(X) //
∼

F 2K0(X)/F 3K0(X)

CH2(X) //
∼

OO

F 2K0(X)/F 3K0(X)

OO

where F iK0 is the topological filtration on K0. By Quillen’s theorem [54, th.
8.4.1], K0(X) can be identified with the subgroup of K0(X) = K0(Pn) generated
by elements of the form ind(A⊗i)(1 + h)i, i ≥ 0. Since A has exponent 2, these
polynomials are

pi = (1 + h)2i = 1 + 2ih+ (2i− 1)ih2 + . . . (i ≥ 0),
qi = a(1 + h)2i+1 = a+ (2i+ 1)ah+ (2i+ 1)iah2 + . . . (i ≥ 0)

where a = indA.
On the other hand, the group F qK0(X) is the subgroup ofK0(X) formed of those

polynomials
∑
anh

n (an ∈ Z) such that a0 = · · · = aq−1 = 0, and F qK0(X) =



104 H. ESNAULT, B. KAHN, M. LEVINE, AND E. VIEHWEG

K0(X) ∩ F qK0(X). Let λi, µi ∈ Z be such that p =
∑

i λipi + µiqi ∈ F 2K0(X).
This means that ∑

i

λi + a
∑
i

µi = 0,∑
i

2iλi + a
∑

(2i+ 1)λi = 0.

Since by assumption a is divisible by 8, the second equality implies∑
i

iλi ≡ 0 (mod 4).

The coefficient of h2 in p is now∑
i

(2i− 1)iλi + a
∑
i

(2i+ 1)iµi ≡
∑

2i2λi −
∑
i

iλi ≡ 0 (mod 4)

by the above, since i2 ≡ i (mod 2).

By the Hochschild-Serre spectral sequence, H2(k,Z/2) → H2(X,Z/2) is injec-
tive; in particular 0 6= c(E) ∈ Pic(X)/2 ⊆ H2(X,Z/2). It follows from this and
Lemma 9.4 that Pic(X)/2 ' Z/2 and c(E) generates Pic(X)/2, hence c(E) ≡ H
(mod 2 Pic(X)). Therefore c(E)2 ≡ H2 6≡ 0 (mod 2CH2(X)).

Proof of Corollary 9.3. Suppose e exists. Let q ∈ Q(k, n, i) with indC(q) ≥ 8. Let
K be the function field of the Severi-Brauer variety of C(q). By naturality of e,
e(q)K = e(qK) = e3(qK). Then e3(qK) is defined over k, hence d2(e

3(qK)) = 0,
which contradicts Theorem 9.1.

9.5. Example. dim q = 8. Then qK is similar to a 3-fold Pfister form. If indC(q)
= 8, Corollary 9.2 implies that qK is not hyperbolic, hence anisotropic. Laghribi [34]
has shown that this still holds if indC(q) < 8, but the reason is entirely different:
it relies on the Arason-Pfister Hauptsatz.

Appendix A. Toral descent

A.1. Let π : X → Y be a morphism of schemes, and let Xn
Y denote the n-fold fiber

product of X over Y . Form the simplicial scheme EYX with n-simplices Xn+1
Y ,

where the map

EYX(g) : Xm+1
Y → Xn+1

Y

coming from g : ∆n → ∆m in ∆ is given on ring-valued points by

EYX(g)(x0, . . . , xm) = (xg(0), . . . , xg(n)).

If we are working in the category of schemes over a fixed base B, we write EX for
EBX .

The map π induces a natural augmentation εX/Y : EYX → Y.
The construction of EYX is functorial in the map X → Y ; in particular, if

X → Y is a map of simplicial schemes, we have the bi-simplicial scheme EYX ,
with (n,m)-simplices given by

(EYX)(n,m) = (EYmXm)n

and with augmentation εX/Y : EXY → Y .
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Let F be a sheaf over the big Zariski site of k. The augmentation εX/Y gives a
natural map

ε∗X/Y : H∗(Y,F)→ H∗(EYX,F).(A.1)

A.2. Lemma. Let X
π→ Y be a map of (simplicial) schemes. Suppose π has a sec-

tion σ. Then the augmentation map EYX
εX/Y−→ Y is a homotopy equivalence, where

we consider Y as a constant (bi)-simplicial scheme, and (A.1) is an isomorphism.
In particular, if C is a subcategory of the category of k-schemes, closed under finite
products over k, and if F is a Zariski sheaf on C, then the map

ε∗X/k : H0(Spec(k),F) = H∗(Spec(k),F)→ H∗(EX,F)

is an isomorphism for all X in C having a k-point.

Proof. For notational simplicity, we give the proof supposing that X and Y are
schemes. The section σ induces a map Eσ : EY Y = Y → EYX splitting εX/Y .

The simplicial set [0, 1] is the nerve of the category associated to the partially
ordered set 0 < 1, hence [0, 1] has n-simplices given as the set of length n+ 1 non-
decreasing sequences of 0’s and 1’s. Given such a sequence s : {0, . . . , n} → {0, 1},
define

ps : X
n+1
Y → Xn+1

Y

by

ps(x0, . . . , xn) = (y0, . . . , yn)

where yi = σ(π(xi)) if s(i) = 0 and yi = xi if s(i) = 1. Letting EYX × [0, 1] be the
diagonal simplicial scheme

(EYX × [0, 1])n := (EYX)n × [0, 1]n

the maps ps define the map of simplicial schemes

p : EYX × [0, 1]→ EYX

with p|EYX×0 = Eσ ◦ εX/Y ; p|EYX×1 = idEYX .

Let X be a simplicial scheme, T ∼= Gr
m a split torus of rank r, and µ : X×T → X

an action of T on X . We call the T -action free if the action on the n-simplices
Xn × T → Xn is free for each n. Assuming that the quotients Xn/T exist for
each n, we may form the simplicial scheme Y with n-simplices Yn := Xn/T and
canonical morphism π : X → Y .

A.3. Proposition. Let µ : X×T → X be a free T -action on a smooth (simplicial)
k-scheme X such that the quotient X → Y := X/T exists. Then the map (A.1) is
an isomorphism.

Proof. Suppose that X is a smooth simplicial k-scheme. We have the spectral
sequences

Ep,q1 (EYX) = Hq(EYpXp,F) =⇒ Hp+q(EYX,F),

Ep,q1 (Y ) = Hq(Yp,F) =⇒ Hp+q(Y,F)

and the augmentation induces a map of spectral sequences. This reduces us to
considering the case of a smooth k-scheme X with T -action.



106 H. ESNAULT, B. KAHN, M. LEVINE, AND E. VIEHWEG

Since the T -action is free, the map X → Y := X/T makes X into a T -torsor
for the étale topology. By Hilbert’s Theorem 90, X → Y is a Zariski locally trivial
T -bundle. Let

U := {U0, . . . , Us}
be a Zariski open cover of Y trivializing π : X → Y , let Vi = π−1(Ui), and let V be
the open cover {V0, . . . , Vs} of X . We form the simplicial schemes N (U) and N (V)
(where N stands for “nerve”), giving the map of augmented simplicial schemes

N (V) //
Π

��

N (U)

��

X //
π

Y.

This induces the augmentation

εΠ : EN (U)N (V)→ N (U)

and the commutative diagram

EN (U)N (V) //
εΠ

��

N (U)

��

EYX //
επ

Y.

(A.2)

As Zariski cohomology of a Zariski sheaf satisfies Mayer-Vietoris for Zariski open
covers, the right-hand vertical arrow in (A.2) induces an isomorphism

H∗(Y,F)→ H∗(N (U),F).

The cover V induces a cover Vn of (EYX)n by the open subsets {(EU0V0)n, . . . ,
(EUsVs)n}. We have the canonical identification

[EN (U)N (V)]n,∗ ∼= N (Vn).

By a spectral sequence argument as above, this implies that the left-hand vertical
arrow in (A.2) induces an isomorphism

H∗(EYX,F)→ H∗(EN (U)N (V),F).

Using the other spectral sequence for the cohomology of EN (U)N (V) and N (U),
we thus reduce to the case X = Y ×k T , with T acting by multiplication on the
factor T .

In this case, the projection X → Y has the section σ : Y → X given by σ(y) =
(y, 1). We then apply Lemma A.2.

A.4. Remark. The proof works just as well for X → Y a Zariski-locally trivial
family with fiber F , such that F has a k-point, and similarly for X → Y an étale-
locally trivial family with fiber F , such that F has a k-point, provided we use étale
cohomology instead of Zariski cohomology.

A.5. Proposition. Let f : X → X ′ be a T -equivariant map of smooth (simplicial)
k-schemes with free T -action, such that the quotients Y := X/T and Y ′ := X ′/T
are defined, and let g : Y → Y ′ be the induced map. Suppose that f induces an
isomorphism

f∗ : H∗(X ′,F)→ H∗(X,F)
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for all sheaves F on the big Zariski site over k. Then g induces an isomorphism

g∗ : H∗(Y ′,F)→ H∗(Y,F)

for all sheaves F .

Proof. The commutative diagram

X //

��

X ′

��

Y // Y ′

defines a commutative diagram

EYX //
h

��

EY ′X ′

��

Y // Y ′

By Proposition A.3, we need only show that the map

h∗ : H∗(EY ′X ′,F)→ H∗(EYX,F)

is an isomorphism. The map h induces a map of spectral sequences, given on the
E1-terms by

Ep,q1 (EY ′X ′) = Hq((EY ′X ′)p,∗,F)
h∗p−→ Ep,q1 (EYX) = Hq((EYX)p,∗,F).

We have natural isomorphisms

(EYX)p,∗ ∼= X∗ ×k T p; (EY ′X ′)p,∗ ∼= X ′
∗ ×k T p

which identify the map hp on p-simplices with f × idTp . The cohomology of each
of these spaces is the abutment of Leray spectral sequences

Ep,q2 = Hp(X,Rqπ∗F)⇒ Hp+q(X ×k T p,F)

(where π : X ×k T p → X is the first projection) and similarly for X ′. By our
assumption on f and a spectral sequence comparison argument, each h∗p is an
isomorphism.

A.6. Example. Let T be a split torus in a reductive algebraic group scheme G.
Then the diagonal action of T on Gn and on T n is free, giving the T -equivariant
morphism ET → EG induced by the inclusion of T into G. It is easy to see
that the quotient EG/T exists; the quotient ET/T is by definition BT , giving the
commutative diagram

ET //

��

EG

��

BT //
i

EG/T

Now T andG have the k-point 1; it thus follows from Lemma A.2 and Proposition
A.5 that the map

i∗ : H∗(EG/T,M∗)→ H∗(BT,M∗)
is an isomorphism. This holds more generally when replacing T by a reductive
subgroup whose torsors are locally trivial for the Zariski topology (e.g. a product
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of Gm, SL(n) and Sp(2n)), or by any reductive subgroup if we replace Zariski
cohomology by étale cohomology.

Appendix B. The Rost invariant

Let H be a semi-simple, simply connected linear algebraic group over k. If H is
split, we have an isomorphism H2

Zar(BH,K2)
∼→ S2(LH)W by Theorem 4.8, where

T is a split maximal torus, LH = Hom(T,Gm) and where W is the Weyl group of
H . By Lemma 6.4, we therefore have a canonical isomorphism:

H4
ét(BH,Γ(2)) ' H3(k,Q/Z(2))⊕ S2(LH)W .

If H is simple, the group S2(LH)W is known to be free of rank 1. We show that
this situation extends to the non-split case in a straightforward way.

B.1. Proposition. Let H be a (not necessarily split) semi-simple, simply con-
nected linear algebraic group over k. Let X• be a smooth simplicial scheme over
k and E• → X• be an H-torsor (this means that, for each n, En → Xn is an
H-torsor, and that all faces and degeneracies preserve the torsor structures). Then
there are isomorphisms

Hi
ét(X•,Γ(2))

∼→ Hi
ét(E•,Γ(2)) (i ≤ 2)

and an exact sequence

0→ H3
ét(X•,Γ(2))→ H3

ét(E•,Γ(2))→ H0
ét(X•,H1(E•,K2))

→ H4
ét(X•,Γ(2))→ H4

ét(E•,Γ(2))

where H1(E•,K2) is the simplicial sheaf defined as follows: its component over
Xn is the étale sheaf associated to the presheaf U 7→ H1

Zar(En ×Xn U,K2). This
simplicial sheaf is locally constant.

To prove this proposition, we use the following lemma:

B.2. Lemma. Let X be a smooth variety over k and E be an H-torsor on X. Let

Γét(π, 2) = cone(Γét(X, 2)→ Rπ∗Γét(E, 2))

where π : E → X is the projection. Then the cohomology sheaves Hi(Γét(π, 2)) are:

• 0 for i ≤ 2;
• the (locally constant) sheaf H1(E,K2) defined as in Proposition B.1 for i = 3.

Proof. We have an exact sequence of étale sheaves

0→ H0(Γét(π, 2))→ H1(Γét(X, 2))→ R1π∗Γét(E, 2)

→ H1(Γét(π, 2))→ H2(Γét(X, 2))→ R2π∗Γét(E, 2)→ · · · .
By [40] (and [33, lemma 1.4 (ii)]), the étale sheaf Hq(Γét(X, 2)) is 0 for q 6= 1, 2,

and its stalk at a geometric point x ∈ X is K3(K
sh
x )ind for q = 1 (resp. K2(OshX,x)

for q = 2), where OshX,x is the strict henselization of OX at x and Ksh
x is its field of

fractions. Since H is locally split and E is locally trivial for the étale topology, the
stalks of Rqπ∗Γét(E, 2) for q ≤ 4 are given by (6.1), (6.2) and Corollary 3.22: for a
geometric point x of X , we have

• R1π∗Γét(E, 2)x = K3(K
sh
x )ind;

• R2π∗Γét(E, 2)x = K2(OshX,x);
• R3π∗Γét(E, 2)x = H1

Zar(OshX,x ×X E,K2) = H1
Zar(K

sh
x ×X E,K2).
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To get the first isomorphism, note that by Lemma 6.2,K3(K)ind
∼→ K3(K(H))ind

for all K, since H is a geometrically connected rational variety. To get the second
isomorphism, use Corollary 3.22 for M∗ = KM

∗ and i = 2 plus Gersten’s conjecture
for K2. Similarly for the third isomorphisms. Note that, if Hsplit is the split semi-
simple group associated to H , H1(E,K2) is locally isomorphic to the constant sheaf
H1

Zar(Hsplit,K2).
All this gives H0(Γét(π, 2)) = 0 and the rest of the sequence as

0→ H1(Γét(π, 2))→ K2 → K2 → H2(Γét(π, 2))

→ 0→ H1(H,K2)→ H3(Γét(π, 2))→ 0.

Proposition B.1 now follows from Lemma B.2 by noting that

H3
ét(X•,Γ(π•, 2)) ' H0

ét(X•,H1(E•,K2))

where π• : E• → X• is the projection and Γ(π•, 2) is the simplicial complex of
sheaves with components Γ(πn, 2).

B.3. Corollary. Let H be as in Proposition B.1 and H = H ×k ks, where ks is
a separable closure of k. Then K2(k)

∼→ H0
Zar(H,K2) and there is a commutative

square of isomorphisms

H2
Zar(BH,K2)

Gk // H1
Zar(H,K2)

Gk

H2
Zar(BH,K2) //

OO

H1
Zar(H,K2).

OO

Proof. The vertical homomorphisms in the diagram are induced by extension of
scalars. Applying Proposition B.1 to the torsor H → Spec k and using Proposition
3.20 (i) and (6.1) proves the first claim. This also follows from Proposition 3.20 (i),
together with Suslin’s result [63] that K2(k(X))/K2(k) satisfies Galois descent.

Noting that the unit section splits the map H → Spec k, Proposition B.1 and
(6.1) show that the right hand vertical arrow is an isomorphism.

Now consider the spectral sequence (4.1) for K2 on both BH and BH . We know

from the proof of Theorem 4.7 that E1,1
1 = E1,1

2 for BH . Replacing H with H2,
we have shown above that the map

H1
Zar(H

2,K2)→ H1
Zar(H

2
,K2)

Gk

is an isomorphism, hence E1,1
1 = E1,1

2 for BH as well. The first claim applied to

Hp shows that the Ep,02 terms are zero, hence the maps

H2
Zar(BH,K2)→ H1

Zar(H,K2)

and

H2
Zar(BH,K2)→ H1

Zar(H,K2)

exist and are isomorphisms. The commutativity of the diagram then follows from
the naturality of the spectral sequence (4.1).

B.4. Lemma. Suppose that in Proposition B.1, H is absolutely simple. Then the
sheaf H1(E•,K2) is constant, with value Z.



110 H. ESNAULT, B. KAHN, M. LEVINE, AND E. VIEHWEG

Proof. We first deal with the case H = SL(N). Then, for each n, En → Xn is
locally trivial for the Zariski topology. It follows that the Zariski sheaf associated
to the presheaf U 7→ H1

Zar(En×XnU,K2) is locally isomorphic to the constant sheaf
with value H1(SL(N),K2) ' Z, hence is itself constant with value Z. The same is
a fortiori true for the corresponding étale sheaf.

In general, let ρ : H → SL(N) be a nontrivial representation defined over k,
and let ρ∗E• be the induced torsor over X•. The map H1

Zar(SL(N) ×k ks,K2) →
H1

Zar(H,K2) is nontrivial (see below). Since both groups are infinite cyclic, it
is injective. It follows that the natural map of étale sheaves H1(ρ∗E•,K2) →
H1(E•,K2) is a monomorphism. Since both sheaves are locally isomorphic to Z
and the first one is constant, the second one must be constant too.

B.5. Theorem. Let H be a simple simply connected algebraic group over k. Then:
a) There is an isomorphism

H4
ét(BH,Γ(2)) ' H3

ét(k,Q/Z(2))⊕ Z.
b) For X•, E• as in Proposition B.1, with X0 geometrically connected, the exact

sequence of Proposition B.1 simplifies to

0→ H3
ét(X•,Γ(2))→ H3

ét(E•,Γ(2))→ Z α→ H4
ét(X•,Γ(2))→ H4

ét(E•,Γ(2)).

Moreover, if Y•
f→ X• is a map of smooth simplicial k-schemes, with Y0 geometri-

cally connected, and F• = f∗E•, then the map

H0
ét(X•,H1(E•,K2))→ H0

ét(Y•,H
1(F•,K2))

is an isomorphism.
c) If X• is either constant or satisfies the assumptions of Lemma 6.4 a), then

this exact sequence can be rewritten

0→ H1
Zar(X•,K2)→ H1

Zar(E•,K2)→ Z α→ H4
ét(X•,Γ(2))→ H4

ét(E•,Γ(2)).

Proof. The hypothesis on H implies that H ' R`/kH
′ where H ′ is absolutely

simple, `/k is a finite separable extension and R`/k denotes Weil’s restriction of
scalars [65, p. 46]. By Corollary 3.21, we have

H1
Zar(H,K2) ' IndGkG`H1

Zar(H
′
,K2)

as Galois modules, and Lemma B.4 shows that G` acts trivially on H1
Zar(H

′
,K2).

Therefore, H1
Zar(H,K2) is a permutation module under Gk and H1

Zar(H,K2)
Gk '

H1
Zar(H

′,K2) ' Z. a) follows from this, together with Corollary B.3 and Lemma
6.4.

To prove b), we observe that there exists up to isomorphism a unique H ′-torsor
E′
• over X ′

• := X• ⊗k ` such that E• ' f∗E′
•, where f : X ′

• → X• is the projection.
Then H1(E•,K2) ' f∗H1(E′

•,K2) ' f∗Z, hence

H0
ét(X•,H1(E•,K2)) ' H0

ét(X
′
•,Z) = H0

ét(X
′
0,Z) = Z

since X ′
0 = X0 ×k l is connected. The last claim of b) is obvious, by a similar

argument. Finally, c) follows from b) and (6.1) or Lemma 6.4. (The computation
H1

Zar(H,K2) ' Z is due to Deligne [12].)

B.6. Let H be simple simply connected and let ρ : H → SL(N) be some nontrivial

representation as above. If k = C, the map H2
Zar(BSL(N),K2)

ρ∗→ H2
Zar(BH,K2)

is nontrivial. An easy way to see this is to use Theorem 4.11 to reduce to topology,
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in which case the result is well-known. If H is split, the same holds by reduction to
the complex case (Theorem 4.11). This is still the case for general H , as one sees
by passing to the separable closure of k.

If ρ′ is another such representation ofH , then ρ∗c2 and ρ′∗c2 differ inH2(BH,K2)
' Z by a positive rational number. To see this, embed ρ and ρ′ into ρ + ρ′. This
reduces us to the case in which ρ′ = λ ◦ ρ for some λ : SL(N) → SL(N + N ′);
then it can be checked that λ∗c2 is a positive multiple of c2 by reducing to the fun-
damental representations of SL(N) (alternatively, reduce to topology). It follows
that there is a unique generator γH of H2

Zar(BH,K2) such that, for ρ : H → SL(N)
a homomorphism of algebraic groups,

ρ∗c2 = dργH

where dρ is a positive integer. Note that the string of isomorphisms

H2
Zar(BH,K2)

∼→ H1
Zar(H,K2)

∼→ H1
Zar(H,K2)

Gk = H0
ét(BH,H

1(EH,K2))

(compare Corollary B.3) yields a canonical generator of the three other groups, that
we still denote by γH .

Let dH be the greatest common divisor of the integers dρ. If H is split, these
multipliers are clearly independent of k; they were computed explicitly by Dynkin
[16] in the case k = C for analytic cohomology, with a few mistakes for H = E8,
corrected by Freudenthal [18] and others (see [25] and [36, prop. 2.6]). It turns
out that, at least in the split case, dH is always realized by a certain fundamental
SL-representation ψ of H .

For the reader’s convenience, we recall the list of Dynkin indices of split sim-
ple groups, together with the weight of a fundamental representation ψ such that
dψ = dH (compare [25] or [36, prop. 2.6]):

H Ar Br, r ≥ 3 Cr Dr, r ≥ 4 E6 E7 E8 F4 G2

dH 1 2 1 2 6 12 60 6 2
weight of ψ $1 $1 $1 $1 $6 $7 $8 $4 $1

The reader should take special care with D3, corresponding to Spin(3, 3), which
is not in this table. In fact, D3 is isomorphic to A3 and Spin(3, 3) is accordingly
isomorphic to SL(4), so its Dynkin index is 1. However the index associated to the
representation ψ of Theorem 5.8 is 2 even for n = 3 and Theorem 5.8 is correct as
stated.

Let X be a k-scheme and E an H-torsor on X , as in Proposition B.1. Then E
is locally trivial for the étale topology of X and γH yields a characteristic class

γH(E) = [E]∗γH ∈ H4
ét(X,Γ(2))

where [E] ∈ [X,BH ]ét is the homotopy class associated to E. We have:

B.7. Lemma. Let ρ : H → SL(N) be a linear representation of H, and let V =
ρ∗E be the associated vector bundle. Then

ρ∗c2(V ) = dργH(E)

where dρ is the multiplier described in B.6.

Suppose now that X = Spec k. Then H3
ét(k,Q/Z(2)) → H4

ét(k,Γ(2)) is an iso-
morphism. Denote by e(E) the inverse image of γH(E) in H3

ét(k,Q/Z(2)): this is
the Rost invariant of E.
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B.8. Proposition. For any E over Spec k, we have

dHe(E) = 0

where dH is the Dynkin index of H.

Proof. This is obvious from Lemma B.7.

As in [33, end of introduction], let

Z/dH(2) =

{
µ⊗2
dH

if chark = 0,

µ⊗2
d′H
⊕WrΩ

2
log[−2] if chark = p > 0

where (if chark = p > 0) d′H is the prime-to-p part of dH and WrΩ
2
log is the weight-

two logarithmic part of the de Rham-Witt complex at length r, where pr‖dH .
From the Merkurjev-Suslin theorem [46] (and the Bloch-Gabber-Kato theorem at
the characteristic [4, Corollary 2.8]), the sequence

0→ H3
ét(k,Z/dH(2))→ H3

ét(k,Q/Z(2))
dH→ H3

ét(k,Q/Z(2))

is exact. So the Rost invariant refines into an invariant in H3
ét(k,Z/dH(2)).

Let X be a smooth variety over k and E an H-torsor over X . One sees as in
section 8 that the component e(Eη) in H3

ét(k(X),Z/d′H(2)) is unramified over X .
We can then show the following analogue to Theorem 6.11, exactly in the same way
as above:

B.9. Theorem. Let ρ : H → SL(N) be a representation of H, and let e′(Eη) ∈
H0(X,H3(µ⊗2

d′ρ
)) be the prime-to-the-characteristic part of e(Eη), viewed in the

group H0(X,H3(µ⊗2
d′ρ

)) where d′ρ is the prime-to-p part of dρ. Then

d2(e
′(Eη)) = c2(E) ∈ CH2(X)/d′ρ

where c2(E) is the second Chern class of the vector bundle deduced from E via the
representation ρ.

If it happens that dρ = dH , this theorem gives a computation of d2(e
′(Eη)) ∈

CH2(X)/dH , viewing e′(Eη) as an element of H0(X,H3(µ⊗2
d′H

)).

We conclude this section with a proof of Rost’s announced theorem. When
H = Spin, this allows this paper to be self-contained.

B.10. Proposition. Let H be simple, simply connected and let E → X be an H-
torsor on a smooth k-scheme X. Then, with notation as in Theorem B.5 b), we
have α(1) = γH(E). In particular,

Ker(H4
ét(X,Γ(2))→ H4

ét(E,Γ(2))) = 〈γH(E)〉.
Proof. This follows from the commutative diagram, coming from Theorem B.5 c):

H1
Zar(E,K2) // ZγH //

α H4
ét(X,Γ(2)) // H4

ét(E,Γ(2))

0 = H1(EH,K2) // ZγH //
α

OO

[E]∗ =

H4
ét(BH,Γ(2)) //

OO

[E]∗

H3
ét(k,Q/Z(2))

OO

[E]∗

(B.1)

(note that, by Lemma A.2, H1
Zar(EH,K2) = 0 and the composite H4

ét(k,Γ(2)) →
H4

ét(BH,Γ(2))→ H4
ét(EH,Γ(2)) is an isomorphism).
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B.11. Theorem (Rost). Let H be a simple, simply connected algebraic group over
k. Let E be an H-torsor on k and let K = k(E) be its function field. Let η be the
map H3

ét(k,Q/Z(2))→ H3
ét(K,Q/Z(2)) given by extension of scalars. Then

Ker η = 〈e(E)〉.
Proof. Note that E ' H and that K2(k)

∼→ H0(H,K2), as follows from Proposition
3.20. We therefore have an exact sequence extending that of Theorem B.5 c) (for
X• = Spec k):

H1(E,K2)→ (H1(E,K2)
GF ' Z) α >> Ker η → Ker(CH2(E)→ CH2(E)).

(This exact sequence follows from [9, prop. 3.6] and [32, th. 3.1], see [53] or [33,
th. 1].) We have CH2(E) = CH2(E) = 0: as has already been pointed out, the
case of E ' H follows from [38, th. 2.1], and the general case of E is [51, cor. 5.2
(4)]. Finally, the equality α(γH) = e(E) is a special case of Theorem B.5 c) (for
X• = Spec k).

Appendix C. An amusing example

Let H be as above. We apply Proposition B.10 to the following “generic” case:
let ρ : H → SL(N) be a faithful linear representation of H . To ρ and r ≥ 1 we
associate the k-variety

BrH =
SL(N + r)

H × SL(r)

where H is identified with its image in SL(N). We also associate the vector bundle
H∆l × kN/ρ on BH , and its class ρ∗c2 ∈ H4

ét(BH,Γ(2)).
The variety BrH is smooth and carries a tautological H-torsor E = SL(N + r)/

SL(r). As before, E determines a homotopy class of map

[E] ∈ [BrH,BH/k]ét.

C.1. Theorem. a) For r ≥ 2, the map

H4
ét(BH,Γ(2))

[E]∗−→ H4
ét(BrH,Γ(2))(C.1)

is injective, with p-primary torsion cokernel, where p is the characteristic exponent
of k (so, in characteristic 0, it is an isomorphism).

b) For r = 1, there is a split exact sequence, up to p-primary torsion groups

0→ H3(k,Q/Z(2))→ H4(B1H,Γ(2))→ Z/dρ → 0

and (C.1) has p-primary torsion cokernel. Its kernel is generated by ρ∗c2.

Proof. We first compute H∗
Zar(E,K2) for r ≥ 2. We could go via the Leray spectral

sequence of the fibration π : SL(N + r) → E (for the Zariski cohomology), using
the fact that any SL(r)-bundle is locally trivial for the Zariski topology and using
Corollary 3.22 as above. It is perhaps more elegant to go back to cycle cohomology
and use Rost’s spectral sequence [57, cor. 8.2]:

Ep,q2 = Ap(E,Aq[π,K2])⇒ Ap+q(SL(N + r), K2)

where π : SL(N + r)→ E is the projection (the two arguments are essentially the
same anyway). Aq[π,Kj] is defined by

Aq[π,Kj](K) = Aq(SL(N + r) ×E SpecK,Kj)
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for any point SpecK → E. It is a cycle module, since the fibration π is a SL(r)-
torsor, its fiber is trivial at all such points and in particular Aq[π,Kj ](K) '
Aq(SL(r)/K,Kj) for any K. The spectral sequence gives an exact sequence

0→ A1(E,A0[π,K2])→ A1(SL(N + r), K2)

→ A0(E,A1[π,K2])→ A2(E,A0[π,K2])→ 0

noting that A2(SL(N + r), K2) = 0 in view of Proposition 3.20. Still from Propo-
sition 3.20, we get A0[π,K0] = K0, A

0[π,K1] = K1, A
1[π,K1] = 0 and

Aq[π,K2] '


K2, q = 0,

Zc2 (constant), q = 1,

0, q ≥ 2.

Therefore

A0(E,A1[π,K2]) = H0
Zar(E,Zc2) = Zc2

and the map

A1(SL(N + r), K2) = Zc2 → A0(E,A1[π,K2]) = Zc2

is an isomorphism as it is an isomorphism while restricting to the generic point of
E. Thus both A1(E,A0[π,K2]) and A2(E,A0[π,K2]) are zero. Since

A1(E,A0[π,K2]) = H1

K2(k(E))→
⊕

x∈E(1)

K1(k(x))→
⊕

x∈E(2)

Z{x}
 = A1(E,K2)

and

A2(E,A0[π,K2]) = H2

K2(k(E))→
⊕

x∈E(1)

K1(k(x))→
⊕

x∈E(2)

Z{x}
 = A2(E,K2)

we get A1(E,K2) = A2(E,K2) = 0. By (6.2), it follows that

H4
ét(E,Γ(2))

∼→ H0
Zar(E,H3(Q/Z(2))).

On the other hand,

H3(k,Ql/Zl(2))
∼→ H0

Zar(E,H3(Ql/Zl(2)))

for all l 6= p. To see this, apply the Rost spectral sequence to the cycle module
K 7→ H∗(K,Ql/Zl(∗ − 1)) and use Proposition 3.20 (i). Hence the map

H4
ét(k,Γ(2))→ H4

ét(E,Γ(2))

has p-primary torsion cokernel; and this map is injective since E has a rational
point.

For r ≥ 2, Theorem C.1 now follows from diagram (B.1). Finally, in the case
r = 1, we have E = SL(N + 1) and Proposition 3.20 shows that Ai(E,K2) =
K2(k),Zc2 or 0 according as i = 0, 1 or 2, and the conclusion again follows from
diagram (B.1).

In contrast to Theorem C.1, the Zariski cohomology groups of BH and BrH are
in general “different”, as the following corollary shows.
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C.2. Corollary. For r ≥ 2,
a) There is an exact sequence

0→ CH2(BrH)⊗ Z[1/p]
cl2−→ H2

Zar(BH,K2)⊗ Z[1/p]

→ H0
ét(BrH,H3(Q/Z(2)))

H3
ét(k,Q/Z(2))

⊗ Z[1/p]→ 0

where, as before, p is the characteristic exponent of k. This exact sequence real-
izes CH2(BrH) ⊗ Z[1/p] as a subgroup of index dH of H2

Zar(BH,K2) ⊗ Z[1/p] =
Z[1/p]γH .

b) We have:

H0
ét(BrH,H3(Q/Z(2)))⊗ Z[1/p] ' H3

ét(k,Q/Z(2))⊗ Z[1/p]⊕ Z[1/p]e(Eη)

where e(Eη) is the Rost invariant of the generic fiber of the H-torsor E; this in-
variant has order dH .

Proof. We assume in the sequel that everything has been tensored by Z[1/p]. The
first claim of a) follows easily from Theorem C.1, the diagram with exact rows

0→ H2
Zar(BH,K2) // H4

ét(BH,Γ(2)) //

��

o

H3(k,Q/Z(2))→ 0

0→ CH2(BrH) // H4
ét(BrH,Γ(2)) // H0

Zar(BrH,H3(Q/Z(2)))→ 0

and the fact that H3(k,Q/Z(2))→ H0
Zar(BrH,H3(Q/Z(2))) is split injective, since

BrH has a rational point. (The top row is a split exact sequence by Lemma 6.4.)
On the other hand, b) follows from a).

It remains therefore to prove the second claim of a). This is equivalent to a
statement proved by Rost (see [60, p. 783-15, exemple]). We shall give a simple
proof of it, based on a recent result of Merkurjev [45]. We first need a well-known
lemma:

C.3. Lemma. Let X be a smooth variety over k. Then CH2(X) is generated by
the c2(E), where E runs through the algebraic vector bundles over X of determinant
1.

Proof. Consider the composition (for all i ≥ 0)

CH i(X)
Cli−→ K0(X)

ci−→ CHi(X)

in which Cli is the K-theoretic cycle class map and ci is the i-th Chern class with
values in the Chow group. It follows from Riemann-Roch without denominators [31]
that ci ◦ Cli = (−1)i−1(i − 1)!IdCHi(X) [24, formula (4.5) and further comments].
In particular, for i = 2, this composition is minus the identity. To obtain bundles
of determinant 1, one replaces E by E ⊕ det(E)−1.

By [45, cor. 6.6], the natural map

R(H)→ K0(B1H)

given by the “Borel construction” is surjective. Here R(H) is the representation
ring of H . Together with Lemma C.3, this shows that CH2(B1H) is generated by



116 H. ESNAULT, B. KAHN, M. LEVINE, AND E. VIEHWEG

the ψ∗c2, where ψ runs through the special linear representations of H . Consider
now the commutative diagram

CH2(B1H) // H4
ét(B1H,Γ(2)) // H4

ét(B1H,Γ(2))/H4
ét(k,Γ(2))

CH2(BrH) //

OO

H4
ét(BrH,Γ(2)) //

OO

α

H4
ét(BrH,Γ(2))/H4

ét(k,Γ(2))

OO

β

where r ≥ 2. By Theorem C.1 a), the bottom composition coincides with the map
cl2 of Corollary C.2. By the above remark and the surjectivity of the left vertical
map (Theorem C.1), the image of β ◦ cl2 is the subgroup generated by the ψ∗c2.
But, by Theorem C.1 b), α is surjective with kernel generated by ρ∗c2. So the same

conclusion holds for the image of cl2, which therefore has index dH , by definition
of the Dynkin index of H .

C.4. Question. The class e(Eη) is unramified over BrH . Consider a smooth
compactification X of BrH . Is e(Eη) unramified over the whole of X?
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intersections et théorème de Riemann-Roch (SGA6), Lect. Notes in Math. 225, Springer,
1971, 667–689. MR 50:7133

[25] B. Harris, Torsion in Lie goups and related spaces, Topology 5 (1966), 347–354. MR 34:6798
[26] J.E. Humphreys, Linear algebraic groups (corrected third printing), Springer, New York,

1987. MR 53:633 (original 1975 printing)
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