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CHOW GROUPS OF PROJECTIVE VARIETIES OF VERY
SMALL DEGREE

HILINE ESNAULT, MARC LEVINE, AND ECKART VIEHWEG

Let k be a field. For a closed subset X of IP,, defined by r equations of degree
d > > dr, one has the numerical invariant

i=2

dl

where [] denotes the integral part of a rational number . If k is the finite field lFq,
the number of k-rational points verifies the congruence

# lpn(lFq) =- #X(IFq) mod qr,

while, if k is the field of complex numbers E, one has the Hodge-type relation

nF Hc(lPc X) Hc(IPc X) for all/

(see [12], [5] and the references given there). These facts, together with various
conjectures on the cohomology and Chow groups of algebraic varieties, suggest
that the Chow groups of X might satisfy

CH(X) (R) CH(lP) (R)

for < x- 1 (compare with Remark 5.6 and Corollary 5.7).
This is explicitly formulated by V. Srinivas and K. Paranjape in [16, Con-

jecture 1.8]; the chain of reasoning goes roughly as follows. Suppose X is
smooth. One expects a good filtration

0 Fj+l = Fj = = F CW(X X) (R)

whose graded pieces FI/Fl+l are controlled by n2j-l(x X) (see [10]). According
to Grothendieck’s generalized conjecture [8], the groups H(X) should be gen-
erated by the image under the Gysin morphism of the homology of a codimension-
x subset, together with the classes coming from lPn. Applying this to the diagonal
in X x X should then force the triviality of the Chow groups in the desired range.
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30 ESNAULT, LEVINE, AND VIEHWEG

For zero-cycles, the conjecture (.) follows from Roitman’s theorem (see [17]
and [18]):

CHo(X)=Z if di<n. (**)
i=l

In [16], K. Paranjape proves a version of (.), showing that there is a finite bound
N N(dl,... ,dr; l), such that, for n > N, one has CHI,(X) 7z for 0 < l’ < I.
The bound N(dl,..., dr; l) grows quite rapidly as a function of the degrees; for
example, if r 1, one has the inductive inequality

l ( d + N(d- l, 1) )N(d, 1) > d- 1 + N(d- 1, 1),

and N(2, 1) is at least five.
In this article, we give the following improved bound (see Theorem 4.5). Sup-

posedly> >dr>2, andeitherdl>3orr>l+l. If

then

n

CHe(X)(R)= forO<l’<l.

If dl dr 2 and r < 1, we have the same conclusion, assuming the modi-
fied inequality

"(l+di) =r(l+2) < n-l+r-1
i=

/+1

As an application, if we assume in addition to the above inequalities that X is
smooth, we show in Section 5 that the primitive cohomology of X is generated by
the image of the homology of a codimension-(/+ 1) subset, in accordance with
Grothendieck’s conjecture, and we show that #1pn(IFq)= #X(IFq)mod ql+l for
almost all primes p and X defined in characteristic zero.
The method of proof of the improved bound is a generalization of Roitman’s

technique, coupled with a generalization of Roitman’s theorem (**) to closed
subsets of Grassmannians defined by the vanishing of sections of Syma of the
tautological quotient bundle. This latter result is an elementary consequence of
the theorem due to Kollir-Miyaoka-Mori [14] and Campana [3] that Fano
varieties are rationally connected. The first part of the argument, the application
of Roitman’s technique to cycles of higher dimension, is completely geometric.
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As an illustration, consider the case of surfaces on a sufficiently general hyper-
surface X of degree d > 3 in IPn. Roitman shows that, if d < n and p is a general
point of a general X, there is a line L in IPn such that L. X dp.
Now take a surface Y on X, in a general position. Applying Roitman’s con-

struction to the general point y of Y, and specializing y over Y, we construct a
three-dimensional cycle S in IPn with the property that

s.x=
J

where N is some positive integer and the Y are ruled surfaces in X. If
(dl) < n- 1, we can find for each general line L on X a plane II in lPn such
that II. X dL.
Assuming that the general line in each Y is in general position, we construct a

three-dimensional cycle S in IPn such that

s’ x NtE njY + Em,l-li

where N’ is a positive integer, and the Hi are two-planes in X. From this (ignoring
the general position assumptions) it follows that all two-dimensional cycles on X
are rationally equivalent to a sum of two-planes in X. We may then apply our
result on zero-cycles of subsets of Grassmannians, which in this case implies that
all the two-planes in X are rationally equivalent, assuming (d2) n. Putting this
together gives

CH2(X) (R) @ ifd>3and(d+2)3 <n.

One needs to refine this argument to treat cases of special position, as well as
larger and r. For the reader’s convenience, we first give the argument in the
case of hypersurfaces before giving the proof in general; the argument in the
general case does not rely on that for hypersurfaces.
Throughout this article, we assume that k is algebraically closed, as the kernel

of CHl(Xk) CH/(X) is torsion (see [1]).
Marc Levine would like to thank the Deutsche Forschungsgemeinschaft for

their support and the Universitit Essen for their hospitality.

1. Flag and incidence varieties. Let X
_
IP be a closed reduced subscheme.

For 0 < s < n 1, let tl3rk(s) tBrk(s; n) denote the Grassmann variety of s-planes
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in ]P,, and let

A(s) -= (13rk(s) x

(rk(s)

be the universal family. We write r(s;X) for the closed subscheme of
03rk(s) parametrizing s-planes in IP which are contained in X. Correspondingly
?: A(s; X) 3rk(s; X) denotes the restriction of Ys to A(s; X) yj-l(a3rk(s; X)).
In rk(s; X) ll3rk(s + 1), we consider the flag manifold lF(s,s + 1;X) consisting
of pairs [H, H’] with

and H c H’ - IP+1
_

IP.
The projection Brk(s; X) x Brk(s + 1) Grk(s; X) induces a morphism

lF(s,s + 1;X) --* rk(s + 1)

and a surjection

IF(s, s + 1; X) Gr(s; X).

By abuse of notation, we write A(s; X) and A(s + 1) for the pullback of the uni-
versal families to IF(s, s + 1;X) and

IF(s,s + 1;X) x X A(s;X) A(s + 1) IF(s,s + 1;X) x IP

IF(s, s + 1; X) IF(s, s + 1; X)

for the induced morphisms.
Assume that X

_
IP is a hypersurface of degree d. Hence X is the zero set of

f(xo, X Xn) k[xo, Xn ]a" We consider the incidence varieties

H’= IH’(s,s+ 1;X)=rk(s;X) x tHrk(s+ 1;X) oIF(s,s+ 1;X) and

]H Ill(s, s + 1; X) {[H, H’] IF(s,s + 1; X); H’
_
X or H’ c X H}.

Here "H’ c X" denotes the set-theoretic intersection. "H’ c X H" implies that
the zero-cycle of fin, is H with multiplicity d. We will see in the proof of the fol-
lowing lemma that IH

_
IF(s, s + 1; X) is a closed subscheme.



CHOW GROUPS OF PROJECTIVE VARIETIES 33

By definition, one has IH’
_

IH. It might happen that for all [H,H’] e IH the
(s + 1)-plane H’ is contained in X, or in different terms, that IH’= IH, but for a
general hypersurface X, both are different. Generalizing Roitman’s construction
for s 0 in 17], one obtains the following.

LEMMA 1.1. Let X
_
P’ be a hypersurface ofdegree d, and let

711" In rk(s; X) and n’" IH’ --. Gr(s; X)

be the restrictions of the projection

prl trk(s; X) x tFJrk(s + 1) -- {Brk(s; X).

Then for all [H] e rk(s;X), the fibres of 7[1 (or 7[) are subschemes of aklDn-s-1
defined by

equations. In particular, 7[ (or 7[ ) is surjective if

+1 < n-s or
+1 < n-s-1

lln-s-1Proof. The first projection Pl" IF IF(s, s + 1; X) --, Grk(s; X) is a ’k
bundle (see, for example, [9, 11.40]). In fact, for Spec(A) __. rk(s; X), let us fix
coordinates in IP such that AA ?-l(Spec(A))c IP is the linear subspace
defined by

Xs+I Xs+2 Xn O.

Let F be the (n- s)-plane given by

Xl Xs 0.

An (s + 1)-plane A containing AA is uniquely determined by the line A c F
_

F, and each line in F which contains (1 0 0) determines some A. In other
terms, there is a Spec(A)-isomorphism

0"" ]PI-s-1 - pi-l(Spec(A))
_

IF,

given by a((ao an-s-l)) [AA, A], where A is spanned by AA and by

(1 0 O: ao an-s-l).
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An isomorphism IP4+1 - A is given by

(0 s+l) (0 s" a0s+l an-s-ls+l).

Under this isomorphism, the intersection X x Spec(A)cA
___
A is the zero set

of

f(to,..., ts, aot+l,..., a,-s-lts+l) - A[to,..., ts+l]

Since AA c A is the zero set of ts+l and since AA c X Spec(A), one can write
this equation as

ts+lg(to, ts+l),

where 9 is homogeneous of degree d-1. The point a((ao an-s-l))
[AA,A] is an A-valued point of IH if and only if O(to,..., ts+l) 0, and it is
an A-valued point of IH IH if and only if

g(to, ,ts+l) d-1ets+

for e A*. Hence, writing

g(t0,..., ts+l) Z
i0+ +is+l=d-

fis+l]i0,il,. ,is+l t s+l

one obtains for IH’ the equations gio,il is+ 0 for all tuples (io,..., is+l) with

s+l

Ziv=d-1.
v=0

For IH, one obtains the same equations, except the one for (0,..., 0, d- 1). []

Remark 1.2. Keeping the notation from the proof of 1.1, one can bound the
degree of tr-l(IH)

_
IP]-s-1. In fact, writing A[yo,... ,Yn-s-1] for the coordinate

ring and 00 is+ for the equations for a-l(IH), then 9,...,i+1 is homogeneous of
degree is+l + 1 in Y0,..., Yn-s-1.

2. Hypersurfaces of small degree. For a closed reduced subscheme X c IPN

we will write CH/(X) for the Chow group of/-dimensional cycles.

Definition 2.1. (a) An/-dimensional closed subvariety Y of X will be called a
subvariety spanned by s-planes if there exists an (1- s)-dimensional subvariety
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Z c {rk(s, X) such that for the restriction of the universal family

Az=?-l(z) - Z X Z )< ]P,

Z

the image of the composite Az - Z x X X is Y.
(b) CH}s) (X) denotes the subgroup of CH/(X) which is generated by/-dimen-

sional subvarieties of X which are spanned by s-planes.
(c) We write CH/(X) CH(X) (R)z and CH})(X) CH}) (X) (R)z .
If Y is spanned by s-planes, it is spanned by (s- 1)-planes as well. Hence one

has CH}s)(x)__. CH}S-1)(X). For s >lone has CH}s)(x)= CH}s)(X) {0}.
The same holds true if X does not contain any s-plane. For s 0, one obtains by
definition CH})(X)= CH/(X) and CH})(X) CH/(X).

Let F IP, be an (l + 1)-dimensional closed subvariety or, more generally, an
(l + 1)-cycle in CH/+I(]P). By [6, 8.1], the intersection product F. X is a cycle
in CH/([F r X). By abuse of notation, we will write F. X for its image in
CH/(X) or CHI(X), as well.

PROPOSITION 2.2. Let X
_
IP be an irreducible hypersurface of degree d, and

let Y be an l-dimensional subvariety ofX, spanned by s-planes but not by (s + 1)-
planes. If

+1

then there exist an (l + 1)-dimensional subvariety F IP and a positive integer
with

F. X Y mod CH}s+l) (X).

Before giving the proof of Proposition 2.2, let us state the consequence we are
mainly interested in.

COROLLARY 2.3. Let X
_
lP be an irreducible hypersurface ofdegree d. If

+ 1
<n-l, (1)

then CH/(X) .
Proof. For d > 2, we have the identity

(s+ l+d)=s+l+d(:+d)s+2 s+2 +1
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Hence the inequality (1) implies that for all s <

+1 < +1
<n-l<n-s. (2)

Let 1’ be the largest integer for which there exists an/-dimensional subvariety Y’ of
X, which is spanned by/’-planes. One has < I. In fact, as we will see in 4.2, the
inequality (1) implies that l’ l, but this is not needed here.
By Proposition 2.2 the inequality (2) implies that some positive multiple of Y’

is obtained as the intersection of X with some subvariety F’ of IP. If Y is any
other/-dimensional subvariety of X, spanned by s-planes, for 0 < s < l’, then by
inequality (2) and by Proposition 2.2, one finds some F CHt+I (IP,) such that
1". X is rationally equivalent to Y modulo CHs+l) (X). Since CHt+I(IP) ,
the cycle Y is rationally equivalent to some rational multiple of Y’ modulo
CH}+’)(X).
For s l’, this implies that CH[t’) (X) . For s < l’, one obtains that

CH}s) (X) CH}s+’) (X) CH}’’) (X).

Proof of 2.2. By definition, there exists an (l-s)-dimensional subvariety
Z’ c tl3rk(s, X) such that the image of the restriction Az, of the universal family
of s-planes to Z’ maps surjectively to Y. In Section 1, we considered the mor-
phism n:lH --. trk(s, X). By Lemma 1.1, the assumption made in 2.2 implies
that nx is surjective. Hence there exists some variety Z, proper and genetically
finite over Z’, such that the inclusion Z’ c tl3rk(s, X) lifts to a morphism Z IH.
The pullback Az Az, x z, Z still dominates Y.

Replacing Z by a desingularization (if char k 0) or by some variety generi-
cally finite over Z (if char k : 0; see [11]), we may assume that Z is nonsingular.

Let A A(s+ 1)XIF(s,s+I;X Z be the pullback of the universal family of
(s + 1)-planes to Z. Putting this together, we have morphisms

zx Az A’z

Z Z.

Assume that A Z x X. Since Z lF(s,s + 1;X) factors through IH, for a
general point z e Z the intersection satisfies ff-l(z). X d0-1(z). The codi-
mension ofA n (Z x X) in A is therefore one, and

A’z (Z x X) dAz +Z(i-I (Di) . CH/(A c (Z x X))

for some prime divisors D in Z.
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If A is contained in Z x X, one obtains the same equality in CH/(A). In
fact, since A is a lP+l-bundle over the (l- s)-dimensional manifold Z, the
group CHt(A) is generated by Az and by the pullback of divisors in Z. Since a
general fibre of A Z must intersect X in some cycle of degree d, the co-
efficient of Az in A. (Z x X) must be d.

Since Y is not spanned by (s + 1)-planes, A is generically finite over its image
in IP and the cycle F pr2,(A) is nonzero. Let us write pr for the restric-
tion of pr2 to A c (Z x X). The projection formula (see [6, 8.1.7]), applied to
pr2" Z x IP -- lP, implies that

F. X pr2,(A). X pr,(A. (Z x X)) dpr,(Az) +E a’pr2*(-l(Di))

in CH/(X cpr2(A)). Since A,z..is generically finite over the subvariety Y, and
since pr,(-l(Di)) lies in CHs-’) (X), one obtains for some positive multiple a of
d the relation

l". X =- aY mod CHS+I)(x).
3. Complete intersections of small degree. As for zero-cycles (see [18]), it is

easy to generalize Proposition 2.2 and Corollary 2.3 to components of sub-
schemes of IP defined by equations of small degree.

PROPOSITION 3.1. Let X1,...,Xr be hypersurfaces in IP, of degrees dl >
d2 > > dr > 2, respectively, and let X be a union of irreducible components of
X1 c X2 c... c Xr, equidimensional of codimension r. If Y is an l-dimensional
subvariety ofX, spanned by s-planes, and if

(3)

then there exists an effective cycle F CHt+r(IP) and a positive integer with

F. X aY mod CHs+l) (X).

In Section 4 we will need that, under more restrictive conditions, the cycle F is
not zero.

Addendum 3.2. Assume in Proposition 3.1 that

(Ss+ dl’) <n-l. (4)

Then one may choose F to be an (l + r)-dimensional subvariety of IP.
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Proof of 3.1 and 3.2. For some (l- s)-dimensional subvariety Z’ c rk(s; X)
the restriction Az, of the universal family of s-planes maps surjectively to Y.
Let us fix a subfamily of (s- 1)-planes A in Az, over some open subscheme
of Z’. The pullback of A to some blowing up Z" --, Z’ extends to a projective
subbundle

Z//Az,, of Az,, Az, x z,

For i= 1,...,r let IHi be the subscheme of IF(s,s + 1;X) parametrizing pairs
[H, H’] with H’

_
Xi or with H’ c Xi H. By Lemma 1.1, the fibres of the mor-

phism lHi ---, tBr(s; X) are subvarieties of m,-s-1 defined by"k

s + di
s+l]

-1

equations. By inequality (3), the dimension of the fibres of

IHi---, rk(s; X)
i=1

and hence of ]l-Iz, ( lHi Xrk(s;x) Z’ ---* Z’
i=1

is at least

i=1 + i=1

We find an (l + r- s- 1)-dimensional subvariety Z of IHz, which dominates Z’.
Replacing Z by some blowing up, we may assume that Z dominates Z". In char-
acteristic zero, we can desingularize Z. In characteristic p > 0, we replace Z by the
nonsingular generically finite cover constructed in [11]. Since the morphism
Z ---, Z’ factors over IHz,, we have the pullback families

Az , Az A

Z Z Z

ZxlP

of (s- 1), s, and (s + 1)-planes, respectively. By construction, the image of Az
under the projection pr2 to lP is a divisor in Y, and the image of Az is Y. Let us
consider the morphisms

z x ep, +/- z’ x &
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their restrictions ’ [A(zx) and p P2l(A’z)(z,x), and the induced maps

CH/(A t (Z S)) CH/((A) c (Z’ S)) P-- CH/(X n pr2(A)).

One has dim(A) dim((A)) l+ r and the cycle I-Iz ,(A) is nonzero.
For F pr2,(A) p2,(rIz), the projection formula [6, 8.1.7] implies that

Hz" (Z’ x X) t,(A. (Z x X)) CH/((A) r (Z x X)) and that

F-X p,(IIz. (Z x X)) pr,(A. (Z x X)) ca/(x pr2(m)

In general, it might happen that A --, pr2(A) is not genetically finite and, cor-
respondingly, that the cycle F is zero. For the proof of 3.2 we need the next claim.

Claim 3.3. Under the additional assumption made in 3.2, we may choose Z
such that the cycle F pr2,(A) is nonzero and hence represented in CH/+r(]P)
by an (l + r)-dimensional subvariety.

Proof. Let A’ c lHz, x IP, denote the pullback of the universal family of
(s + 1)-planes to lHz,, and let H be the image of A’ in Z’ x IP. The inequality
(4) implies that the left-hand side in the inequality (5) is larger than or equal
to r- 1 + l- s. Hence dim(lHz,) > r- 1 + 21- 2s and dim(At) dim(H) >
r + 21-s. Since the fibres of p21ri are contained in Z’, their dimension is at
most l- s, and one finds dim(pr2(A’)) > + r. Choosing for Z a sufficiently gen-
eral (l + r- s- 1)-dimensional subvariety of lHz,, one obtains dim(pr2(A))
+ r. i"1

To evaluate the intersection cycle A. (Z X), we distinguish three types of
cycles.

Claim 3.4. The Chow group CHI(A c (Z x X)) is generated by subvarieties

Cl,...,Cv, -lbl,...,l-lb/, and -lal,...,rp-la

with:
(1) c, is an/-dimensional subvariety of A c (Z X), with dim((c,)) < l, for

1,...,v.
(2) bj is an (l- s- 1)-dimensional subvariety of Z for which pr2(-l(bj)) is

spanned by (s + 1)-planes, for j 1,...,/.
(3) a is an (l- s)-dimensional subvariety of Z, surjective over Zt, and hence

pr2(tp-l(ai)) Y for/= 1,..., /.

Proof. Assume that A Z x X. Then A A c (Z x X) is a lP+-bundle
over Z and

CHI(A) CH/(Az) + o*CHl_s(Z) + *CHI-s-I(Z).
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For a prime cycle co CHI(Az), one has

((co)- ((Az) and dim(((co)) < dim(Z")+ s- 1= l- 1.

Similarly, for a prime cycle co CHI_s(Z) that does not dominate Z’, (0-1(c0)) is
a family of s-planes over a proper subvariety of Z’, hence of dimension strictly
smaller than l. Choosing the "ai" among the other cycles in 0*CHt_s(Z)
and the "bj" in *CHl_s_l(Z), one obtains the generators of CHt(A)-
CH/(A c (Z x X)) asked for in 3.4.

If, on the other hand, A Z x X, then there is a proper subscheme A of Z
with

A (Z x X) Az w -1 (A).

In fact, if for some z Z the fibre -1 (g) is not contained in Z x X, then i-1 (g) is
not contained in Z x Xi for one of the hyperplanes Xi cutting out X. Since z e IH,
one has

l-1 (Z) (’3 (Z x X) c 1-1 (z) t’ (Z x Xi) -1 (2) C: Az.

As before, one can decompose the Chow group as

CHt(A: (Z x X)) CHt(Az) + tp*CHl_s(Z) + *CHt-s- (A),

and again one obtains the generators asked for in 3.4.

By 3.4 we find integers Yl,..., Yv, ill,..., fl,, al,..., an with

iz (Z x X) ,c, +Z flJ-l(bj) + Z ai-l(ai)" (6)
,=1 j=l i=1

Since dim(pr2(c,)) < l, for all t, one obtains in CH/(X c3 pr2(A)), and thereby in
CH/(X), the equation

r’ (A (Z x X)) -fljpr2,(-l(bj))’ + r’aip 2,Jp-l,ai,,(())P 2*
j=l i=1

(7)

As stated in 3.4 (2), the first expression on the right-hand side of (7) is contained in

CHs+l) (X). Let 6i denote the degree of ai over Z’ or, equivalently, of qg-l(ai) over
Az,, and let p denote the degree of Az, over Y. The second expression in (7) is
nothing but p2.(a’Az,) pa’Y for a’ aifi. One finds the equation

F. X =- pa’Y mod CHs+l) (X).
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For z’ e Z’, let Hz, denote the fibre of Az, Z’ over z’. If z is chosen in suffi-
ciently general position, the fibre F_ Z over z’ meets the subvariety ai of Z
transversely in 6i points, and it does not meet the cycles bl,..., bu.

Let AF and A be the restrictions of Az and A to F. One has

A c //-l(bi) for j 1,...,# and (A) ((A) c ({z’} x X)). Since
dim(((c,)) < l, one obtains from (6) the equation

(,((F x IP) A’z (Z x X)) Z flj(,((F x IP). -l(bj))
j=l

+ Z oi(,((F x IP). -l(ai)).
i=1

The first term of the fight-hand side is zero, and by the projection formula, one
has

(,((F x IP). A. (Z x X)) (,(A. (Z x X)) (,(A). Z’ x X.

Thus

,(A). Z’ x X oi,((t9-1(ai)) ({zt} )< X) a’Az," ({z’} x X)
i=l

0’({z’} Hz,),

and pr2,(A) X ’Hz, in CHs(IP). Hence ’, as the degree of the intersection of
X with a nontrivial effective cycle, must be positive as well as p’. I--1

COROLLARY 3.5. Let X
_
IP be the union of some of the irreducible compo-

nents of the intersection of r hyperplanes ofdegrees d >/dE > > dr > 2. If

(ll+dl) <n-l,
i--1

-[-
(8)

then CHt(X) .
In Lemma 4.2 in the next section, we will see that the inequality (8) implies

that X contains an/-dimensional linear subspace H. Hence one may choose H as
a generator of CHt(X).

Proof. If Z is one of the irreducible components, say, of codimension t, then
we can choose of the equations in such a way that Z is a component of their
zero locus. Using Proposition 2.2 and Addendum 3.2 instead of 2.2, the proof of
the Corollary 2.3 carries over to prove that CH/(Z)
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Inequality (8) implies that 2r < n- and hence dim(Z c Z’) > for two com-
ponents Z and Z’ of X. Since one may choose as generator for CHI(Z) and

CHI(Z’) the same cycle in the intersection, one obtains CH(Z Z’)O . [--!

4. An improved bound. It turns out that a slight modification of the methods
of the previous sections enables us to improve our bound in Corollary 3.5 (with
slightly different hypotheses), to

n,

Although this is, of course, a numerically insignificant improvement, it is really the
appropriate bound given our methods, as explained in Remark 4.7 below.

Fix an algebraically closed base field k, and integers d > d2 > > dr > 2.
As above, for a closed subset X of IP, we let trk(/; X) denote the closed subset
of trk(/; n) consisting of the/-planes contained in X. We let Nn, (n-), and let

Nn INn drV(n; dl,..., dr)k := -k X X ""k

parametrize r-tuples (fl, , f) of homogeneous equations of degrees d,..., dr in
variables xo,..., xn. For

we let Xv denote the closed subset of IP defined by the equations f

We include the proofs of the following elementary results on fflr(l, Xv) for the
convenience of the reader.

LEMMA 4.1. Suppose char(k) 0. Let > 0 be an integer such that

=l(di l) < (l+ 1)(n l). (9)

There is a nonempty Zariski-open subset Ul Ul(rt; dl,..., dr)k of V(n; dl,... ,dr)k
such thatfor all v e Ul, either IBrk(l; Xv) is empty or

(i) rk(/; Xv) is smooth and has codimension ir=l (a,-t) in 3rk(l; n);
(ii) /f i1(--’) < n+ 1, then the anticanonical bundle on ffJrk(l;Xo) is

very ample;

/ canonical
\-o.../
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(iv) very
ample.

In particular, if -,r=l(++lt) > n+l and v is in Ut, then tDrk(/;Xv)has pg > O.
Finally, we have

(v) /f the inequality (9) is not satisfied, then tDrk(/; Xv) is either empty, or has
dimension zero, for all v in an open subset o:f V(n; dl,..., dr)k.

Proof. We denote ffJrk(l;n) by r. Let V kn+l, let S-- tr be the tauto-
logical rank-(// 1) subsheaf of (9r ()k V, and let $* be the dual of S, V* the
dual of V. Each f e Symd(V*) canonically determines a section fs of Symd(S*)
over r. By the Bott theorem [4], sending f to fs gives an isomorphism

Syma(V*) H(tr, Symd(S*)).

As S* is generated by global sections, so is Symd(S*). Thus, there is a Zariski-open

U c -[ Symd’(v*) V(n; dl,..., dr)k
i=1

such that, for (fl,..., f) U, the subscheme Y(T1 f) of 3r determined by the

vanishing of the section (flS,..., fs) of @i=1Syma’(S*) is smooth, and has codi-
mension equal to

rank(Syma’(S*)) - (di-l),
i=1 i=1

or is empty. In addition, we have Y(fl f) (rk(/; X(f ,f)). Taking UI to be U
proves (i), as well as (v).
We now compute the canonical sheaf Krk(l;Xv of ffkrk(l;Xo) for v UI,

assuming that rk(l;X,,) is nonempty. The invertible sheaf AtpS* is the very
ample sheaf g0r(1) whose sections give the PRicker embedding of {13r. The tan-
gent sheaf Tr of tr fits into the standard exact sequence of sheaves on {13r

giving the isomorphism

Kr (_9r(-n- 1). (10)

For v Ut, we have the isomorphism Nrk(l;Xv)/r ilSyma’(S*) (R) (9rk(l;X,);
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hence, we have the isomorphism

AtPNfflr(l;X)/Br - QAtop Syma’ S*) <D (.0Br(l;X)
i=1

(11)

An elementary computation using the splitting principle gives

Atp Symah (S*) (Atps*)(- (12)

The exact sequence

0-- TBr,(I;X) -’ T6r -’ NBr(l;X)flBr " 0

gives the isomorphism

Krk(l;Xv) - KBr ( AtPNrk(l;Xv)/r ( rk(/;X)

Combining this with (10)-(12) gives the isomorphism

Krk(l;X) (’0r
k + 1 J

n- 1 (R) (..0(rk(l;X,)
i=1

As (9r(1) is very ample, this proves (ii)-(iv).

LEMMA 4.2. Suppose that either d >/3, or that r > + 1. If

i=1 \1 + 1 ] < n, (13)

then one has the following.
(a) For each v V(n;dl,...,dr)k and for each point x Xv, there exists an

l-plane H trk(/; Xv) that contains x. In particular, trk(/; Xo) is nonempty.
(b) If char(k) is zero, trk(/; Xv) is irreducible for each v Ul(n; dl,..., dr).

In addition, the inequality (13) implies the inequality (9}.
Ifd 2 and 1 < r < l, the same conclusions hold if r(l + 2) < n + r- l- 1.

Proof. As we have seen in the proof of 2.3, the expression

(di+l
i--1 \1+ lJ

is an increasing function of I. So we may assume by induction on that for all
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points v V(n;dl,... ,dr)k and for all x Xv, there exists some H {rk(l- 1; Xv),
passing through x. Moreover, if char(k) 0, we may assume that rk(l- 1; Xo) is
irreducible for all v in Ul-l(n; dl,..., dr)k.

Let {13rk(/; Xo)n be the subset of rk(/; Xo) consisting of/-planes H’ containing
H. Returning to the notation introduced in Lemma 1.1, {13rk(/; Xo)u is the inter-
section of the fibres of the morphisms " IH’ ffirk(l- 1; Zi) for the different
hyperplanes Zi, cutting out Xv. By 1.1, with replaced by l-1, we find
{rk(l; Xo)n to be a subscheme of k defined by

equations. So {rk(/; Xo)n has positive dimension if

--(di+l-1)
i--1

<n-l. (14)

Using the standard identity for binomial coefficients

(++)= ()-+-(n m+’l)
our inequality (13) implies (14) if

--(di+l-1)= l+ 1 > l+ 1. (5)

Since the left-hand side of (15) is an increasing function of the di, and since

(I+)+ -/+2>/+1 and

the inequality (15) is satisfied if dl > 3, or if r > + 1. In particular, it follows that
dim(rk(/; Xo)) > 0 for general v. By Lemma 4.1 (v), this implies the inequality (9).

If dl 2, then by assumption r(l + 1)< n- l-1, which easily implies the
inequalities (14) and (9). In particular, ffJrk(l;Xo)n is nonempty, and we have
obtained 4.2 (a).

In characteristic zero, it remains to show that {13rk(Xv) is connected for v UI.
Our inductive assumption, saying that ffJrk(l- 1; Xo) is irreducible for

13

_
Ul-1 Ul-1 (n; dl,..., dr)k,

reduces us to showing that ffJrk(l;Xo)n is connected for each H ffJrk(l- 1; Xo)
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and for v in some nonempty Zariski-open subset W of Ul f’ Ul-1. In fact, for those
v the scheme rk(/; Xv) is connected, and by Lemma 4.1 (i) and by Zariski’s con-
nectedness theorem, one obtains the same for all v U(n; dl,..., dr)k.
By inequality (14), tBrk(Xv) is a subscheme of IP-l, defined by less than n-

equations. The Fulton-Lazarsfeld connectedness theorem [7] shows the exis-
tence of W. !-I

For a proper k-scheme X, we let A0(X) denote the subgroup of CH0(X) con-
sisting of degree-zero zero-cycles.
A smooth projective variety Y is called rationally connected if, given a pair of

general points y, y’, there is an irreducible rational curve containing y and y’.
We call a projective k-scheme Y weakly rationally connected if for any pair of

points y, y of Y, there is a connected finite union C of rational curves on Y with
y and y in C. It is immediate that a weakly rationally connected Y has
A0(Y) 0, even if Y is reducible.

LEMMA 4.3. Let r: Y Z be a flat, projective morphism of reduced schemes,
with Z irreducible and normal, and with the geometric generic fibre Y xz Spec(k(Z))
weakly rationally connected. Then, for each point z of Z, the geometric fibre
Yz := Y Xz Spee(k(z)) is weakly rationally connected. If moreover, E c Z is a
subscheme with A0(E) O, then A0(r-I(E)) 0.

Proof. The first part follows directly from the following elementary fact (for a
proof, see, e.g., Mumford 15]):

Let p: C T be a projective morphism of reduced schemes of finite type over
a Noetherian ring, with T normal and irreducible. Suppose that the reduced
geometric fibre (C x r k(T))red is a connected union of rational curves. Let
be a closed point of T such that the fibre Ct over t has pure dimension one.
Then (C x T k(t))red is a connected union of rational curves.

Since r is flat (of relative dimension, say, d), we have a well-defined pullback
map

u*" CHo(E) - CH(u-(E)).

Let z and z be closed points of E. By assumption z z’ in CH0(E), hence

n*(z) n*(z’) in CHd(n-(E)). Intersecting n-l(E)c IPv with a sufficiently
general codimension-d linear subspace, this implies a relation in CH0(n-X(E)) of
the form az az,, where az is zero-cycle on r-l(z) and az, is zero-cycle on n-(z),
both of positive degree. By the first part of Lemma 4.3, the fibres of n are weakly
rationally connected; hence, az is a generator of CH0(Yz) and az, is a generator
of CH0(Yz,). Since z and z’ were arbitrary, this implies that az generates
Cno(n:-l(E)); hence, Ao(rr-l(E)) O. [-]

PROPOSITION 4.4. Let v be in V(n; dl,..., dr)k. Suppose that either dl > 3, or
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that r > + 1. If

i=l \l+ l/

then A0(tl3rk(/; Xo))O 0.

If dl 2, 1 r l, and r(l + 2) < n + r- l- 1, then Ao(rk(l; Xo)) O.

Proof. Denote V(n;dl,...,dr)k by Vk. We have the correspondence Ik
Vk x tBrk(l;n) consisting of pairs (v,I-l) with H c Xv. Let pl: Ik Vk and

P2" Ik --* rk(/; n) denote the restriction of the two projections. By an argument
similar to the proof of Lemma 1.1, P2" Ik rk(/; n) is a vector bundle and the
restriction of p to the fibres of p2 gives isomorphisms with linear subspaces of V.
In particular, Ik is smooth and irreducible.

First, suppose that char(k) 0. By Lemma 4.1 and Lemma 4.2, ti3rk(/; Xu) is a
smooth, projective variety with very ample anticanonical bundle for all points
tl

_
Uk Ut(n;dl,...,dr)k. It follows from results of [3] or [14] that ffJrk(l;Xu)

is rationally connected. If char(k) p > 0, let R be a discrete valuation ring with
residue field k and quotient field K having characteristic zero. Let VR, IR and
trR(/; n) be the obvious R-schemes with fibre Vt, I/, and trt(/; n) over K and
Vk, Ik, and rk(/; n) over k. Since IR and VR are smooth, IR -- VR is flat over the
complement U of a closed subscheme of VR of codimension at least two. Lemma
4.3 implies that trk(/; Xu) is rationally connected for all u Uk UR g k.
Of course, for all fields k the open subscheme Uk Vk is invariant under the

action of IPGI(n + 1, k) and for all Ik the image of pE(pl(t)) will meet Uk.
It remains to consider rk(/; Xv) for points v Vk- Uk and to show that for

two points t and t2 in ti3rk(/; Xv) some multiple of the cycle t t2 is rationally
equivalent to zero. Let us choose for i= 1,2 lines Gi pl(pE(ti)) with ti Gi
and with pl(Gi)c Uk O. The lines pl(G1) and pl(G2) intersect in the point v
and hence they span a two-dimensional linear subspace S of Vk, meeting Uk.
The induced morp_hism from S c Uk to the Hilbert scheme of subschemes of

rk(/; n) extends to S for some nonsingular blowup tr" Vk. In other words,
for the union J of all irreducible compone_nts of Ik Vk S, which are domi-
nant over , the induced morphism n" J- S is flat. The reduced exceptional
fibre E tr-l(v) is the union of rational curves, and Lemma 4.3 implies that
A0(-1 (E)) 0.

Let #: J Ik be the induced morphism. By construction, the general points of
the lines G1 and G2 lie in t(J). Since is proper, one obtains G1, G2 c t(J) and
hence the points tl and t2 are contained in the image t(/r-l(E)). [-]

LEMMA 4.5.
the inequality

Let d,..., dr, be positive integers. If dl > 3, or if r > l- 1, then
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implies the inequality

i=1 kS+ 1}
(16)

for all s < 1.
If dl 2 and 1 < r < 1, then the inequality r(l + 2) < n + r l- 1 implies the

inequality (16) for all s < I.

Proof. As we saw in the proof of 2.3, the function of k

i=1

is increasing. Thus, we need only show (16) for s l- 1. For d > 3 we have

(++) (d+/-1)(d+/-1)(d+/- 1) (l, 2,+ 1+1 > +\l+l]+
d+l- 1) +/+2,

which verifies (16) for s l- 1, completing the proof in case dl 3.
If di 2 for all i, we have

_
(d, + s r(s + 2).

= ks+ 1}

Ifr>l-1, then r(l+2)<n=r(s+2)<n-s for all s<l. If l<r<l, then
r(l+ 2) <n+r-l- 1 =r(s+ 2) <n-sforalls<l. UI
THEOREM 4.6. Let v be in V(n;dl,...,dr)k. Suppose that dl > 3, or that

r>l+ l. If

(di+l
i=1 \l+ 1}

<n,

then Xv contains a linear space ofdimension l, and CHs(Xv) for all s < l, with
oenerator a linear space ofdimension s. Ifd 2, 1 < r < l, and

r(l-+- 2)- (dr + l
= \l+ lJ < n+r-l- l’

the same conclusion holds.
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Proof. By Lemma 4.5, for all 0 < s < l, the inequality

i=1 kS+ I] < n-s< n (17)

is satisfied. So it is sufficient to consider CH/(Xv) in 4.6. Let Z be an irreducible
component of Xv of codimension in IP,. By Lemma 4.2 (a), Z contains an/-plane
H. Leaving out some of the equations J and correspondingly replacing the sum in
(17) by a smaller one, we may apply Proposition 3.1 and Addendum 3.2.

The/-plane H is spanned by (l- 1)-planes, and for s l- 1, the equation (16)
in 4.5 allows us to apply Addendum 3.2. Hence, there exists a (t +/)-dimensional
subvariety F in IP and a positive integer with

F. Z - 0H mod CH:/)
and hence F. Z lies in CH1).

If Y is a dimension-/subvariety of Z spanned by a-planes, for 0 < tr < l, then
by Proposition 3.1 there exists an effective cycle F’ e CHt+I(IP,) such that

F’. Z or’Y+ E
for some positive integer ’, for 0q e 7Z, and for /-dimensional subvarieties Y/,
spanned by (tr + 1)-planes in Z. Since CHt+/(IP)--, the cycle F’ is rationally
equivalent to flF for some rational number ft. Hence flH and ’Y are rationally
equivalent modulo CH}+) (Z) CH}t) (Z).

Thus, after finitely many steps, one obtains CHI(Z) CH}0(Z), for all
irreducible components Z of Xo. Of course, this implies that CHI(Xo) is gen-
erated by the classes of/-planes contained in Xo.
On the other hand, by Proposition 4.4, Ao(ffJrk(l;Xo)) 0; hence all the

/-planes in Xv have the same class in CHI(Xv). [--]

Remark 4.7. From the point of view of Hodge theory, or number theory, we
have the essentially linear bound mentioned in the introduction

-t-1< [n ’ir=2 d
(18)

rather than the degree-(/+ 1) bound

(di+l
i=I \/+ 1]

<n (19)
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of Theorem 4.6. The statement

i=1 \l+ I,] > n + 1 =:, pg(rk(l; Xo)) > 0

of Lemma 4.1 shows that one cannot hope to prove CHt(Xv) for such
d1,..., dr satisfying (18) but not (19) by only considering rational equivalences of
/-planes among/-planes. Indeed, Roitman’s theorem on the infinite dimensionality
of zero-cycles [17] shows that the variety of/-planes has nontrivial zero-cycles
once the inequality (19) fails. Hence, if it is indeed true that all/-planes in Xv are
rationally equivalent (with -coefficients), one must use rational equivalences
which involve subvarieties of higher degree. The first interesting case is the ques-
tion of whether CH1(X) for X, a quartic hypersurface in IP8.
Remark 4.8. In the case of irreducible quadric hypersurfaces Q c lPn, Theo-

rem 4.6 and Corollary 2.3 give the same bound; for a smooth quadric, this bound
is sharp. Indeed, we have CHs(Q)= Z for all s <l if and only if n > 21 + 2,
which is exactly the bound of Corollary 2.3. (It is well known that the Chow
groups of a smooth quadric are torsion-free.) This is also the bound given by the
Hodge-theoretic considerations mentioned in Remark 4.7.

5. Decomposition of the diagonal. As pointed out by Bloch-Srinivas [2],
results on triviality of Chow groups of a projective variety X give rise to a spe-
cial structure on the diagonal in X X; this in turn leads to a decomposition of
the motive of X and to the triviality of primitive cohomology. Variants of this
have appeared in many works; we give here a brief account of this technique.

LEMMA 5.1. Let X be a closed subset of lP of pure dimension t. Suppose X
contains a linear space L lP such that, for all algebraically closed fields K k,
CHs(Xr‘) is generated by the class of a dimension-s linear space Ls c L. Let Y
be a k-variety of dimension d with t- < d < t. Then for each c5 CHt(X x Y),
there is a proper closed subset D Y, a cycle CHt(X x Y), supported in
X x D, and a rational number r, such that

r[Lt-d x Y] + y,

where [-] denotes the class in CHt(X x Y).
Proof. For a field extension F of k(Y), we denote X Xk F by Xe, and let die

be the pullback of di to XF via the canonical map XF --* X x Y. We let [-]r
denote the class of a cycle in CH,(XF).

Let K be the algebraic closure of the function field k(Y). As 6r is an element
of CHt-d(XK), and 0 < t- d < I, we have the identity fir, r[Lt-d]K for some
rational number r. This gives the identity 6F r[Lt-tl]F for some finite extension
F of k(Y). We may push forward by the map XF --* Xk(y), giving the identity
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tk(Y) --r[Lt-d]k(y). Thus there is a Zariski-open subset j: U -+ Y of Y such that
we have the identity

(idx x j)*(6)= [Lt-a x U]

in CHt(X x U). Let D Y\U with inclusion i: D--+ Y; the exact localization
sequence

(idx xi), (idxj)*
CHt(X x U)CHt(X x D) CHt(X x r) -+ 0

together with the identity [Lt-d x U]--(idx x j)*([Lt-d x Y]) completes the
proof. Vl

THEOREM 5.2. Let X be a closed subset oflP, ofpure dimension t. Suppose that
X is the intersection of hypersurfaces of deorees dl > > dr > 2; suppose fur-
ther either that

(i) dl>3orr>l+l, andthat

(di+l
i=1 \1+ 1]

or that
(ii) dl 2,1< r < and that r(l + 2) n + r- l-1.

Then X contains aflag of linear spaces Lo c L1 c Ll, with dim(Lj) =j, and
we may write the class of the diagonal Ax in CHt(X x X)@ as

[Ax] [L0 x X] + [L1 x A1] +"" + ILl x Al] ’k ,
with Ai CHt-i(X) and with y supported in X x W for some pure codimension-

(l + 1) closed subset W ofX.
In addition, if X is smooth, let h denote the class in CHI(X) of a hyperplane

section ofX, and let h (i) denote the i-fold self-intersection. Then [Ai]= h(i) for
1,..., l, in CHi(X).

Proof. By Theorem 4.6, X contains a flag of linear spaces L0 c L1
Ll, such that, for each algebraically closed field K k, CHs(Xr) is generated

by the class of L for 0 < s < I.
Suppose X has components X1,...,Xp; let A denote the image of Ax, in

X x Xi. We now apply Lemma 5.1 to the cycle [Ac]. This gives us a proper
closed subset D of X, a rational number r, and a cycle in CHt(X x X),
supported in X x D such that

[Ac] ri[Lo x Xi] + ? (20)
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in CHt(X x Xi). Applying the projection p2. gives ri 1. Since D is a proper
closed subset of Xi, we may suppose that D has pure codimension one on Xi.

Let qi: X --, X be the inclusion. Let D P D and let=1

P

)’ (idx x qi),(Y).
i=1

Since

P

[Ax] Z (idx x qi),([Ac])
i=1

P

[Lo x X] Z (idx x qi),([Lo x Xi]),
i=1

applying (idx x qi). to the relation (20) and summing gives the identity

[Ax] [L0 x X] + 1

in CHt(X X), with 1 CHt(X x X) supported in X x D1.
The result then follows by induction: suppose we have an integer s, with

1 < s < l, and the identity in CH(X x X)"
[Ax] [Lo x X] + ILl All +"" + [Ls-1 As-I]

with Ai e CH_i(X)_ and with Vs supported in X x Ds for some pure codimension-
s closed subset Ds of X. If Ds has irreducible components D,..., Dr, we may write

Vs as a sum
P

i=1

with y supported in X x D. As D has dimension t- s, we may apply Lemma 5.1,
giving a proper closed subset D+ of D, a rational number ri, and a cycle
])+i t CHt(X x D), supported in X x D+I, such that the identity

holds in CHt(X x D). We may suppose that D+ is a pure eodimension-one
subset of D.

P D gives theTaking As YiP=I ri[D], s+l -]iP_l Ys+l, and Ds+l k.)i=l s+l
desired identity

[Ax] [Lo X] + [L1 x All +"" + [Ls x As] + ])s+l,

verifying the induction.
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It remains to show that [Aj]--h(J) for j 1,... ,1 in case X is smooth. For
cycles a CH*(X x X) and fl e CH*(X), let , (fl) p2, (p[fl u ). We note
the identities

[Ax],(h(j)) h(J)

[Li x hi],(h(j)) ij[ai]

7,(h(j))=0 for0<j<l,

from which the identity [Ai] h (i), 1,..., follows immediately.

We recall the category of effective Chow motives over k, ’- (scc [13] for
details). The objects of ’- are pairs (X, 7), where X is a smooth projective
k-variety, and 7 cHdimk(X)(X k X) is an idempotent correspondence; the
object (X, Ax) is denoted re(X), and is called the motive of X. Morphisms from
(X, 7) to (Y, J) are given by correspondences. ’- is a tensor category, with tensor
product induced by the operation of product over k. We have the Lefschetz motive
.La, defined as the object (lP 1, lP 0); inverting the operation (-) (R) defines the
category of Chow motives over k, k.
COROLLARY 5.3. Let X be as in Theorem 5.2, and assume in addition that X is

smooth. Then the decomposition of the diagonal in Theorem 5.2 is a decomposition
of [Ax] into mutually orthooonal idempotent correspondences, giving the decom-
position of the motive re(X) in /lk as

m(X) ( ..i (X, 7).
i=0

Proof. One directly computes that the classes [Li] x h(i) are mutually
orthogonal idempotents; as these classes clearly commute with [Ax], the decom-
position of lax] in 5.2 is a decomposition into mutually orthogonal idempotents,
as claimed. It remains to check that there is an isomorphism of (X, [Li] x h(i))
with .
For this, we note that i is isomorphic to the motive defined by (Li, [Li x 0]).

Let ti: L ---, X be the inclusion, giving the morphism

t" (X, [Li] x h(i)) --, (Li, [Li x 0]).

It is then easy to check that t}’ is an isomorphism, with its inverse given by the
correspondence Li h (i) - Li X. I-"i

One can use the decomposition of the diagonal in Theorem 5.2 to recover a
part of the results of Ax and Katz on the congruence # lPn(lFq) #X(IFq), once
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we make certain integrality assumptions on the decomposition and assume a
weak form of resolution of singularities. This gives a proof of a weak version of
the Ax-Katz result by essentially algebro-geometric means, without resorting to
the use of zeta functions. To see this, we first note the following result.

LEMMA 5.4. Let Y be a smooth variety over lFq, and let Z be an irreducible
closed subset of codimension s. Let Hy and IIz denote the graphs of the Frobenius
endomorphisms Frobg and Frobz, respectively. Then

(i) rig intersects Y X Fq Z properly in Y x Fq Y, and

I-Iy "YXrqY Y xrq Z qSHz,

where we consider riz as a cycle on Y xq Z.
(ii) riy intersects Z xrq Y properly in Y xrq Y, and

riY YxFq Y Z X IFq Y riz

where we consider riz as a cycle on Z x rq Y.

Proof. We give the proof of (i); the proof of (ii) is similar and is left to the
reader.

Since rIy is the locus of points (y, yq), and similarly for riz, it follows that

I’Ir m (Y Fq Z) Hz

set-theoretically, which shows that the intersection 1-It c (Y x rq Z) is proper.
Since 1-Iz is irreducible, we have as well

I-I r YXFq Y Y X lF, Z) gIIz (1)

for some positive integer/. Since the intersection multiplicity is determined at the
generic point of 1-Iz, we may replace Y with any open subset which intersects Z;
thus, we may assume that Y is affine, and, as lFq is perfect, that Z is smooth over

Suppose we have an 6tale map of pairs f: (Y, Z) (T, W), with (T, W) sat-
isfying the hypotheses of the lemma. Then f induces 6tale maps

hence, we have

YXF Y--- TxFq Y, Y x rq Z -- T X rq W

riy -- I-IT, I-Iz --* I-Iw

HT "TqT (T XFq W) #riw,

with the same integer # as in (1). Thus, it suffices to prove (i) for some (T, W).
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Shrinking Y again if necessary, we may find an 6tale map of pairs

(Y,Z)-, (&n+s,&n)

where &n is the subvariety of &,+s defined by Xn+l Xn+s 0, for global
coordinates x1,... ,Xn+s on &n+s. Using coordinates xi and yj on &n+Sx
with the xi being coordinates on the first factor and the yj coordinates on the sec-
ond factor, I-ln/, is defined by the equations

yj- x 0; j- 1,...,n+ s.

As &n+s x &n is defined by the equations

Yi O; n + 1,...,n+ s,

the identity

IIn+, ..+,x.+, (.&n+s x .&n) qSi-I,,

follows by a direct computation.

PROPOSITION 5.5. Let X c IpnFq be a smooth projective variety over lFq contain-
ing a flag of linear spaces Lo c L1 LI. Let Z(p) be the localization ofZ at
p, and suppose we have in CH*(X x Fq X) (R) 71(p) the identity

lax] [Lo x X] + ILl x AI] +"" + ILl x At] + [y],

with Ai a codimension-i cycle (with 7Z(p)-coefficients) on X, and supported on
X x W for some closed subset W of X. Suppose in addition that each irreducible
component of dominates an irreducible component of W, that each irreducible
component ofW has codimension at least + 1 on X, and that W admits a resolution

of singularities over lFq. Then

# lpn(lFq) =- #X(IFq) mod ql+1.

Proof. It follows as in the proof of the last statement of 5.2 that we have
[A] h() in CHi(X) (R) 71(p), with h() the class of the intersection of X with a

]pn.dimension-(n- i) linear subspace Ln_ of We may assume that L and Ln_
intersect transversely in IP" at a single point zero. By repeated applications of the
projection formula, together with 5.4, we have

deg(nx "xrx (Li x h(i))) deg(1-Ix xxrn,, (Li xr Ln-i))

deg(I-ln, ,xrq, (Li xrq Ln-i))
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deg(qil-ILn-, ’nrqL-, (Li XlFq Ln-i))

qi deg(1-It_," t,_,xFL_, (0 XF Ln-i))

qi deg(Ho- 0xFLn_, (0 F Ln-i)) qi.

Similarly, l.et i be an irreducible component of , dominating an irreducible com-
ponent V of W. By our assumption on and W, there is a resolution of singular-
ities r: I/ W/, and subvariety of X xrq with (idx x n),(i) i. Let

p: X xr Wi -+ X xr X

be the evident morphism. By applying the projection formula and 5.4, we have

deg(Hx "xrx i) deg(Hx "xxx P,(i))

deg(p* (Hx). xr i)-

On the other hand, since the projection 1-lw, I/V/is finite and surjective, it follows
that the pullback (idx x n)-i (1-Iw,) is irreducible. This, together with 5.4, gives the
identity

p* (1-Ix) =qSII

with s codimx(W/) > + 1. Thus, we have

1-Ix xxqx =- 0 mod q+.

The identities #X(lFq) deg(Hx xrx Ax) and #IP"(IFq) 1 + q +... + qn
complete the proof.

Remark 5.6. If we have a smooth variety X over an algebraically closed field
k of characteristic zero, for which our result 5.2 applies, we may consider the
various specializations of X obtained by choosing a smooth projective model

Spec(R) of X over a ring R, finitely generated over Z, and taking the fibres
of X over lFq-points of R. The decomposition of Ax in 5.2 involves only finitely
many denominators, and implies an analogous decomposition of A, after
shrinking Spec(R_) if necessary. Since we may assume that W has a resolution
of singularities W, smooth and projective over R, it follows that 5.2 implies the
Ax-Katz congruence on r(lFq) for all but finitely many characteristics and with
x replaced by the smaller number + 1.
For X defined over , one considers on the primitive Betti cohomology
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groups

Hb(X)pdm :-- Hb(X, )/Hb (]pn, ff),

the descending coniveau filtration

NaHb(X)prim :--- (tr Hb(X)prim, there exists a closed subset Z

of codimension > a such that trlx_z 0}.

The next corollary implies that the Hodge-type relation nF Hc(lP X)
H(lP X) holds true for all i.

COROLLARY 5.7. Let X be as in Theorem 5.2. Assume moreover that X is
smooth. Thenfor all b

Nl+ Hb(X)prim Hb (S)prim.

Proof. As usual, one applies the correspondence

[Ax],(tr) P2, ([Ax]" p(tr))

on Hb(S)prim, where lax] is the cohomology class of Ax in n2dimX(s X). This
is the identity. The correspondence with y sends Hb(x) into the image of the
cohomology of W via the Gysin morphism, whereas the correspondence with
Li x h (i) kills Hb(x) for b v 2i, while for b 2i, it sends H2i(X) into some multi-
ple of the cohomology class of h().
On the other hand, for tr H2i(X), we have

a- [Ax],(a) [Li h(i)],(a) mod NI+IH2i(X) =- r[h (i)] mod NI+IH2i(X)

for some

Note added in proof. For curves on hypersurfaces, i.e., for r 1, J. Kolltr
obtained Theorem 4.6 independently in his book Rational Curves on Algebraic
Varieties, Ergeb. Math. Grenzgeb. (3) 32, Springer-Vedag, Berlin, 1996, Theorems
IV.3.13 and V.4.2. His argument is in the same two stages as ours: first show that

CHI(X) is generated by lines, and then show that the lines are all equivalent.
In characteristic zero, Kolltr’s proof of the second step is similar to the one given
in Section 4. In characteristic p > 0 he shows the smoothness of the variety of lines,
which we avoid by a degeneration argument.
For the first step, however, his arguments are different from the ones used here.
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